000084208 001__ 84208
000084208 005__ 20200513005823.0
000084208 0247_ $$2doi$$a10.1016/j.jnt.2018.09.015
000084208 0248_ $$2sideral$$a108572
000084208 037__ $$aART-2018-108572
000084208 041__ $$aeng
000084208 100__ $$aGrau, J.M.
000084208 245__ $$aFast computation of the number of solutions to x12+ ··· + xk2 = ¿ (mod n)
000084208 260__ $$c2018
000084208 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084208 5203_ $$aIn this paper we study the multiplicative function ¿k,¿(n) that counts the number of solutions of the equation x1 2+...+xk 2=¿(modn) in (Z/nZ)k. In particular we give closed explicit formulas for ¿k,¿(ps). This leads to an algorithm with an arithmetic complexity of constant order that improves previous work by Tóth [10] and completes the quadratic case considered by Li and Ouyang in [8].
000084208 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000084208 590__ $$a0.684$$b2018
000084208 591__ $$aMATHEMATICS$$b181 / 313 = 0.578$$c2018$$dQ3$$eT2
000084208 592__ $$a0.837$$b2018
000084208 593__ $$aAlgebra and Number Theory$$c2018$$dQ1
000084208 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000084208 700__ $$0(orcid)0000-0002-8191-3199$$aOller-Marcén, A.M.
000084208 773__ $$g200 (2018), 427 - 440$$pJ. number theory$$tJOURNAL OF NUMBER THEORY$$x0022-314X
000084208 8564_ $$s625881$$uhttps://zaguan.unizar.es/record/84208/files/texto_completo.pdf$$yPostprint
000084208 8564_ $$s47607$$uhttps://zaguan.unizar.es/record/84208/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000084208 909CO $$ooai:zaguan.unizar.es:84208$$particulos$$pdriver
000084208 951__ $$a2020-05-13-00:50:33
000084208 980__ $$aARTICLE