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deregulation of the serotonergic system. Accordingly, many 
pharmacological treatments are focused on modulation of this system. 
Whilst providing a promising line of therapeutic moderation, these 
approaches may be complicated due to the presence of alternative 
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system and speculate on their involvement in several neuropsychiatric 
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their relative activities in the signalling pathways involved is yet to be 
determined. We need to gain a better understanding the basis of 
alternative isoforms of the serotonergic system in order to fully 
understand their impact and be able to develop new effective 
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Abstract

BACKGROUND The serotonergic system is a key component of physiological brain 

function and is essential for neurological proper activity. Numerous neuropsychiatric 

disorders are associated with deregulation of the serotonergic system. Accordingly, 

many pharmacological treatments are focused on modulation of this system. Whilst 

providing a promising line of therapeutic moderation, these approaches may be 

complicated due to the presence of alternative splicing events for key genes in this 

pathway. Alternative splicing is a co-transcriptional process by which different mRNA 

transcripts can be produced from the same gene. These different isoforms may have 

diverse activities and functions and their relative balance is often critical for the 

maintenance of homeostasis. Alternative splicing greatly increases the production of 

proteins, augmenting cell plasticity and provides an important control point for 

regulation of gene expression. AIM The objective of this narrative review is to 

discuss the potential impact of alternative splicing of different components of the 

serotonergic system and speculate on their involvement in several neuropsychiatric 

disorders. CONCLUSIONS The specific role of each isoform in disease and their 

relative activities in the signalling pathways involved is yet to be determined. We 

need to gain a better understanding the basis of alternative isoforms of the 

serotonergic system in order to fully understand their impact and be able to develop 

new effective pharmacological isoform-specific targets. 

Keywords: Alternative splicing, serotonin, serotonergic system, neuropsychiatric 

disorders
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Serotonin is one of the most important neurotransmitters that influence mental 

health. The development of selective serotonin reuptake inhibitors (SSRIs) illustrates 

the importance of the serotonergic system in the treatment of mental disorders. 

However, treatment with SSRIs for 5 to 8 weeks is required for remission, which only 

occurs in 30% of patients (Akil et al., 2018). The precise role of the serotonergic 

system in neuropsychiatric disorders remains elusive, even after decades of 

intensive research, falling in some cases to yield effective therapeutic management. 

Part of the explanation for this may be that therapeutic moderation of genes in this 

system may be complicated by the presence of alternative isoforms of key genes, 

which may influence treatment response. Differentially-expressed isoforms may be 

generated by alternative splicing. This process is a key regulator of gene expression, 

increasing transcriptomic and proteomic diversity and influencing cellular plasticity 

(Su et al., 2018). The existence of multiple isoforms for many components of the 

serotoninergic system greatly increases the complexity of the system. Thus, the role 

of alternative splicing and the impact of multiple isoforms of genes in the 

serotonergic system on neuropsychiatric disorders remains almost unexplored. The 

objective of this narrative review is to curate the available literature and produce a 

definitive assessment of current knowledge and assess the importance that these 

isoforms may have in the pathogenesis and treatment of numerous neuropsychiatric 

disorders. In this review, we discuss about the importance of alternative splicing and 

their impact on serotonergic system and function of their components as tryptophan 

hydroxylase-2, serotonin transporter, monoamine oxidase A and serotonin receptors.

Alternative Splicing
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The correct regulation of gene expression is fundamental for the control of 

serotonergic function and is achieved through mechanisms such as alternative 

splicing. This is a co-transcriptional process, which allows the generation of multiple 

forms of mRNA transcript from a single coding unit and is emerging as an important 

control point for gene expression. In this process, exons (or even introns) can be 

either included or excluded from precursor-mRNA resulting in multiple mature mRNA 

variants (Kelemen et al., 2013) which if translated, result in different isoforms which 

may have antagonistic functions or differential temporal and/or spatial expression 

patterns, yielding enormous plasticity and adaptability to the cells (Wang et al., 

2015). 

This process is a crucial mechanism for gene regulation and for generating 

transcriptomic diversity. Recent estimates indicate that the expression of over 95% 

of human multi-exon genes involves alternative splicing (Black, 2003). Splicing is 

carried out by the spliceosome, a massive structure in which five small nuclear 

ribonucleoprotein particles and a large number of auxiliary proteins cooperate to 

accurately recognize the splice sites and catalyse the two steps of the splicing 

reaction (Wahl et al., 2009) (Figure 1). There are numerous modes of alternative 

splicing, but the most common is exon skipping. In this mode, a particular exon may 

be included in mRNA under some conditions or in particular tissues and omitted from 

the mRNA in others. Changes in exon exclusion, intron retention or the use of 

alternative splice sites have also been reported which can alter protein structure, 

localization, regulation or function (Kelemen et al., 2013). The final outcome of 

alternative splicing is mainly the translation of related but distinct protein variants, 

encoded by the same gene, but differing in sequence and therefore potentially in 

their biomolecular and cellular properties (Bindereif, 2015). Alternative splicing of 
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mRNA can also act as a direct regulator of gene expression, by the inclusion of 

poison exons which include premature stop codons, which are substrates for 

degradation by nonsense-mediated decay (McGlincy and Smith, 2008). 

