000084164 001__ 84164
000084164 005__ 20230914083232.0
000084164 0247_ $$2doi$$a10.1021/acs.cgd.8b01105
000084164 0248_ $$2sideral$$a108840
000084164 037__ $$aART-2018-108840
000084164 041__ $$aeng
000084164 100__ $$0(orcid)0000-0001-6089-6126$$aMunárriz, J.$$uUniversidad de Zaragoza
000084164 245__ $$aBuilding Fluorinated Hybrid Crystals: Understanding the Role of Noncovalent Interactions
000084164 260__ $$c2018
000084164 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084164 5203_ $$aNoncovalent interactions play a key role in functional materials. Metal-organofluorine interactions are of special interest because they directly affect the structure and reactivity of hybrid fluorinated materials. In-depth understanding and modulating of these interactions would enable the rational design of functional materials from fundamental chemical principles. In this work, we propose a computational approach that enables a comprehensive and quantitative characterization of noncovalent interactions (NCIs) in hybrid fluorinated crystals. Our approach couples dispersion-corrected density functional theory to NCI analysis. Additionally, we determine electron densities at bond critical points and identify electrostatic interactions using a simple electrostatic model. The versatility of this approach to probe a wide range of NCIs is demonstrated for a series of four bimetallic fluorinated crystals incorporating alkali-manganese(II) pairs and trifluoroacetato ligands. Noncovalent interactions in these hybrid crystals include metal-oxygen, metal-fluorine, hydrogen bonds, and van der Waals forces. Using K2Mn2(tfa)6(tfaH)2·H2O as an example, we demonstrate that its two-dimensional layered structure stems from a unique balance between these four NCIs. The computational approach presented herein should have general applicability to the quantitative study of NCIs in hybrid crystals, thereby serving as a guide for crystal engineering of novel hybrid materials.
000084164 536__ $$9info:eu-repo/grantAgreement/ES/MEC/EST16-00466$$9info:eu-repo/grantAgreement/ES/MEC/FPU14-06003
000084164 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000084164 590__ $$a4.153$$b2018
000084164 591__ $$aCRYSTALLOGRAPHY$$b2 / 25 = 0.08$$c2018$$dQ1$$eT1
000084164 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b66 / 293 = 0.225$$c2018$$dQ1$$eT1
000084164 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b47 / 172 = 0.273$$c2018$$dQ2$$eT1
000084164 592__ $$a1.046$$b2018
000084164 593__ $$aChemistry (miscellaneous)$$c2018$$dQ1
000084164 593__ $$aMaterials Science (miscellaneous)$$c2018$$dQ1
000084164 593__ $$aCondensed Matter Physics$$c2018$$dQ1
000084164 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000084164 700__ $$aRabuffetti, F.A.
000084164 700__ $$aContreras-García, J.
000084164 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000084164 773__ $$g18 (2018), 6901-6910$$pCryst. growth des.$$tCRYSTAL GROWTH & DESIGN$$x1528-7483
000084164 8564_ $$s920591$$uhttps://zaguan.unizar.es/record/84164/files/texto_completo.pdf$$yPostprint
000084164 8564_ $$s271046$$uhttps://zaguan.unizar.es/record/84164/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000084164 909CO $$ooai:zaguan.unizar.es:84164$$particulos$$pdriver
000084164 951__ $$a2023-09-13-10:44:51
000084164 980__ $$aARTICLE