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In this paper we study the multiplicative function ρk,λ(n) that 
counts the number of solutions of the equation x2

1 + · · · +
x2
k ≡ λ (mod n) in (Z/nZ)k. In particular we give closed 

explicit formulas for ρk,λ(ps). This leads to an algorithm 
with an arithmetic complexity of constant order that improves 
previous work by Tóth [10] and completes the quadratic case 
considered by Li and Ouyang in [8].

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let k, λ and n be positive integers and let ρk,λ(n) denote the number of incongruent 
solutions of the equation

P (x1, . . . , xk) := x2
1 + x2

2 + · · · + x2
k ≡ λ (mod n). (1)

In other terms:

ρk,λ(n) := card {(xi, . . . , xk) ∈ (Z/nZ)k : P (x1, . . . , xk) ≡ λ (mod n)}
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Since the function ρk,λ is multiplicative, it is enough to consider the case when 
n = ps is a prime power. Moreover, it is also clear that we can introduce the restriction 
0 ≤ λ < n.

The computation of ρk,λ(n) by mere exhaustive search is obviously inefficient since 
its computational complexity has order Θ(nk). Thus, the interest to find closed formulas 
involving a number of operations which is as small as possible.

Identities for ρk,λ(n) can be derived using Gauss and Jacobi sums. In fact, we have 
(see [7]) a very compact expression like:

ρk,λ(n) = 1
n

n∑
a=1

e−2πi aλ
n

(
n∑

x=1
e2πi ax2

n

)k

. (2)

This expression has theoretical value and it could even be practically applied for 
small values of n. Nevertheless, it is not useful for moderately big values of n, even in 
the particularly simple case λ = 0. This is because the arithmetic complexity of that 
formula is Θ(n2).

Another compact expression can be found in [10]. Namely,

ρk,λ(n) = nk−1
∑
d|n

1
dk

d∑
l=1

gcd(l,n)=1

e
−2πilλ

d S(l, d)k, (3)

where S(l, r) is the quadratic Gauss sum defined for every natural numbers l, r such that 
gcd(l, r) = 1 by

S(l, r) :=
r∑

j=1
e2πi lj2

r .

Formula (3) is more efficient than formula (2) because, if n = ps, its arithmetic 
complexity is in fact linear Θ(n). However, it is also inefficient even for small values of 
s (especially if λ �= 0) as we will show in the last section.

Some efficient explicit formulas are known for some particular cases. For instance, 
V.H. Lebesgue [5] gave in 1837 a closed formula for ρk,λ(p). In [1, p. 46] a formula for 
ρk,0(ps) is given and the case gcd(λ, p) = 1 was completely solved in [3]. Furthermore, 
in [10] and [4] we can find closed formulas for some particular cases of k and λ. Very 
recently, an algorithm has been provided in [8] to compute the value of NJ(Q; λ, n)
defined as the number of solutions in (Z/nZ)k to the equation

Q(x1, . . . , xk) := α1x
m1
1 + α2x

m2
2 + · · · + αkx

mk

k ≡ λ (mod n),

with the additional restriction that xi is a unit for every i ∈ J ⊆ {1, ..., k}.
Note that ρk,λ(n) = N∅(P ; λ, n). The algorithm given in [8, p. 51] is efficient in many 

cases, but not for J = ∅ in general. Even though we are in the quadratic case, the J = ∅
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situation is not covered in (see [8, Theorem 4.4]) and it is only addressed in the more 
restricted k = 2 case. Thus, up to date, no general formula with constant (independent 
of k, λ and s) complexity for the computation of ρk,λ(ps) has been given. For example, 
it is not possible to compute in a reasonable time the value of ρ10,5100000(51000000) with 
the results that are known today. In this work, using elementary techniques that do 
not involve Gauss or Jacobi sums, we present explicit general formulas for ρk,λ(ps) with 
arithmetic complexity of constant order, O(1).

The paper is organized as follows. In Sections 2 and 3 we present the basic theoretical 
results of the paper. In Section 4, based on the previous results, we provide the formulas 
that allow us to efficiently compute ρk,λ(ps) for any k, λ, p and s. Finally, in Section 5, 
we analyze and discuss the computational complexity of our algorithm and provide some 
comparative tables.