DNA methylation was originally thought to only affect transcription; however, 

emerging evidence shows that it can also regulate alternative splicing (Zhu et al., 

2018). Exons, and especially splice sites, have higher levels of DNA methylation, 

and the splicing of about 22% of alternative exons is regulated by DNA methylation 

(Gelfman and Ast, 2013). Different mechanisms convey DNA methylation information 

into the regulation of alternative splicing; the modulation of the elongation rate of 

RNA polymerase II, and the formation of a protein bridge by heterochromatin protein 

1 that recruits splicing factors onto transcribed alternative exons (Lev Maor et al., 

2015). 

Regulation of alternative splicing is an intricate process whereby multiple cis- and 

trans-acting components work in a co-ordinated fashion, guide the functional 

coupling between transcription and splicing. Additional molecular features, such as 

chromatin structure, DNA methylation, RNA structure and alternative transcription 

initiation and termination, collaborate with these basic components to generate the 

transcriptomic diversity due to alternative mRNA processing. Tissue-specific RNA 

binding proteins and microRNAs can also coordinate and regulate alternative 

splicing patterns (Grabowski, 2011), regulating the balanced production of isoforms 

according to cell needs. 

Alternative splicing is a major mechanism used to generate proteomic diversity in the 

brain. Proteins affected by alternative splicing may have unaltered function, altered 

function, or no function at all. Splicing that generates non-functional isoforms have a 
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significant impact on susceptibility to and development of a range of diseases. 

Therefore, alternative splicing is known to be involved in the regulation of normal 

physiological functions as well as in numerous pathologies.

Serotonergic system

The serotonergic system plays an essential role in the physiological functions of the 

central nervous system and the dysregulation of serotonin homeostasis is implicated 

in many neuropsychiatric disorders as anxiety, migraine or depression (Gingrich and 

Hen, 2001). The serotonergic system is the target of numerous pharmacological 

treatments; triptans, tricyclic antidepressants, agonists and antagonists of serotonin 

receptors or selective serotonin reuptake inhibitors (SSRIs) are frequently utilised in 

the treatment of neuropsychiatric disorders. Understanding the regulation of different 

components of serotonergic system is therefore critical for insight into the diagnosis 

and treatments of neuropsychiatric disorders. 

Serotonin or 5-hydroxytryptamine (5-HT) is a critical monoamine neurotransmitter 

that plays a crucial role in the control of several brain function as mood, sleep or 

appetite (Pratelli and Pasqualetti, 2018) and is also related to measures of cognitive 

function, including memory and learning (Cowen and Sherwood, 2013). Raphe 

nuclei neurons are the principal source of 5-HT in the brain, where 5-HT is 

synthetized from the amino acid L-tryptophan, by the concerted action of two 

enzymes: tryptophan hydroxylase (TPH) and aromatic amino acid decarboxylase 

(AAAD). Once released, 5-HT triggers its regulatory effects by binding specific 5-HT 

receptors. The activity of 5-HT also depends on its extracellular availability, which is 

mainly modulated by the specific serotonin transporter (SERT) which removes 
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secreted 5-HT from extracellular medium when it is no longer required. Finally, 

internalized 5-HT can be enzymatically degraded by mono-amino oxidases (MAO) 

(Charnay and Leger, 2010). All these components together form the serotonergic 

system which is active throughout the body but has critical functions at the intestinal 

and central nervous levels. Neuronal serotonergic system is composed by an ‘ON’ 

system of production (represented by serotonergic neurons which express TPH2) 

and an ‘OFF’ system (represented by the SERT that uptakes 5-HT, expressed in the 

same neurons). The activity of ‘ON’ and ‘OFF’ systems determines the 5-HT levels, 

and therefore, ‘ON’ and ‘OFF’ balance regulates serotonergic effects. Finally, a great 

diversity of receptors drives the biological activity of the serotonergic signals through 

seven different receptor classes of serotonin receptors, classified as from 5-HTR1 to 

5-HTR7. 5-HTR3 is a ligand gated ion channel, while the rest of the receptors belong 

to the G-protein coupled receptor family (Nichols and Nichols, 2008). As a result of 

the above, the effects of 5-HT are wide, and sometimes divergent. 

The regulation of serotonergic components expression is fundamental for 

homeostasis. A better understanding of the expression, activity and regulation of the 

serotonergic system is critical for the development of new therapies for 

neuropsychiatric disorders. Alternative splicing has been described for genes 

responsible for the synthesis, uptake and degradation of serotonin as well as for 

serotonin receptors; some alternatively expressed isoforms are known to impact 

neuropsychiatric pathologies or resistance to treatments (Table 1). 

In this review we summarize the knowledge about alternative mRNA processing 

patterns of genes in the serotonergic system (tryptophan hydroxylase-2, serotonin 

transporter, monoamine oxidase A and serotonin receptors) and discuss their 

implications for neuropsychiatric disorders. We conclude that deregulated alternative 
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splicing of the serotonergic system is implicated in the aetiology of neuropsychiatric 

diseases and in some cases may underpin resistance to treatment.

Tryptophan hydroxylase-2 

Tryptophan hydroxylase-2 (TPH2) is the rate-limiting enzyme in brain 5-HT 

synthesis, and is a candidate gene for disruption of brain serotonergic homeostasis 

in neuropsychiatric disorders (Chen and Miller, 2013; Waider et al., 2011). 

