000084217 001__ 84217
000084217 005__ 20210104111914.0
000084217 0247_ $$2doi$$a10.1016/j.ijhydene.2018.09.131
000084217 0248_ $$2sideral$$a108584
000084217 037__ $$aART-2018-108584
000084217 041__ $$aeng
000084217 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, M.$$uUniversidad de Zaragoza
000084217 245__ $$aTechno-economic feasibility of power to gas–oxy-fuel boiler hybrid system under uncertainty
000084217 260__ $$c2018
000084217 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084217 5203_ $$aOne of the main challenges associated with utilisation of the renewable energy is the need for energy storage to handle its intermittent nature. Power-to-Gas (PtG) represents a promising option to foster the conversion of renewable electricity into energy carriers that may attend electrical, thermal, or mechanical needs on-demand. This work aimed to incorporate a stochastic approach (Artificial Neural Network combined with Monte Carlo simulations) into the thermodynamic and economic analysis of the PtG process hybridized with an oxy-fuel boiler (modelled in Aspen Plus®). Such approach generated probability density curves for the key techno-economic performance indicators of the PtG process. Results showed that the mean utilisation of electricity from RES, accounting for the chemical energy in SNG and heat from methanators, reached 62.6%. Besides, the probability that the discounted cash flow is positive was estimated to be only 13.4%, under the set of conditions considered in the work. This work also showed that in order to make the mean net present value positive, subsidies of 68 €/MWelh are required (with respect to the electricity consumed by PtG process from RES). This figure is similar to the financial aids received by other technologies in the current economic environment.
000084217 536__ $$9info:eu-repo/grantAgreement/ES/DGA/FSE$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/ENE2016-76850-R
000084217 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000084217 590__ $$a4.084$$b2018
000084217 591__ $$aCHEMISTRY, PHYSICAL$$b48 / 148 = 0.324$$c2018$$dQ2$$eT1
000084217 591__ $$aENERGY & FUELS$$b31 / 103 = 0.301$$c2018$$dQ2$$eT1
000084217 591__ $$aELECTROCHEMISTRY$$b8 / 26 = 0.308$$c2018$$dQ2$$eT1
000084217 592__ $$a1.1$$b2018
000084217 593__ $$aCondensed Matter Physics$$c2018$$dQ1
000084217 593__ $$aRenewable Energy, Sustainability and the Environment$$c2018$$dQ1
000084217 593__ $$aFuel Technology$$c2018$$dQ1
000084217 593__ $$aEnergy Engineering and Power Technology$$c2018$$dQ1
000084217 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000084217 700__ $$aHanak, D.P.
000084217 700__ $$aLisbona, P.
000084217 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, L.M.$$uUniversidad de Zaragoza
000084217 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000084217 773__ $$g44, 19 (2018), 9505 - 9516$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000084217 8564_ $$s464306$$uhttps://zaguan.unizar.es/record/84217/files/texto_completo.pdf$$yPostprint
000084217 8564_ $$s61111$$uhttps://zaguan.unizar.es/record/84217/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000084217 909CO $$ooai:zaguan.unizar.es:84217$$particulos$$pdriver
000084217 951__ $$a2021-01-04-11:05:44
000084217 980__ $$aARTICLE