000084190 001__ 84190
000084190 005__ 20200716101428.0
000084190 0247_ $$2doi$$a10.1016/j.cej.2018.09.223
000084190 0248_ $$2sideral$$a108741
000084190 037__ $$aART-2019-108741
000084190 041__ $$aeng
000084190 100__ $$0(orcid)0000-0002-8762-6203$$aBueno-Alejo, C.J.
000084190 245__ $$aHigh-radiance LED-driven fluidized bed photoreactor for the complete oxidation of n-hexane in air
000084190 260__ $$c2019
000084190 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084190 5203_ $$aThis work presents a highly efficient photo-reactor configuration for VOC abatement. It consists of a fluidized bed made of commercial, easy to fluidize, transparent borosilicate glass beads coated with commercial TiO2 nanoparticles (0.15–2.3 wt% loadings). Herein, we demonstrate that the use of high-radiance/low consumption UV-LEDs as irradiation sources with a deeper light penetration under fluidizing conditions facilitates the photocatalytic response to achieve the complete oxidation of VOCs. The role of different parameters such as catalyst loading and irradiation power have been thoroughly studied and evaluated to maximize the full combustion of n-hexane. Under the high radiance (up to 2200 mW/cm2) conditions used the bed heats significantly (up to 190 °C), although this did not have an effect on the conversions reached, which depended solely on the wavelength and power used. The productivity of the photoreactor tested and the space velocity used were around 5.25 × 10-2 mol/g·h and 12000 h-1 respectively.
000084190 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-77147-R$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-79419-R
000084190 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000084190 590__ $$a10.652$$b2019
000084190 592__ $$a2.315$$b2019
000084190 591__ $$aENGINEERING, ENVIRONMENTAL$$b2 / 53 = 0.038$$c2019$$dQ1$$eT1
000084190 593__ $$aChemical Engineering (miscellaneous)$$c2019$$dQ1
000084190 591__ $$aENGINEERING, CHEMICAL$$b4 / 143 = 0.028$$c2019$$dQ1$$eT1
000084190 593__ $$aIndustrial and Manufacturing Engineering$$c2019$$dQ1
000084190 593__ $$aEnvironmental Chemistry$$c2019$$dQ1
000084190 593__ $$aChemistry (miscellaneous)$$c2019$$dQ1
000084190 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000084190 700__ $$0(orcid)0000-0002-4546-4111$$aHueso, J.L.
000084190 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, R.$$uUniversidad de Zaragoza
000084190 700__ $$0(orcid)0000-0003-3211-0485$$aJulian, I.
000084190 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, J.$$uUniversidad de Zaragoza
000084190 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000084190 773__ $$g358 (2019), 1363-1370$$pChem. eng. j.$$tCHEMICAL ENGINEERING JOURNAL$$x1385-8947
000084190 8564_ $$s268981$$uhttps://zaguan.unizar.es/record/84190/files/texto_completo.pdf$$yPostprint
000084190 8564_ $$s65032$$uhttps://zaguan.unizar.es/record/84190/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000084190 909CO $$ooai:zaguan.unizar.es:84190$$particulos$$pdriver
000084190 951__ $$a2020-07-16-08:46:48
000084190 980__ $$aARTICLE