Decreased 5-HT level have also been associated with vulnerability to suicidal 

behaviour; a complex trait influenced by genetic and environmental risk factors 

(Menon and Kattimani, 2015). The physiological impact of early life events on genes 

involved in stress response and the serotonergic system is thought to be mediated 

by epigenetic processes (Booij et al., 2013; Turecki et al., 2012). This may lead to 

neurobiological changes that contribute to developmental, emotional, cognitive and 

behavioural phenotypes, and consequently increase the risk for suicidal behaviour. 

TPH2 expression is increased in the dorsal raphe nucleus of suicidal individuals with 

depression (Bach-Mizrachi et al., 2008; Chen et al., 2017) and may act to 

compensate low 5-HT levels. Increased TPH2 mRNA expression has also been 

reported in response to early life stressful events in rodents (Hale et al., 2011), 

suggesting that adverse environmental stimuli may influence serotonin homeostasis. 

Although TPH2 overexpression may represent a compensatory mechanism for low 

serotonin levels (Bach-Mizrachi et al., 2008), it is known that TPH2 mRNAs undergo 

complex post-transcriptional processing (alternative splicing and RNA editing) to 

increase the variety of functionally different protein isoforms (Abumaria et al., 2008; 

Grohmann et al., 2010). 
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Except for a few examples where functional characterization has been undertaken 

(Abumaria et al., 2008; Grohmann et al., 2010), the majority of human TPH2 genetic 

variants remain to be physiologically uncharacterized. TPH2 encodes two 

alternatively spliced variants, denoted TPH2a and TPH2b, where TPH2b has higher 

activity than TPH2a. Both splice variants undergo dynamic RNA-editing in a mutually 

exclusive manner, suggesting a complex fine-tuning of central nervous system 5-HT 

biosynthesis at the level of the RNA transcript (Grohmann et al., 2010). A truncated 

TPH2 protein (TPH2-TR) generated by alternative splicing and lacking enzyme 

activity has also been reported (Zhang et al., 2011). TPH2 intron 7 is highly 

polymorphic, containing several variants affecting the 3’ splice site which may alter 

splicing efficiency (Kloiber et al., 2010). Most of the identified SNPs in TPH2 are 

located in the introns or promoter region and probably act by altering TPH2 

transcription or disruption of splicing by alteration of cis-acting spicing regulatory 

elements. 

Genetic analyses have indicated potential associations between variants in the 

TPH2 gene and neuropsychiatric disorders such as depression (Gao et al., 2012), 

bipolar disorder (Khanzada et al., 2017), suicidal behaviour (Pompili et al., 2017), 

autism (Egawa et al., 2013) and attention-deficit/hyperactivity disorder (Ottenhof et 

al., 2018). However, other studies in different cohorts report a lack of association 

with these disorders (Geissler et al., 2017; Pan et al., 2019). Discrepancies in such 

studies are difficult to reconcile, but not unexpected given the different cohorts used, 

the requirement for large sample numbers and limitations in diagnostic criteria. The 

specific involvement of TPH2a and TPH2b isoforms in these disorders remains 

unexplored and may be differentially impacted by genetic variation.
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Serotonin transporter

Serotonin signalling is also regulated by the activity of the serotonin transporter 

(SERT, encoded by SLC6A4 gene) which uptakes extracellular 5-HT into the 

neurons (Chen et al., 2004). Selective serotonin‐reuptake inhibitors (SSRIs) are 

common therapies for a variety of affective and anxiety disorders and are the most 

effective and used antidepressant drugs. Unfortunately, a large percentage of 

patients do not respond to initial therapy and a similarly large fraction experiences 

side effects (Vaswani et al., 2003). In the presence of SSRIs, 5‐HT remains in the 

extracellular space longer, as SSRIs inhibit SERT activity, allowing prolonged 

activation of 5‐HT receptors. Moreover, as SERT protein is identical in the brain and 

the gut, systemic SSRIs also affect 5‐HT signalling in the gut causing adverse 

gastrointestinal reactions (Grover and Camilleri, 2013).

The key physiological roles played by serotonin throughout the brain support the 

hypothesis that variations of SERT activity and/or expression might lead to changes 

in serotonergic signalling. Common variation in the promoter region of the SLC6A4 

gene is associated with altered functional expression of SERT. A well-defined 44 

base pair insertion/deletion polymorphism in this region leads to reduced expression 

of transporter. Several reports have identified associations between the presence of 

the variant and psychiatric conditions, including stress-associated depression (Peitl 

et al., 2017), alcohol dependence (Twitchell et al., 2001) or neuroticism (Greenberg 

et al., 2000; Twitchell et al., 2001). Altered SERT function could also play a key role 

in the pathogenesis of many neuropsychiatric disorders such as bipolar disorder 

(Chou et al., 2016), depression (Lira et al., 2003), autism (Tanaka et al., 2018), 

eating disorders (Tauscher et al., 2001) or anxiety (Maron et al., 2004), among 

others. Evidence suggests gene-by-environment interactions could be fundamental 
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for SERT expression and their consequent implications in diseases (Caspi et al., 

2003; Karg et al., 2011). Individuals who have been subject to child abuse 

demonstrate altered DNA methylation which may influence the expression of SERT 

spliced variants (Vijayendran et al., 2012). Altered CpG methylation within the 

promoter of SLC6A4 has been associated with early or recent exposure to 

psychosocial stress, and a number of neuropsychiatric disorders demonstrate an 

imbalance of SERT isoforms (Palma-Gudiel and Fananas, 2017). This indicates that 

stress-induced DNA methylation changes may impact the alternative splicing 

patterns of SLC6A4.

