Differentiating resting brain states using ordinal symbolic analysis
Resumen: Symbolic methods of analysis are valuable tools for investigating complex time-dependent signals. In particular, the ordinal method defines sequences of symbols according to the ordering in which values appear in a time series. This method has been shown to yield useful information, even when applied to signals with large noise contamination. Here, we use ordinal analysis to investigate the transition between eyes closed (EC) and eyes open (EO) resting states. We analyze two electroencephalography datasets (with 71 and 109 healthy subjects) with different recording conditions (sampling rates and the number of electrodes in the scalp). Using as diagnostic tools the permutation entropy, the entropy computed from symbolic transition probabilities, and an asymmetry coefficient (that measures the asymmetry of the likelihood of the transitions between symbols), we show that the ordinal analysis applied to the raw data distinguishes the two brain states. In both datasets, we find that, during the EC-EO transition, the EO state is characterized by higher entropies and lower asymmetry coefficient, as compared to the EC state. Our results thus show that these diagnostic tools have the potential for detecting and characterizing changes in time-evolving brain states.
Idioma: Inglés
DOI: 10.1063/1.5036959
Año: 2018
Publicado en: CHAOS 28, 10 (2018), 106307 [6 pp]
ISSN: 1054-1500

Factor impacto JCR: 2.643 (2018)
Categ. JCR: PHYSICS, MATHEMATICAL rank: 5 / 55 = 0.091 (2018) - Q1 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 19 / 254 = 0.075 (2018) - Q1 - T1

Factor impacto SCIMAGO: 0.99 - Applied Mathematics (Q1) - Mathematical Physics (Q1) - Statistical and Nonlinear Physics (Q1) - Physics and Astronomy (miscellaneous) (Q1) - Medicine (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2015-66503
Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2015-66503-C3-2-P
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2020-01-17-21:22:29)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2019-10-25, última modificación el 2020-01-17


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)