2. Known basic cases

The formulas for ρk,λ(ps) that we are going to present ultimately rely on the values 
of ρk,λ(p) if p is an odd prime and on the values of ρk,λ(2s) with 1 ≤ s ≤ 3 if p = 2.

As we already pointed out, when p is an odd prime the values of ρk,λ(p) were al-
ready studied by V.H. Lebesgue in 1837. In particular he proved the following result [5, 
Chapter X], where 

(
λ
p

)
denotes the Legendre symbol defined by

(
λ

p

)
=

⎧⎪⎪⎨
⎪⎪⎩

1, if λ is a quadratic residue modulo p;
−1, if λ is a not a quadratic residue modulo p;
0, if p | λ.

Proposition 1. Let p be an odd prime and let k, λ be positive integers with 0 ≤ λ < p. 
Put t = (−1)(p−1)(k−1)/4p(k−1)/2 and l = (−1)k(p−1)/4p(k−2)/2. Then,

ρk,λ(p) =

⎧⎨
⎩
pk−1 +

(
λ
p

)
t, if k is odd;

pk−1 − l +
(
1 −

∣∣∣(λ
p

)∣∣∣) pl, if k is even.

In the p = 2 case, formulas for ρk,λ(2s) with 1 ≤ s ≤ 3 were given in [3] when λ is 
even. Here we complete it.

Proposition 2. Let k be a positive integer. Then:

i) ρk,1(2) = ρk,0(2) = 2k−1,
ii) ρk,0(4) = 4−1+k + 2−1+ 3 k

2 cos(k π
4 ),

iii) ρk,1(4) = 4k−1 + 2 3k
2 −1 sin

(
πk
4
)
,

iv) ρk,2(4) = 4−1+k − 2−1+ 3 k
2 cos(k π

4 )
v) ρk,3(4) = 4k−1 − 2 3k

2 −1 sin
(
πk

)
,
4
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vi) ρk,0(8) = 8−1+k + 2−2+2 k cos(k π
4 ) + 2−2+ 5 k

2 cos(k π
4 ) + 2−2+2 k cos( 3 k π

4 )
vii) ρk,1(8) = 22k−3

(
2k + 2 k

2 +1 sin
(
πk
4
)

+ 2 sin
( 1

4π(k + 1)
)
− 2 cos

(1
4 (3πk + π)

))
,

viii) ρk,2(8) = 8−1+k − 2−2+ 5 k
2 cos(k π

4 ) + 2−2+2 k sin(k π
4 ) − 2−2+2 k sin(3 k π

4 )
ix) ρk,3(8) = 22k−3

(
2k − 2 k

2 +1 sin
(
πk
4
)
− 2

(
cos

( 1
4π(k + 1)

)
+ cos

(3
4π(k + 1)

)))
,

x) ρk,4(8) = 8−1+k − 2−2+2 k cos(k π
4 ) + 2−2+ 5 k

2 cos(k π
4 ) − 2−2+2 k cos( 3 k π

4 )
xi) ρk,5(8) = 22k−3

(
2k + 2 k

2 +1 sin
(
πk
4
)
− 2 sin

( 1
4π(k + 1)

)
+ 2 cos

( 1
4 (3πk + π)

))
,

xii) ρk,6(8) = 8−1+k − 2−2+ 5 k
2 cos(k π

4 ) − 2−2+2 k sin(k π
4 ) + 2−2+2 k sin(3 k π

4 ),
xiii) ρk,7(8) = 22k−3

(
2k − 2 k

2 +1 sin
(
πk
4
)
− 2 sin

( 1
4 (3πk + π)

)
+ 2 cos

(1
4π(k + 1)

))
.

Proof. Given k, n ∈ N, let us define the matrix M(n) = (ρ1,i−j(n))0≤i,j≤n−1. If we 
consider the column vector Rk(n) = (ρk,i(n))0≤i≤n−1, the following recurrence relation 
holds:

Rk(n) = M(n) ·Rk−1(n).