The SLC6A4 gene encodes several variants of exon-1 (1A, 1B and 1C). Alternative 

splicing yields two mRNA species comprising exons 1A+2 (SERT-1A) and 1A+1B+2 

(SERT-1AB). The transcription of both mRNAs is controlled by a promoter containing 

highly polymorphic sequences (Ozsarac et al., 2002) which has the potential to yield 

multiple SERT isoforms. A study of human intestine has revealed the existence of 

three SERT mRNA species (SERT-1A, SERT-1AB and SERT-1C) (Gill et al., 2008). 

The distinct transcriptional start site and alternate promoters suggest that intestinal 

SERT could potentially be differentially regulated compared with brain SERT. This 

raises the possibility of site‐specific therapeutics for SERT regulation in the treatment 

of multiple disorders which may have efficacy without the associated side effects. 

Spliced SERT isoforms may also impact 5-HT availability during SSRIs treatment 

and alter drug efficacy and risk of adverse reactions.

It is also important to note that SERT may undergo other post-translational changes 

which could impact their activity. Studies using in vivo and in vitro model systems 

have demonstrated that post-translational modifications, including phosphorylation, 

glycosylation, serotonylation, and disulfide bond formation, all of which favourably 
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influence SERT conformation and allow the transporter to function most efficiently 

(Cooper et al., 2019).

Monoamino Oxidase A Enzyme

Once 5-HT is taken up by SERT, 5-HT can be degraded by MAO-A (monoamine 

oxidase A). This enzyme plays a vital role in the deamination of dietary monoamines 

and neurotransmitters as 5-HT (Gaweska and Fitzpatrick, 2011). Abnormal MAO-A 

activity has been reported in several neuropsychiatric disorders, including 

schizophrenia (Sun et al., 2012), depression (Rivera et al., 2009) or Alzheimer’s 

disease (Takehashi et al., 2002) and MAO inhibitors are used as an effective 

treatment for depression (Thomas et al., 2015). Moreover, some MAO-A 

polymorphisms have been related with aggressive behaviour (Frau et al., 2019; 

Xiang et al., 2019).

MAO-A can be alternative spliced, creating a less efficient isoform (Biondo, 2017). 

The spliced isoform (MAO-A short) excludes the exon 14 generating a frameshift 

mutation that results in a premature stop codon in exon 15. This variant encodes for 

a truncated protein in the transmembrane domain which loses the enzymatic activity.

Although serotonin is metabolized by MAO-A, the predominant enzyme in the dorsal 

raphe nucleus is MAO-B (Arai et al., 1997). Other functional MAOs exist but may act 

on other neurotransmitters as phenylethylamine, dopamine or benzylamine 

(Gaweska and Fitzpatrick, 2011). Increased MAO-B mRNA levels have been related 

to Parkinson disease and dementia (Mallajosyula et al., 2008) and similarly to MAO-

A, some spliced isoforms for MAO-B have been also described (Jakubauskiene et 

al., 2012). 
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MAOs have been implicated in the pathogenesis of Alzheimer's disease, and may 

influence the formation of amyloid plaques and neurofibrillary tangles resulting in 

cognitive impairment. Several studies have indicated that MAO inhibitors might 

improve cognitive deficits and reverse amyloid Aβ pathology. Thus, MAO inhibitors 

may have promise as future therapeutic agents for Alzheimer´s disease (Cai, 2014). 

A better understanding of MAO alterative spliced isoforms would be necessary to 

realise this aim. 

Serotonin Receptors

Eighteen different genes encode serotonin receptor family members (Molderings, 

2012). Whilst five genes belonging to the 5-HTR1 class and two from the 5-HTR5 

class do not demonstrate alternative splicing, alternative isoforms have been 

reported for. 5-HTR2 (De Lucchini et al., 2001), 5-HTR3 (Bruss et al., 2000), 5-HTR4 

(Bender et al., 2000), 5-HTR6 (Olsen et al., 1999) and 5-HTR7 (Gellynck et al., 

2008) in various organisms, including humans. 

The 5-HT1A receptor is the most widespread of all 5-HT receptors and its expression 

is related with anxiety and major depression (Garcia-Garcia et al., 2014). In the 

central nervous system, the 5-HT1A receptor is expressed in the cerebral cortex, 

hippocampus, amygdala and raphe nuclei in higher density, while low amounts also 

are found in the basal ganglia and the thalamus. The 5-HT1A gene, originally 

thought to be intronless, is now known to undergo alternatively splicing in its 3′-UTR 

region, yielding two novel splice variants (Le Francois et al., 2018). This results in 

the removal of a miR135 binding site, which stabilises 5-HT1A RNA and increases 5-

HT1A expression. The spliced variants are extremely stable compared with the 
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unspliced version that is rapidly degraded, consistent with destabilization induced by 

miR-135 (Issler et al., 2014). The spliced 5-HT1A variants were also seen to be 

reduced in individuals with major depression in a genotype-dependent manner 

(Albert et al., 2019). 

Serotonin receptor 2 (5-HT2)

The 5-HT2 receptor subfamily comprises a group of excitatory, primarily 

postsynaptic, G-protein-coupled receptors, which bring about their effects via 

stimulation of phospholipase C. This subfamily contains three receptors (2A, 2B and 

2C) which are functionally linked to promote release of intracellular Ca2+. Their 

pharmacological significance is substantial due to both the clinical importance and 

complex pharmacological features of these receptors. 

