000084194 001__ 84194
000084194 005__ 20191212102142.0
000084194 0247_ $$2doi$$a10.1016/j.molliq.2018.10.041
000084194 0248_ $$2sideral$$a108752
000084194 037__ $$aART-2018-108752
000084194 041__ $$aeng
000084194 100__ $$0(orcid)0000-0001-5775-483X$$aMorón, M.C.$$uUniversidad de Zaragoza
000084194 245__ $$aLow temperature dependence of protein-water interactions on barstar surface: A nano-scale modelling
000084194 260__ $$c2018
000084194 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084194 5203_ $$aThe dynamics of the hydration shell of the inhibitor barstar is analysed at low temperature (300–243 K), through all-atom molecular dynamics simulations, and compared with that of bulk water. The relaxation of residence times of solvent molecules in the protein hydration shell follows a stretched exponential function exp[-(t/t)ß] with ß = 0.48 ± 0.01, independent of temperature, showing that the decay process is mainly dominated by long-range molecular relaxation channels (short-range for bulk water). The percentage of water molecules exhibiting 4 hydrogen bonds, xHB4, is found to be a parameter essential for understanding some room and low temperature dependent properties of the protein hydration shell, suggesting an explanation for the unfreezing of protein hydration water as temperature decrease below 273 K. Moreover the dynamical transition that proteins and their hydration water exhibit at ~225 K can be explained by the decrease of ‘hydrogen bond defects’ in the protein hydration shell as temperature goes down. If most of those water molecules would present a tetrahedral arrangement (nearly no ‘hydrogen bond defects’), the bioactivity of proteins would be negligible. Comparison with experimental results is provided all along the work. Experimental data are quantitatively reproduced.
000084194 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E36-17R$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2017-87519-P
000084194 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000084194 590__ $$a4.561$$b2018
000084194 591__ $$aPHYSICS, ATOMIC, MOLECULAR & CHEMICAL$$b7 / 36 = 0.194$$c2018$$dQ1$$eT1
000084194 591__ $$aCHEMISTRY, PHYSICAL$$b42 / 148 = 0.284$$c2018$$dQ2$$eT1
000084194 592__ $$a0.862$$b2018
000084194 593__ $$aAtomic and Molecular Physics, and Optics$$c2018$$dQ1
000084194 593__ $$aCondensed Matter Physics$$c2018$$dQ1
000084194 593__ $$aSpectroscopy$$c2018$$dQ1
000084194 593__ $$aMaterials Chemistry$$c2018$$dQ1
000084194 593__ $$aPhysical and Theoretical Chemistry$$c2018$$dQ1
000084194 593__ $$aElectronic, Optical and Magnetic Materials$$c2018$$dQ1
000084194 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000084194 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000084194 773__ $$g272 (2018), 902-911$$pJ. mol. liq.$$tJOURNAL OF MOLECULAR LIQUIDS$$x0167-7322
000084194 8564_ $$s1123373$$uhttps://zaguan.unizar.es/record/84194/files/texto_completo.pdf$$yPostprint
000084194 8564_ $$s178069$$uhttps://zaguan.unizar.es/record/84194/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000084194 909CO $$ooai:zaguan.unizar.es:84194$$particulos$$pdriver
000084194 951__ $$a2019-12-12-10:12:58
000084194 980__ $$aARTICLE