000084333 001__ 84333
000084333 005__ 20230914083234.0
000084333 0247_ $$2doi$$a10.1080/00268976.2018.1542168
000084333 0248_ $$2sideral$$a109099
000084333 037__ $$aART-2018-109099
000084333 041__ $$aeng
000084333 100__ $$0(orcid)0000-0001-6089-6126$$aMunárriz, J.$$uUniversidad de Zaragoza
000084333 245__ $$aA bonding evolution theory study on the catalytic Noyori hydrogenation reaction
000084333 260__ $$c2018
000084333 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084333 5203_ $$aThe electronic rearrangements involved in Noyori hydrogenation reactions with double bonds (ethene and formaldehyde) are analysed using the bonding evolution theory. The study and analysis of the changes on the electron localisation function topology along a given reaction path reveals fluxes of electron density, allowing to unambiguously identify the main chemical events happening along the chemical reactions. This analysis shows that the first hydrogen transfer (with hydride character) occurs before the transition state (TS), while the second hydrogen transfer (with proton character) takes places after having reached the TS. The lower energy barrier found for formaldehyde over ethene is explained by two reasons. First, the hydride transfer is favoured for the C = O bond over C = C due to the electrophilic character of the carbon atom. Second, a negatively charged CH3–X (X = CH2, O) hidden intermediate is formed in the proximities of the TS region. The oxygen atom is able to stabilise this negatively charged species more effectively than the CH2 group due to its higher electronegativity and the presence of V(O) lone pairs. The obtained analysis explains and rationalises catalyst chemoselectivity (C = O vs. C = C). Finally, a curly arrow representation diagram accounting for the electronic rearrangements is proposed on the basis of BET results.
000084333 536__ $$9info:eu-repo/grantAgreement/ES/MEC/FPU14-06003$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2015-67366-P
000084333 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000084333 590__ $$a1.571$$b2018
000084333 591__ $$aPHYSICS, ATOMIC, MOLECULAR & CHEMICAL$$b28 / 36 = 0.778$$c2018$$dQ4$$eT3
000084333 591__ $$aCHEMISTRY, PHYSICAL$$b114 / 147 = 0.776$$c2018$$dQ4$$eT3
000084333 592__ $$a0.635$$b2018
000084333 593__ $$aBiophysics$$c2018$$dQ2
000084333 593__ $$aPhysical and Theoretical Chemistry$$c2018$$dQ2
000084333 593__ $$aMolecular Biology$$c2018$$dQ2
000084333 593__ $$aCondensed Matter Physics$$c2018$$dQ2
000084333 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000084333 700__ $$aLaplaza, R.
000084333 700__ $$0(orcid)0000-0001-5823-7965$$aPolo, V.$$uUniversidad de Zaragoza
000084333 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000084333 773__ $$g117, 9-12 (2018), 1315 - 1324$$pMol. phys.$$tMOLECULAR PHYSICS$$x0026-8976
000084333 8564_ $$s498864$$uhttps://zaguan.unizar.es/record/84333/files/texto_completo.pdf$$yPostprint
000084333 8564_ $$s41867$$uhttps://zaguan.unizar.es/record/84333/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000084333 909CO $$ooai:zaguan.unizar.es:84333$$particulos$$pdriver
000084333 951__ $$a2023-09-13-10:45:04
000084333 980__ $$aARTICLE