Receptor 2A (5-HT2A) is abundantly expressed on pyramidal cells and interneurons 

in the prefrontal cortex, where it regulates the balance between excitatory and 

inhibitory responses (Puig and Gulledge, 2011). Many studies have demonstrated 

that serotonin signalling from dorsal raphe to the prefrontal cortex are involved in 

cognitive behaviour, with 5-HT2A being crucial for serotonergic signalling (Zhang and 

Stackman, 2015). In addition, 5-HT2A is also highly expressed in limbic neurocircuitry 

and has been strongly implicated in the regulation of anxiety-like behaviour 

(Ghasemi et al., 2018; Weisstaub et al., 2006).

The HTR2A gene expresses up to 10 distinct sense-encoded exons generated 

through alternative splicing, generating at least 8 protein isoforms of HTR2A (Ruble 

et al., 2016). Another HTR2A isoform exists, which includes an 118bp insertion that 

produces a premature stop codon, resulting in a truncated and inactivated protein 
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(Guest et al., 2000). Although this variant lacks the structural domains involved with 

ligand and intracellular signalling, it could regulate the function of native serotonin 

receptors on their synthesis, protein-ligand interactions or intracellular trafficking. 

Patients with schizophrenia exhibit reduced cortical 5-HT2A activity, but it is as yet 

unclear whether this reduction might result from medication (Abi-Dargham, 2007). 

Many schizophrenia patients carry a genetic variant (rs6314) which has potential to 

alter the alternative splicing pattern of HTR2A gene (Blasi et al., 2013). As SERT 

and TPH2, 5-HT2A can also be regulated by DNA methylation, which has been 

shown to affect the balance of isoforms in schizophrenia (Cheah et al., 2017). An 

imbalance of HTR2A isoforms has also been suggested to impair working memory 

and attenuate improvement after olanzapine (5-HT2A antagonist) treatment (Blasi et 

al., 2013).

The physiological role of the serotonin receptor 2B (5-HT2B) is not yet fully 

understood. Several animal studies have suggested that 5-HT2B receptor mediates 

the embryonic morphogenesis (Nebigil et al., 2000) and its activation causes anxiety 

and reduced grooming in mice (Duxon et al., 1997). It has also been described as a 

pharmacological candidate gene for early-onset obsessive-compulsive disorder (Kim 

et al., 2000; de Leeuw and Westenberg, 2008). The HTR2B gene has 4 spliced 

regions extending at least 100 base pairs beyond each exon–intron boundary. The 

isoforms are currently poorly characterised (Kim et al., 2000), but an alternative 

isoform has been reported (Bonhaus et al., 1995). Potential associations have been 

suggested between the 5-HT2B receptor and migraine that may explain the efficacy 

of methysergide and cyproheptadine (5-HT2B antagonists) for migraine prophylaxis 

(Segelcke and Messlinger, 2017).
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The serotonin receptor 2C (5-HT2C) controls key physiological functions, such as 

food intake, anxiety, sleep and motor neuron activity (Heisler et al., 2007; Monti, 

2011). Deregulation of 5-HT2C receptors activity has been described in depression 

(Martin et al., 2014), schizophrenia (Castensson et al., 2005), suicidal behaviour 

(Gurevich et al., 2002), and spinal cord injury (Murray et al., 2010) in humans as well 

as in mouse models of obesity (Schellekens et al., 2012). Many antipsychotic drugs 

used to treat depression, anxiety, and schizophrenic disorders are known to interact 

with the 5-HT2C receptors, which may contributes to the drug efficacy (Chagraoui et 

al., 2016; Martin et al., 2014). The HTR2C gene is mainly regulated by pre-mRNA 

processing. The HTR2C gene generates at least 33 mRNA isoforms encoding 25 

proteins through alternative splicing and RNA editing (Stamm et al., 2017), which 

has effects on constitutive activity as well as alternative splicing. A truncated isoform 

(5-HT2C_tr) has also been reported with an attenuate activity through 

heterodimerization (Martin et al., 2013; Zhang et al., 2016). Increased levels of 5-

HT2C_tr isoform have also been reported in the hypothalamus of mice with Prader-

Willi Syndrome (PWS), an imprinting disorder resulting in altered serotonin and 

satiety responses (Garfield et al., 2016). Editing of the HTR2C gene is highly 

dynamic and changes under both physiological and pathological challenge, such as 

water maze learning (Du et al., 2007), obesity (Schellekens et al., 2012) or spinal 

cord injury (Di Narzo et al., 2014). This has potential to generate 5-HT2C isoforms 

with different signalling properties. Moreover, it evidence suggests that the balance 

of 5-HT2c isoforms is critical in neuronal differentiation; changing the predominant 

isoform upon neuronal commitment, favours production of full-length receptor 

isoforms with higher activity (Bratkovic et al., 2018). 
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Serotonin receptor 3 (5-HT3)

5-HT3 is a well-known 5-HT receptor in the gut where is involved in the regulation of 

intestinal motility (De Ponti and Tonini, 2001), nausea and vomiting (Endo et al., 

2000). 5-HT3 is also present in central nervous system, specifically in the 

hippocampus, amygdala and spinal cord (Chameau and van Hooft, 2006), but its 

exact role is still not fully understood. The treatment with 5-HT3 antagonists in animal 

models has shown psychotropic effects and improvement of cognitive function 

(Costall and Naylor, 2004). 