Then, it is enough to apply elementary linear algebra techniques. For details, see [3, 
Lemma 4]. �
3. Preparatory results

Given positive integers k, n and 0 ≤ λ < n, let A(k, λ, n) denote the set of solutions 
(x1, . . . , xk) ∈ (Z/nZ)k of the congruence x2

1 + · · · + x2
k ≡ λ (mod n). In particular, if 

n = ps is a prime-power, we have that

A(k, λ, ps) = {(x1, ..., xk) ∈ (Zps)k : x2
1 + · · · + x2

k ≡ λ (mod ps)}.

Now, in this situation, let us define the following sets:

A1(k, λ, ps) = {(x1, ..., xk) ∈ A(k, λ, ps) : p � xi for some 1 ≤ i ≤ k},

A2(k, λ, ps) = {(x1, ..., xk) ∈ A(k, λ, ps) : p | xi for every 1 ≤ i ≤ k}.

Note that A(k, λ, ps) = A1(k, λ, ps) ∪ A2(k, λ, ps). Hence, since A1(k, λ, ps) and 
A2(k, λ, ps) are disjoint, if we define ρ(1)

k,λ(ps) := card(A1(k, λ, ps)) and ρ(2)
k,λ(ps) :=

card(A2(k, λ, ps)) it follows that

ρk,λ(ps) = ρ
(1)
k,λ(ps) + ρ

(2)
k,λ(ps).

Remark 1. If gcd(λ, p) = 1; i.e., if p � λ then A2(k, λ, ps) = ∅. Thus, ρ(2)
k,λ(ps) = 0 and it 

follows that ρ(1)
k,λ(ps) = ρk,λ(ps).
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This remark implies that the proof of the following result is the same as that of 
Lemmata 1 and 2 in [3].

Proposition 3.

i) Let ps be an odd prime-power with s ≥ 1 and 0 ≤ λ < ps. Then,

ρ
(1)
k,λ(ps) = p(s−1)(k−1)ρ

(1)
k,λ(p).

ii) Let s ≥ 3 and 0 ≤ λ < 2s. Then, ρ(1)
k,λ(2s) = 2(s−3)(k−1)ρ

(1)
k,λ(8).

Proposition 3 provides us with a recursive relation for ρ(1)
k,λ(ps). Note that this result 

implies that we will have to study the case p = 2 separately.
Now we turn to ρ(2)

k,λ(ps). In this case, we have the following result.

Proposition 4. Let ps be a prime-power, with s ≥ 1 and let 0 ≤ λ < ps. Then,

ρ
(2)
k,λ(ps) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if s = 1 and λ = 0;
pk, if s = 2 and λ = 0;
pkρk,λ/p2(ps−2), if s ≥ 3 and p2 | λ;
0, otherwise.

Proof. If s = 1 and λ = 0, it is obvious that the only k-tuple (x1, . . . , xk) such that 
x2

1 + · · ·+ x2
k ≡ 0 (mod p) and p | xi for every i is (0, . . . , 0). Hence, ρ(2)

k,λ(ps) = 1 in this 
case.

Secondly, if s = 2 and λ = 0, ρ(2)
k,λ(p2) = ρ

(2)
k,0(p2) is the number of k-tuples (x1, . . . , xk)

such that x2
1 + · · · + x2

k ≡ 0 (mod p2) and p | xi for every i. It is obvious that there are 
pk such k-tuples because xi can be any multiple of p in Z/p2Z.

Now, assume that p2 | λ and s ≥ 3. First of all, using Euclid’s algorithm, it is easy to 
see that every element of A2(k, λ, ps) can be written in the form (px1+α1p

s−1, . . . , pxk+
αkp

s−1) with 0 ≤ αi ≤ p − 1 and (x1 . . . , xk) ∈ A(k, λ/p2, ps−2).
On the other hand, let (x1, . . . , xk) ∈ A(k, λ/p2, ps−2); i.e., x2

