000084195 001__ 84195
000084195 005__ 20200117221624.0
000084195 0247_ $$2doi$$a10.1109/LPT.2018.2876571
000084195 0248_ $$2sideral$$a109817
000084195 037__ $$aART-2018-109817
000084195 041__ $$aeng
000084195 100__ $$0(orcid)0000-0002-3867-2182$$aBenedicto, D.$$uUniversidad de Zaragoza
000084195 245__ $$aRing-type erbium-doped antiresonant reflecting optical waveguide amplifier analysis and design
000084195 260__ $$c2018
000084195 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084195 5203_ $$aErbium-doped antiresonant reflecting optical wave-guides (ARROWs) allow combining wavelength selective guiding due to their attractive spectral versatility with an active operation. In this letter, the analysis and design of a ring-type erbium-doped ARROW amplifier is presented. The influence of the involved passive and active parameters (ring thickness and diameter, refractive index variation, pump and signal wavelengths, Er3+-ion concentration, and input pump power) on the spectral response of the structure and the optical power propagation losses and on the amplifier performance is numerically analysed. The opposite influence of the ring diameter on the optical power confinement and on the pump power density causes the existence of a diameter value that maximizes the amplifier net gain. For a cladding refractive index of 1.4 and moderate index variations, ¿ n = 0.2-0.4, the optimum ring diameter is in the range of 20 µm. To compensate signal confinement losses (a few dB/cm), high erbium concentrations (~ × 1026 ion/m3) are required.
000084195 536__ $$9info:eu-repo/grantAgreement/ES/DGA/FSE$$9info:eu-repo/grantAgreement/ES/MINECO/TEC2014-52642-C2-2
000084195 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000084195 590__ $$a2.553$$b2018
000084195 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b119 / 265 = 0.449$$c2018$$dQ2$$eT2
000084195 591__ $$aPHYSICS, APPLIED$$b54 / 148 = 0.365$$c2018$$dQ2$$eT2
000084195 591__ $$aOPTICS$$b38 / 95 = 0.4$$c2018$$dQ2$$eT2
000084195 592__ $$a0.991$$b2018
000084195 593__ $$aAtomic and Molecular Physics, and Optics$$c2018$$dQ1
000084195 593__ $$aElectronic, Optical and Magnetic Materials$$c2018$$dQ1
000084195 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ1
000084195 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000084195 700__ $$0(orcid)0000-0001-8431-0003$$aVallès, J.A.$$uUniversidad de Zaragoza
000084195 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica
000084195 773__ $$g30, 23 (2018), 2060-2063$$pIEEE photonics technol. lett.$$tIEEE PHOTONICS TECHNOLOGY LETTERS$$x1041-1135
000084195 8564_ $$s248327$$uhttps://zaguan.unizar.es/record/84195/files/texto_completo.pdf$$yPostprint
000084195 8564_ $$s145460$$uhttps://zaguan.unizar.es/record/84195/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000084195 909CO $$ooai:zaguan.unizar.es:84195$$particulos$$pdriver
000084195 951__ $$a2020-01-17-21:55:21
000084195 980__ $$aARTICLE