5-HT3 belongs to the Cys-loop superfamily of ligand-gated ion channel, and therefore 

differs structurally and functionally from other 5-HT receptors which are G protein-

coupled receptors. A functional channel may be composed by five identical 5-HT3A 

subunits (monopentameric) or a mixture of 5-HT3A and one of 5-HT3B 

(heteropentameric). The existence of two alternative promoters in the HTR3B gene 

that codes for the B-subunit have been reported. The alternative promoters 

demonstrate tissue specificity, as the canonical transcript could be detected in gut, 

while the alternative transcript was only detected in brain (Tzvetkov et al., 2007). 

Similarly, the HTR3A gene is expressed as two splice isoforms (short and long 

variants) which are differentially regulated in vivo. The additional six amino acids in 

the long form may change the structure in such a way as to prevent or allow access 

of appropriate enzymes, resulting in differential phosphorylation levels (Hubbard et 

al., 2000). 5-HT3 antagonists have been extensively used to treat chemotherapy-

induced emesis and diarrhoea-predominant irritable bowel syndrome and have a 

significantly slowing effect on gastrointestinal transit. However, there are few side 

effects related to the use of 5-HT3 antagonists; the most common are headache and 

dizziness. Moreover, 5-HT3 antagonists seem to be a feature of new antidepressant 
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drugs such as vortioxetine. As 5-HT3 isoforms seem to be tissue-specific, the 

development of isoform-specific antagonists may help ameliorate side effects. 

Serotonin receptor 4 (5-HT4)

5-HT4 is involved in cognitive function and memory consolidation. This receptor 

serves as a potential target for the development of therapeutic agents implicated in 

neurological disorders including Alzheimer’s disease (Maillet et al., 2004), anorexia 

nervosa (Jean et al., 2007), anxiety (Bockaert et al., 2004) and depression (Lucas et 

al., 2007). The absence of 5-HT4 also modulates depression- and anxiety-responses 

in mice (Amigo et al., 2016) and SSRI treatment under pathological depression 

appear to be critically dependent on 5-HT4 (Mendez-David et al., 2014).

At least 11 human 5-HT4 splice variants have been reported to date (Rebholz et al., 

2018). The HTR4 gene undergoes alternative splicing at its C-terminus to produce 4 

variants; A and B are abundantly expressed in brain, whilst C and D are enteric-

specific (Liu et al., 2009). Isoforms A and B show differences in ligand binding, signal 

transduction and pharmacological patterns, and differential response to drugs 

(Pindon et al., 2002). A study has also identified 4 new variants in the N-terminus of 

the HTR4 gene (Azim et al., 2012) in mouse brain designated as T1, T2l, T2s, and 

T3. All variants differ in their first two exons making a unique N-termini for HTR4 

variants, giving them different properties in terms of acetylation, N-glycosylation, 

phosphorylation and their consequent functionally repercussions. Given the variety 

of HTR4 isoforms, the pharmacological characterisation of the spliced variants is 

necessary to understand the implicated mechanisms and develop adequate effective 
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treatments (Brattelid et al., 2004). To date, no specific isoform has been linked to 

neuropsychiatric disorders; however, interactions cannot be discarded. 

Serotonin receptor 6 (5-HT6)

5-HT6 is found in the limbic and extrapyramidal areas of the brain, supporting the 

suggestion that this receptor may be involved in the mechanism of action of 

antipsychotics (Morozova et al., 2017). Pharmacological studies have demonstrated 

that atypical antipsychotic drugs have high affinity for this receptor and its mRNA 

expression is altered in schizophrenia patients, suggesting it may hold promise as a 

potential therapeutic target for schizophrenia (East et al., 2002). Some 5-HT6 

antagonists have shown efficacy in animal models for cognitive impairment in 

multiple cognitive domains relevant for schizophrenia (de Bruin and Kruse, 2015). 

Moreover, during the last decade, 5-HT6 receptor has received increasing attention 

and become a promising target for improving cognition. Some 5-HT6-targeted 

compounds have been suggested as powerful drug candidates for the treatment of 

Alzheimer's disease (Ramirez, 2013).

To date, only one spliced isoform has been described for HTR6, generated by a 289 

bp deletion. This isoform encodes a receptor which possesses only the first three 

transmembrane domains and exhibits a different expression pattern, being detected 

only in caudate and substantia nigra, while the canonical transcript was located in 

cortex, hippocampus, cerebellum, thalamus, caudate and substantia nigra (Olsen et 

al., 1999). The spliced isoform is expressed in the cell membrane; however its ability 

to fold properly and form the correct ligand binding site seems unlikely. Tissue 

specific regulation of alternatively spliced transcripts may provide a by which 
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specialized cells can generate different proteins in response to environmental 

challenges (Porazinski and Ladomery, 2018). More studies are needed to develop a 

therapeutic therapy based in 5-HT6 isoforms. 

Apart from 5-HT6 spliced isoform, this receptor could play a role in regulating 

alternative splicing of other important genes. In fact, a recent study has described 

the interaction between 5-HT6 and Nova-1, a brain-enriched splicing regulator of 

proteins involved in synapse formation or synaptic transmission, including inhibitory 

GABA receptors. In particular, the overexpression of 5-HT6 reduces the splicing 

activity of Nova-1, and contrast, overexpression of Nova-1 weakens the activity and 

stability of 5-HT6 via promoting proteasomal degradation (Kim et al., 2019).