1 + · · · + x2
k ≡ λ/p2

(mod ps−2). Clearly the set

{(px1 + α1p
s−1, . . . , pxk + αkp

s−1) : 0 ≤ αi ≤ p− 1 for every 1 ≤ i ≤ k}

is contained in A2(k, λ, ps) because

(px1 + α1p
s−1)2 + · · · + (pxk + αkp

s−1)2 ≡ p2(x2
1 + · · · + x2

k) ≡ λ (mod ps)

and all its elements are incongruent modulo ps. Thus, every element of the set 
A(k, λ/p2, ps−2) gives rise to pk different elements of A2(k, λ, ps) and the result follows.
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Finally, in the remaining cases (i.e., if s = 1 or 2 with 0 < λ < p2 or if s ≥ 3 with 
p2 � λ) it is obvious that A2(k, λ, ps) = ∅ and hence ρ(2)

k,λ(ps) = 0, as claimed. �
With the help of Proposition 3 and Proposition 4 we can give recursive formulas that 

express the value of ρk,λ(ps). First, we deal with the odd p and non-zero λ case.

Theorem 1. Let ps be an odd prime-power and let 0 < λ < ps be an integer. Put λ = prλ′

with 0 ≤ r < s and p � λ′. Then,

ρk,λ(ps) =
�r/2�∑
i=0

pki+(s−2i−1)(k−1) · ρ(1)
k,λ/p2i(p).

Proof. We have that ρk,λ(ps) = ρ
(1)
k,λ(ps) + ρ

(2)
k,λ(ps). If r ≤ 1, then Proposition 4 implies 

that ρ(2)
k,λ(ps) = 0. Hence, ρk,λ(ps) = ρ

(1)
k,λ(ps) = p(s−1)(k−1)ρ

(1)
k,λ(p) due to Proposition 3

and we are done.
Now, if r ≥ 2 the s ≥ 3 and Proposition 4 implies that

ρ
(2)
k,λ(ps) = pkρk,λ/p2(ps−2) = pkρ

(1)
k,λ/p2(ps−2) + pkρ

(2)
k,λ/p2(ps−2).

Thus, using Proposition 3 again we obtain that

ρk,λ(ps) = p(s−1)(k−1)ρ
(1)
k,λ(p) + pkp(s−3)(k−1)ρ

(1)
k,λ/p2(p) + pkρ

(2)
k,λ/p2(ps−2).

Since λ/p2 = pr−2λ′, if r − 2 ≤ 1, then ρ(2)
k,λ/p2(ps−2) = 0 by Proposition 4 and we are 

done.
If, on the other hand, r ≥ 4 then s − 2 ≥ 3 and Proposition 4 implies that 

ρ
(2)
k,λ/p2(ps−2) = pkρ

(2)
k,λ/p4(ps−4). Thus, using Proposition 3 again, it follows that

ρk,λ(ps) =
2∑

i=0

(
pki+(s−2i−1)(k−1)ρ

(1)
k,λ/p2i(p)

)
+ p2kρ

(2)
k,λ/p4(ps−4).

Clearly this process can be iteratively repeated until we reach the expression

ρk,λ(ps) =
�r/2�∑
i=0

(
pki+(s−2i−1)(k−1) · ρ(1)

k,λ/p2i(p)
)

+ pk�r/2�ρ
(2)
k,λ/p2�r/2�(ps−2�r/2�)

and, since p2 � λ/p2�r/2� the result follows from Proposition 4. �
Now, we turn to the λ = 0 case for an odd prime p.
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Theorem 2. Let ps be an odd prime-power. Then,

ρk,0(ps) =
�(s−1)/2�∑

i=0

(
pkip(s−2i−1)(k−1) · ρ(1)

k,ps−2i(p)
)

+ p�s/2�k.

Proof. First of all, note that ρk,0(ps) = ρk,ps(ps). Then we can proceed recursively just 
like in Theorem 1 because ρk,ps(ps) = ρ

(1)
k,ps(ps) + ρ

(2)
k,ps(ps).

If s = 1, then ρk,p(p) = ρ
(1)
k,p(p) + ρ

(2)
k,p(p) = ρ

(1)
k,p(p) + 1 due to Proposition 4.

