000084193 001__ 84193
000084193 005__ 20200716101428.0
000084193 0247_ $$2doi$$a10.1016/j.carbon.2018.09.036
000084193 0248_ $$2sideral$$a108749
000084193 037__ $$aART-2019-108749
000084193 041__ $$aeng
000084193 100__ $$0(orcid)0000-0002-3125-5802$$aPuértolas, J.A.$$uUniversidad de Zaragoza
000084193 245__ $$aTribological and mechanical properties of graphene nanoplatelet/PEEK composites
000084193 260__ $$c2019
000084193 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084193 5203_ $$aPoly(ether ether ketone) (PEEK) is a relevant thermoplastic in industry and in the biomedical sector. In this work, the lubricant capability of graphene nanoplatelets (GNPs) is used for improving the PEEK wear properties. Nanocomposites were prepared by solvent-free melt-blending and injection molding at various compositions between 1 and 10 wt. % of GNPs. The Raman G band shows a progressive increment proportional to the bulk GNP percentage. From calorimetric data, the polymer matrix structure is interpreted in terms of a 3-phase model, in which the crystalline phase fluctuates from 39 to 34% upon GNP addition. Thermal conductivity varies in accordance with the polymer crystallinity. Tensile and flexural tests show a progressive increase in the modulus, as well as a decrease in the fracture strength and the work of fracture. Most important, the composite surface undergoes a substantial improvement in hardness (60%), together with a decrease in the coefficient of friction (-38%) and a great reduction in the wear factor (-83%). Abrasion and fatigue wear mechanisms are predominant at the lowest and highest GNP concentrations respectively. In conclusion, GNPs are used without any chemical functionalization as the filler in PEEK-based materials, improving the surface hardness and the tribological properties.
000084193 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E11-17R$$9info:eu-repo/grantAgreement/ES/DGA/T03-17R$$9info:eu-repo/grantAgreement/ES/DGA/T48-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2016-79282-C5-1-R$$9info:eu-repo/grantAgreement/ES/UZ/UZ2015-TEC-04
000084193 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000084193 590__ $$a8.821$$b2019
000084193 592__ $$a2.234$$b2019
000084193 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b32 / 314 = 0.102$$c2019$$dQ1$$eT1
000084193 593__ $$aMaterials Science (miscellaneous)$$c2019$$dQ1
000084193 591__ $$aCHEMISTRY, PHYSICAL$$b26 / 158 = 0.165$$c2019$$dQ1$$eT1
000084193 593__ $$aChemistry (miscellaneous)$$c2019$$dQ1
000084193 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000084193 700__ $$0(orcid)0000-0002-9687-4903$$aCastro, M.$$uUniversidad de Zaragoza
000084193 700__ $$aMorris, J.A.
000084193 700__ $$0(orcid)0000-0002-1805-5320$$aRíos, R.$$uUniversidad de Zaragoza
000084193 700__ $$aAnsón-Casaos, A.
000084193 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000084193 773__ $$g141 (2019), 107-122$$pCarbon$$tCarbon$$x0008-6223
000084193 8564_ $$s2706798$$uhttps://zaguan.unizar.es/record/84193/files/texto_completo.pdf$$yPostprint
000084193 8564_ $$s166481$$uhttps://zaguan.unizar.es/record/84193/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000084193 909CO $$ooai:zaguan.unizar.es:84193$$particulos$$pdriver
000084193 951__ $$a2020-07-16-08:47:08
000084193 980__ $$aARTICLE