Serotonin receptor 7 (5-HT7)

The 5-HT7 receptor is one of the most recently identified members of the serotonin 

receptor family. The physiological role for the 5-HT7 receptor within the central 

nervous has been clearly established in regulation of circadian rhythm (Glass et al., 

2003) and in thermoregulation (Hedlund et al., 2004) as well as in learning and 

memory (Meneses, 2014). Other biological functions including moderation of the 

effects of atypical neuroleptics (Manfra et al., 2015) and antidepressants (Sarkisyan 

et al., 2010) or participation in pain and inflammatory pathways (Rocha-Gonzalez et 

al., 2005) have also been related to 5-HT7 receptor activity. Selective 5-HT7 receptor 

ligands may therefore have potential therapeutic applications for the treatment of 

pain and migraine, schizophrenia, anxiety, cognitive disturbances and inflammation. 

However, it is critical to know in depth the differences of 5-HT7 isoforms and develop 

isoforms-specific ligands.
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Four HTR7 splice variants, (a, b, c, and d) have been described in human and rat 

tissues. These variants differ in their carboxyl terminal as a consequence of 

alternative splicing (Guthrie et al., 2005). Two of these, (a and b) are conserved in 

rat and human. An additional form, 5-HT7c is expressed only in rat tissues, whereas 

HTR7d is expressed only in humans. All of the isoforms appear to be functionally 

active and have similar agonist binding characteristics (Krobert and Levy, 2002), but 

the distribution of expression of the receptor isoforms is different in several brain 

regions and peripheral tissues (Krobert et al., 2001). Differences in pharmacology 

have also been described; The HTR7d isoform exhibits receptor trafficking that is 

distinct from HTR7a or HTR7b, whereas human HTR7d receptors display agonist-

independent internalization with internalization noted even in the presence of 

antagonist (Guthrie et al., 2005). Improved characterisation of HTR7 isoforms is 

required to fully explore their implications in neuropsychiatric diseases.

Conclusions

Transcriptome profiling in human tissues has greatly increased our appreciation of 

the diversity of RNA isoforms, revealing that alternative splicing is a key mechanism 

for gene regulation. Alternative splicing creates transcriptomic and proteomic 

diversity and cellular plasticity and plays a critical role in the development of many 

diseases. Identification of specific isoforms that are dysregulated in diseases raise 

the possibility developing tailored therapeutics which could be successfully 

harnessed in the clinic (Havens et al., 2013). 

Alternative splicing plays a key role in regulating the activity of the serotonergic 

system, increasing the complexity of the system, with the presence of tissue specific 
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isoforms and diversity in phosphorylation levels and intracellular trafficking. As the 

Figure 2 shows, the 5-HT levels are controlled by the activity of TPH2, SERT and 

MAO-A with at least, 7 different isoforms from the three genes. The combination of 

those spliced isoforms would generate numerous scenarios where 5-HT levels could 

be differently regulated. In addition to those 5-HT controlling-isoforms, alternative 

splicing increases hugely the variety of 5-HT receptors, being a clear example the 33 

spliced isoforms for 5-HT2C. The numerous spliced variant receptors present 

differences in their activity, expression, regulation, structure and sensitivities to 

ligands. Hence the need of in-depth characterization of spliced isoforms and 

development of isoform-specific targets are required for a better treatment of 

neuropsychiatric disorders.

The serotonergic system has been implicated in numerous neuropsychiatric 

disorders and the existence of different serotonergic isoforms could therefore play a 

critical role in susceptibility, disease development or the incidence of side effects, as 

well as representing future potential therapeutic targets. Recent studies plead for 

therapeutic approaches on alternative splicing (Harries, 2019; Lipscombe and Lopez 

Soto, 2019). 

This is exemplified by the HTR2C gene, comprises a good candidate for RNA 

therapy for multiple neuropsychiatric disorders. The ratio between truncated and 

canonical receptors could be manipulated through antisense oligonucleotides 

(AONs), allowing selective modulation of 5-HT2C receptor activity. The production of 

an attenuated splice variant may allow regulation the activity of the 5-HT2C receptor. 

This could prove useful for future treatment of disorders such as hyperphagia, as 

demonstrated by the promising results reported for Prader–Willi syndrome (Zhang et 

al., 2016). A more in-depth characterization of spliced isoforms from genes 
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underpinning the serotonergic system and assessment of their involvement in human 

pathology is merited. It is also important to note, that much of our knowledge about 

the function of splice isoforms comes from cell culture techniques; validation in vivo 

is therefore an important pre-requisite for clinical targeting important candidate 

genes. Serotonergic components are, in many cases, coding by large genes multiple 

introns and exons. The limited exploration of the splicing events in the serotonergic 

system genes probably does not capture the extent of spliced isoforms and a fine 

characterization of serotonergic isoforms is critically needed. The exact role of each 

isoform in disease and their relative activities in the signalling pathways involved is 

also yet to be determined in order to fully understand their impact. Although it has 

been shown that some splice variants have different sensitivities to ligands, it has 

only been demonstrated with a small number of agonists. It remains a considerable 

challenge to identify and develop splice variant-selective drugs. 