If s = 2, ρk,p2(p2) = ρ
(1)
k,p2(p2) + ρ

(2)
k,p2(p2) = pk−1ρ

(1)
k,p2(p) + pk due to Propositions 3

and 4.
Now, if s ≥ 3, then Propositions 3 and 4 imply that

ρk,ps(ps) = ρ
(1)
k,ps(ps) + ρ

(2)
k,ps(ps) = p(s−1)(k−1)ρk,ps(p) + pkρk,ps−2(ps−2)

If s − 2 = 1 or s − 2 = 2, then we apply Proposition 4 and the result follows. If, on the 
other hand, s − 2 ≥ 3 then

ρk,ps(ps) = p(s−1)(k−1)ρk,ps(p) + pk
(
ρ
(1)
k,ps−2(ps−2) + ρ

(2)
k,ps−2(ps−2)

so applying Propositions 3 and 4 again we get that

ρk,ps(ps) = p(s−1)(k−1)ρk,ps(p) + pkp(s−3)(k−1)ρk,ps−2(p) + pkρk,ps−4(ps−4).

To conclude the proof it is enough to observe that the previous process will end after 

(s −1)/2� steps and hence after 
(s −1)/2� +1 applications of Propositions 3 and 4. �

Now, for the case p = 2 and non-zero λ we have the following result.

Theorem 3. Let 2s be a power of two (s ≥ 1) and let 0 < λ < 2s be an integer. Put 
λ = 2rλ′ with 0 ≤ r < s and odd λ′. Then,

ρk,λ(2s) =
� r

2 �−1∑
i=0

(
2ki2(s−2i−3)(k−1) · ρ(1)

k,λ/22i(8)
)

+ 2k� r
2 �ρ

(1)
k,λ/22� r

2 �(2s−2� r
2 �).

Proof. The proof goes exactly as in Theorem 1 using Proposition 3 and Proposition 4
repeatedly. Note that, in the cases r = 0 and r = 1 we consider that if the upper 
summation limit is −1, the sum is empty. �

And finally, the case p = 2, and λ = 0 is given by the following result.
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Theorem 4. Let 2s be a power of two (s ≥ 1). Then,

ρk,0(2s) =
� s−1

2 �−1∑
i=0

(
2ki2(s−2i−3)(k−1) · ρ(1)

k,2s−2i(8)
)

+ 2�
s−1
2 �k · ρ(1)

k,0(2
s−2� s−1

2 �) + 2� s
2 �k.

Proof. The proof goes exactly as in Theorem 2 using Proposition 3 and Proposition 4
repeatedly. Note that, in the cases s = 1 and s = 2 we consider that if the upper 
summation limit is −1, the sum is empty. �
4. Fast computation of ρk,λ(ps)

With the results that we have proved in the previous section, we have a procedure to 
compute ρk,λ(ps) which has arithmetic complexity of order O(s). Nevertheless, as we are 
going to see in this section, it is possible to obtain formulas requiring a constant number 
of operations.

To do so, given integer numbers k, p, s and N , we define the function

Ω(k, p, s,N) :=
N∑
i=0

pki+(s−2i−1)(k−1).

Since it is essentially a geometric series, the following result is straightforward.

Lemma 1. Let k, p, s and N be integer numbers. Then,

Ω(k, p, s,N) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1+p1+N

−1+p , if k = 1;
p−1+s(1 + N), if k = 2;
p(−1+k) (−1+s)

(
pk−p2

(
p2−k

)N
)

−p2+pk , otherwise.

The following result will also be useful in the sequel.

Lemma 2.

i) Let p be any prime and let 0 ≤ λ < p. Then,

ρ
(1)
k,λ(p) =

{
ρk,λ(p) − 1, if λ = 0;
ρk,λ(p), if λ �= 0.

ii) Let 0 ≤ λ < 4. Then,

ρ
(1)
k,λ(4) =

{
ρk,λ(4) − 2k, if λ = 0;
ρk,λ(4), if λ �= 0.
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iii) Let 0 ≤ λ < 8. Then,

ρ
(1)
k,λ(8) =

{
ρk,λ(8) − 22k−1, if λ = 0, 4;
ρk,λ(8), if λ �= 0, 4.

