000084354 001__ 84354
000084354 005__ 20200716101523.0
000084354 0247_ $$2doi$$a10.1038/s41467-019-11143-7
000084354 0248_ $$2sideral$$a113039
000084354 037__ $$aART-2019-113039
000084354 041__ $$aeng
000084354 100__ $$aPons-Valencia, P.
000084354 245__ $$aLaunching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas
000084354 260__ $$c2019
000084354 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084354 5203_ $$aLaunching and manipulation of polaritons in van der Waals materials offers novel opportunities for field-enhanced molecular spectroscopy and photodetection, among other applications. Particularly, the highly confined hyperbolic phonon polaritons (HPhPs) in h-BN slabs attract growing interest for their capability of guiding light at the nanoscale. An efficient coupling between free space photons and HPhPs is, however, hampered by their large momentum mismatch. Here, we show -by far-field infrared spectroscopy, infrared nanoimaging and numerical simulations- that resonant metallic antennas can efficiently launch HPhPs in thin h-BN slabs. Despite the strong hybridization of HPhPs in the h-BN slab and Fabry-Perot plasmonic resonances in the metal antenna, the efficiency of launching propagating HPhPs in h-BN by resonant antennas exceeds significantly that of the non-resonant ones. Our results provide fundamental insights into the launching of HPhPs in thin polar slabs by resonant plasmonic antennas, which will be crucial for phonon-polariton based nanophotonic devices.
000084354 536__ $$9info:eu-repo/grantAgreement/ES/CSIC/PIC2016-60E046$$9info:eu-repo/grantAgreement/EC/H2020/705960/EU/Switching graphene-plasmon with phase-change materials$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 705960-SGPCM$$9info:eu-repo/grantAgreement/EC/H2020/715496/EU/Nano-optics on flatland: from quantum nanotechnology to nano-bio-photonics/2DNANOPTICA$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 715496-2DNANOPTICA$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-65159-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-65525-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-88358-C3$$9info:eu-repo/grantAgreement/ES/MINECO/MDM-2016-0618$$9info:eu-repo/grantAgreement/ES/MINECO/RTI2018-094830-B-100
000084354 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000084354 590__ $$a12.121$$b2019
000084354 591__ $$aMULTIDISCIPLINARY SCIENCES$$b6 / 71 = 0.085$$c2019$$dQ1$$eT1
000084354 592__ $$a5.569$$b2019
000084354 593__ $$aBiochemistry, Genetics and Molecular Biology (miscellaneous)$$c2019$$dQ1
000084354 593__ $$aPhysics and Astronomy (miscellaneous)$$c2019$$dQ1
000084354 593__ $$aChemistry (miscellaneous)$$c2019$$dQ1
000084354 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000084354 700__ $$aAlfaro-Mozaz, F.J.
000084354 700__ $$aWiecha, M.M.
000084354 700__ $$aBiolek, V.
000084354 700__ $$aDolado, I.
000084354 700__ $$aVelez, S.
000084354 700__ $$aLi, P.
000084354 700__ $$aAlonso-Gonzalez, P.
000084354 700__ $$aCasanova, F.
000084354 700__ $$aHueso, L.E.
000084354 700__ $$0(orcid)0000-0001-9273-8165$$aMartin-Moreno, L.$$uUniversidad de Zaragoza
000084354 700__ $$aHillenbrand, R.
000084354 700__ $$aNikitin, A.Y.
000084354 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000084354 773__ $$g10 (2019), 3242 [8 pp.]$$pNATURE COMMUNICATIONS$$tNature Communications$$x2041-1723
000084354 8564_ $$s2110923$$uhttps://zaguan.unizar.es/record/84354/files/texto_completo.pdf$$yVersión publicada
000084354 8564_ $$s70676$$uhttps://zaguan.unizar.es/record/84354/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000084354 909CO $$ooai:zaguan.unizar.es:84354$$particulos$$pdriver
000084354 951__ $$a2020-07-16-09:28:09
000084354 980__ $$aARTICLE