Therefore, we need to gain a better understanding the basis of alternative isoforms 

of the serotonergic system to develop new effective pharmacological isoform-specific 

targets. The advanced knowledge of spliced isoforms will also enable us to adapt the 

best treatment for each patient to the different pathologies related to 

neuropsychiatric disorders linked to the serotonergic system.
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Figure 1: Schematic representation of alternative splicing process. The diagram 

illustrates how alternative splicing allows the production of different variants of the 

same protein from the same gene. Starting from a single gene (DNA coding 

sequence), the spliceosome (represented by 4 green units) can include or excluded 

the intron1 in a co-transcriptional process, creating two different mRNAs that will be 

traduced in two similar proteins (isoforms) but with different function properties. 

Figure 2: Alternative splicing of serotonergic system. 5-HT levels are controlled 

by the activity of TPH2, SERT and MAO-A. TPH2 has three spiced variants: TPH2a, 

TPH2b and TPH2-TR. The TPH2a variant presents a reduced activity compared with 

TPH2b. On the contrary, TPH2-TR is a truncated isoform with a lack of activity. 

SERT has three spliced variants (SERT-1A, SERT-1AB, SERT-1C) which are 

differentially polyadenylated and differ in their translational regulations. MAO-A is 

alternative spliced, creating a less efficient isoform (MAO-A short). Alternative 

splicing of these three genes could seriously impact on 5-HT levels playing a critical 

role in neuropsychiatric disorders. Regarding 5-HT receptors, there are numerous 

spliced variants presenting differences in their activity, expression, regulation, 

structure and sensitivities to ligands. 

Table1: Serotonergic system components, alternative spliced isoforms and 

their implication in neuropsychiatric disorders. Genetic information obtained by 

NCBI and Genetics Home Reference (NIH).
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Table 1: Serotonergic components and their implication on neuropsychiatric pathologies

Name Gene Location Intron/exon Spliced 
Isoforms References Related Neuropsychiatric Pathologies

Tryptophan 
hydroxylase-2 TPH2 12q21.1 10 introns

11 exons 3
Grohmann et al., 2010

Zhang et al., 2011

Depression (Gao et al., 2012) , Bipolar Disorder (Khanzada 
et al., 2017), ADHD (Ottenhof et al., 2018), Suicidal 
behaviour (Pompili et al., 2017), Autism (Egawa et al., 2013)

Serotonin 
transporter SLC6A4 17q11.2 13 introns

14 exons 3
Ozsarac et al., 2002 

(Gill et al., 2008)

Bipolar Disorder (Chou et al., 2016), Depression (Peitl et al., 
2017), Autism (Tanaka et al., 2018), Neuroticism, Alcohol 
dependence (Twitchell et al., 2001), Anxiety (Maron et al., 
2004), Eating disorders (Tauscher et al., 2001)

Monoamine 
oxidase A MAOA Xp11.3 14 introns

15 exons 1 Biondo, 2017
Schizophrenia (Sun et al., 2012), Depression (Thomas et al., 
2015), Alzheimer´s disease (Cai, 2014), Aggressive behaviour 
(Frau et al., 2019)

Serotonin 
receptor 1A HTR1A 5q63.26 1 exon 2 Le Francois et al., 2018 Anxiety, Major Depression (Garcia-Garcia et al., 2014)

HTR2A 13q14.2 3 introns
4 exons 9

Ruble et al., 2016
Guest et al., 2000

Schizophrenia (Abi-Dargham, 2007), Cognition (Blasi et al., 
2013), Depression, Alcohol dependence, Anxiety  (Ghasemi et 
al., 2018)

HTR2B 2q37.1 3 introns
4 exons 5 Kim et al., 2000

Obsessive-compulsive disorder, Anxiety (de Leeuw and 
Westenberg, 2008), Migraine (Segelcke and Messlinger, 2017)

Serotonin 
receptor 2

HTR2C Xq23 5 introns
6 exons 33

Stamm et al., 2017
Zhang et al., 2016

Depression (Martin et al., 2014), Anxiety (Monti, 2011),, 
Obesity (Garfield et al., 2016), Schizophrenia (Castensson et al., 
2005),Suicidal behaviour (Chagraoui et al., 2016)

HTR3A 11q23. 7 introns
8 exons 2 Hubbard et al., 2000

Cognition Disturbances (Costall and Naylor, 2004), Analgesia, 
Schizophrenia, Bipolar disorder (Chameau and van Hooft, 2006)Serotonin 

receptor 3
HTR3B 11q23.2 8 introns

9 exons 2 Tzvetkov et al., 2007
Schizophrenia, Depression, Addiction, Obsessive-compulsive 
disorder(Chameau and van Hooft, 2006)

Serotonin 
receptor 4 HTR4 5q32 7 introns

8 exons 11 Rebholz et al., 2018 Alzheimer’s disease (Maillet et al., 2004), Anxiety (Bockaert et 
al., 2004), Anorexia nervosa (Jean et al., 2007), Depression 
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For Peer Review

(Amigo et al., 2016)

Serotonin 
receptor 6 HTR6 1p36.13 2 introns

3 exons 1 Olsen et al., 1999
Schizophrenia (Morozova et al., 2017), Depression, Anxiety, 
Cognitive disturbances (de Bruin and Kruse, 2015), Alzheimer´s 
disease (Ramirez, 2013)

Serotonin 
receptor 7 HTR7 10q21.31 3 introns

4 exons 4
Guthrie et al., 2005

Krobert and Levy, 2002

Analgesia, Migraine, Schizophrenia (Manfra et al., 2015) , 
Anxiety, Inflammation (Rocha-Gonzalez et al., 2005), Cognitive 
disturbances (Meneses, 2014)
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