Proof. Just recall that ρ(1)
k,λ(n) = ρk,λ(n) − ρ

(2)
k,λ(n) and apply Proposition 4. �

Corollary 1. Let ps be an odd prime-power and let 0 < λ < ps be an integer. Put λ = prλ′

with 0 ≤ r < s and p � λ′. Then,

ρk,λ(ps) =
{

Ω(k, p, s, r−1
2 ) · (ρk,0(p) − 1), if r is odd;

Ω(k, p, s, r−2
2 ) · (ρk,0(p) − 1) + pk

r
2+(s−r−1)(k−1) · ρk,λ′(p), if r is even .

Proof. Using Lemma 2 the following hold:

• If r is odd, then for every i ≤ 
r/2� we have that ρ(1)
k,λ/p2i(p) = ρ

(1)
k,0(p) = ρk,0(p) − 1.

• On the other hand, if r is even then ρ(1)
k,λ/p2i(p) = ρ

(1)
k,0(p) = ρk,0(p) − 1 for every 

i < r/2, while ρ(1)
k,λ/p2i(p) = ρk,λ′(p) for i = r/2.

Hence, from Theorem 1 it follows that

ρk,λ(ps) =
r/2−1∑
i=0

pki+(s−2i−1)(k−1) · (ρk,0(p) − 1) + pkr/2+(s−r−1)(k−1) · ρk,λ′(p)

and Lemma 1 concludes the proof. �
Corollary 2. Let ps be an odd prime-power. Then,

ρk,0(ps) = Ω(k, p, s, 
s− 1
2 �) · (ρk,0(p) − 1) + pk�s/2�

Proof. First, observe that s − 2i > 0 for every i ≤ 
 s−1
2 �. Thus, Lemma 2 implies that 

ρ
(1)
k,ps−2i(p) = ρk,0(p) − 1. Consequently, it is enough to apply Theorem 2 to get that

ρk,0(ps) = (ρk,0(p) − 1) ·
�(s−1)/2�∑

i=0

(
pkip(s−2i−1)(k−1)

)
+ p�s/2�k

and the result follows. �
Corollary 3. Let 2s be a power of two (s ≥ 3) and let 0 < λ < 2s be an integer. Put 
λ = 2rλ′ with 0 ≤ r < s and odd λ′. Then,
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i) If r is odd and s − r > 1,

ρk,λ(2s) =
Ω(k, 2, s, r−3

2 )
22(k−1) · (ρk,0(8) − 22k−1) + 2k

r−1
2 +(s−r−2)(k−1)ρk,λ′2(8).

ii) If r is odd and s − r = 1,

ρk,λ(2s) =
Ω(k, 2, s, r−3

2 )
22(k−1) · (ρk,0(8) − 22k−1) + 2k

r−1
2 ρk,2λ′(4).

iii) If r is even and s − r > 2,

ρk,λ(2s) = 1
22(k−1) Ω(k, 2, s, r − 4

2 ) · (ρk,0(8) − 22k−1)+

+ 21+r−s+k
(
−2− r

2+s
)
(ρk,4λ′(8) − 22k−1) + 2k r

2+(s−r−3)(k−1)ρk,λ′(8).

iv) If r is even and s − r = 2,

ρk,λ(2s) = 1
22(k−1) Ω(k, 2, s, r − 4

2 ) · (ρk,0(8) − 22k−1)+

+ 21+r−s+k
(
−2− r

2+s
)
(ρk,4λ′(8) − 22k−1) + 2k r

2 ρk,λ′(4).

v) If r is even and s − r = 1,

ρk,λ(2s) = 1
22(k−1) Ω(k, 2, s, r − 4

2 ) · (ρk,0(8) − 22k−1)+

+ 21+r−s+k
(
−2− r

2+s
)
(ρk,4λ′(8) − 22k−1) + 2k r

2 ρk,λ′(2).

Proof. i) If r is odd and s − r > 1, then r− 2i ≥ 3 for every i ≤ 
 r
2 − 1�. Consequently,

ρ
(1)
k,λ/22i(8) = ρ

(1)
k,0(8) = ρk,0(8) − 22k−1

due to Lemma 2 and

� r
2 �−1∑
i=0

(
2ki2(s−2i−3)(k−1) · ρ(1)

k,λ/22i(8)
)

= 1
22(k−1) Ω(k, 2, s, r, r − 3

2 ) · (ρk,0(8)− 22k−1).

Finally, since

2k� r
2 �ρ

(1)
k,λ/22� r

2 �(2s−2� r
2 �) = 2k� r

2 �ρ
(1)
k,2λ′(2s−r+1) = 2k

r−1
2 +(s−r−2)(k−1)ρk,2λ′(8)

the result follows in this case.
ii) If r is odd and s − r = 1, we proceed like in the previous case but now we have that

2k� r
2 �ρ

(1)
k,2λ′(2s−r+1) = 2k� r

2 �ρ
(1)
k,2λ′(4) = 2k� r

2 �ρk,2λ′(4).
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iii) If r is even and s − r > 2, then r− 2i ≥ 3 for every i < 
 r
2 − 1�, while r− 2i = 2 for 

i = 
 r
2 − 1�. Thus,

� r
2 �−1∑
i=0

(
2ki2(s−2i−3)(k−1) · ρ(1)

k,λ/22i(8)
)

=

=
r−4
2∑

i=0

(
2ki2(s−2i−3)(k−1) · ρ(1)

k,0(8)
)

+ 21+r−s+k
(
−2− r

2+s
)
(ρ1

k,4λ′(8)) =

=
r−4
2∑

i=0

(
2ki2(s−2i−3)(k−1) · ρk,0(8)

)
+ 21+r−s+k

(
−2− r

2+s
)
(ρk,4λ′(8) − 22k−1).

iv) and v) If r is even and 1 ≤ s − r ≤ 2, we proceed like in the previous case but now 
we have that

2k� r
2 �ρ

(1)
k,λ/22� r

2 �(2s−2� r
2 �) = 2k r

2 ρ
(1)
k,λ′(2s−r) = 2k r

2 ρk,λ′(2s−r). �
Corollary 4. Let 2s be a power of two (s ≥ 3). Then,

ρk,0(2s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
22(k−1) Ω(k, 2, s, s−3

2 )
(
ρk,0(8) − 22k−1

)
+ 2 s−1

2 k · 2k−1 + 2 s−1
2 ,

if r is odd;
1

22(k−1) Ω(k, 2, s, s−4
2 )

(
ρk,0(8) − 22k−1

)
+ 2 s−2

2 k · (ρk,0(4) − 2k) + 2 s
2k,

if r is even.

Proof. For every i ≤ 
 s−1
2 � − 1 we have that

ρ
(1)
k,2s−2i(8) = ρ

(1)
k,0(8) = ρk,0(8) − 22k−1.

Now, if r is odd

ρ
(1)
k,0(2

s−2� s−1
2 �) = ρ

(1)
k,0(2) = 2k−1.

While, if r is even

ρ
(1)
k,0(2

s−2� s−1
2 � = ρ

(1)
k,0(4) = ρk,0(4) − 2k.

In any case, it suffices to apply Theorem 4. �
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Table 1
Time (in seconds) required to compute ρ3,0(3s).

s ρ3,0(3s) Using (3) Using Corollary 2
1 9 0. 0.
2 99 0. 0.
3 891 0. 0.
4 8505 0. 0.
5 76545 0. 0.
6 702027 0. 0.
7 6318243 0.14 0.
8 57218481 0.20 0.
9 514966329 1.20 0.
10 4644262899 1.71 0.
11 41798366091 11.18 0.
12 376443575145 15.88 0.
13 3387992176305 32.19 0.
14 30498903155547 43.66 0.
15 274490128399923 189.54 0.
16 2470599441956961 309.78 0.

5. Computational complexity of the computation of ρk,λ(ps)

In this section we analyze the computational complexity of the computation of ρk,λ(ps)
using the results given in Corollaries 1 through 4. In particular, we show that this com-
plexity is O(1). In what follows, the term “arithmetic operation” may refer to either 
addition, subtraction, product, division or Legendre symbol.

Proposition 5. The number of arithmetic operations required to compute ρk,λ(ps) is O(1); 
i.e., it is bounded by a constant independent of k, λ, p and s.

Proof. First of all, we note that Ω(k, p, s, N) can be computed with, at most, 14 arith-
metic operations. In addition, if p is odd, Proposition 1 implies that the computation of 
ρk,λ(p) requires a bounded number of arithmetic operations. In the same way, Propo-
sition 2 implies that the computation of ρk,λ(2), ρk,λ(4) and ρk,λ(8) requires also a 
bounded number of arithmetic operations.

Finally Corollaries 1 and 2 provide a formula for the computation of ρk,λ(ps) with a 
bounded number of arithmetic operations if p is odd, while, for p = 2, Corollaries 3 and 
4 do the same for the computation of ρk,λ(ps). �

In order to check the efficiency of our algorithm we are going to present some tables 
comparing the computation time using our formula versus the most efficient formula 
known so far (3). Note that if k > 2, we cannot apply [8, Theorem 4.4] because we are 
dealing with the case J = ∅ as we pointed out in the introduction. If k = 2 our results 
are essentially the same as those in [8, Proposition 4.8].

In Table 1 we compare the computation time (in seconds) required to compute ρ3,0(3s)
for 0 < s < 17 using (3) and Corollary 2. Although it exceeded our computing capabili-
ties, it is easy to extrapolate that the computation of ρ3,0(3100) using (3) would require 
several millenniums. In Table 2 we make the same kind of comparison using an example 
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Table 2
Time (in seconds) required to compute ρ4,5(5s).

s ρ4,5(5s) Using (3) Using Corollary 2
2 18000 0. 0.
3 2250000 0.01 0.
4 281250000 0.03 0.
5 35156250000 0.29 0.
6 4394531250000 1.4 0.
7 549316406250000 17.12 0.
8 68664550781250000 95.19 0.
9 8583068847656250000 426. 0.
10 1072883605957031250000 2101. 0.

Table 3
Time (in seconds) required to compute ρ10s,0(9).

s Using (3) Using Corollary 2 Size of ρ10s,0(9)
1 0. 0. 9
2 0. 0. 95
3 0. 0. 954
4 0.01 0. 9542
5 0.15 0.1 95424
6 3.96 0.57 954242
7 58.09 8.59 9542425
8 745.25 99.25 95424250

with λ �= 0. As mentioned in the introduction, we see that for λ �= 0 formula (3) performs 
worse, while our formula behaves essentially in the same way.

With the formulas that we have presented in this paper, the number of required 
arithmetic operations is of constant order. For example, Table 1 could be extended using 
just a domestic PC computing, almost instantly, for values of s up to 105. However, the 
mentioned arithmetic operations involve powers of integers as well as the computation 
of Legendre symbols in order to obtain the value of ρk,λ(p) via Proposition 1. These 
operations, when considered bit-wise, have a computational cost that increases with 
the size of the inputs. This becomes apparent when the involved parameters are very 
big.

If we have a look at the formulas presented in the previous section, those operations 
whose computational cost dominates over the others are the computation of the power 
pks and the computation of the Legendre symbol. Their computational bit-level com-
plexity is, respectively, O(M(log(p)) log(ks)) and O(M(log(p)) log log(p)), where M(n)
represents the computational complexity of the chosen multiplication algorithm [2]. This 
gives an idea of which is the influence of each parameter over the overall computational 
cost of our procedure, as well as of its limitations. In fact, this reveals that the influence 
of the parameters k and s is similar (logarithmic order complexity) and somewhat lower 
to that of the prime p when considering, for instance, the Schönhage–Strassen multi-
plication algorithm whose computational complexity for the product of two numbers of 
size n is M(n) = O(n log(n) log log(n)) [9] or Fürer’s algorithm [6], which runs in time 
O(n log(n)2O(log∗(n))).



JID:YJNTH AID:6130 /FLA [m1L; v1.246; Prn:22/10/2018; 13:31] P.14 (1-14)
14 J.M. Grau, A.M. Oller-Marcén / Journal of Number Theory ••• (••••) •••–•••
In Table 3 we illustrate the impact of the size of k on the computing time of ρk,λ(ps) in 
order to clarify our previous comments. Nevertheless, the improvement of our algorithm 
is still very significant.
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