
 

X Congreso Ibérico de Agroingeniería 
X Congresso Ibérico de Agroengenharia 

Huesca, 3-6 septiembre 2019 

 

 
 

doi: 10.26754/c_agroing.2019.com.3356 

Interferometría diferencial como herramienta para 
el estudio localizado de la erosión por escorrentía 
Francisco A. Sánchez-Crespo1, María T. Gómez-Villarino2, Francisco Ayuga2, Ana I. García2  

1  C/Abogados de Atocha, 39. 28710 El Molar (MADRID); francisco.screspo@alumnos.upm.es  
2  Grupo de investigación EIPIRMA, Universidad Politécnica de Madrid; gi.eipirma@upm.es   

 

Resumen: Las nuevas misiones espaciales como la Sentinel-1 (Proyecto Copernicus de la 
Agencia Espacial Europea en colaboración con la Comisión Europea) son capaces de obtener 
imágenes SAR (Synthetic Aperture Radar) con una alta frecuencia, resolución, cobertura y, 
sobre todo, disponibilidad, lo cual permite la aplicación de técnicas como la interferometría 
diferencial en nuevos ámbitos. El objetivo del presente estudio es analizar la posible aplicación 
de la técnica de la interferometría diferencial para el estudio localizado de la erosión 
superficial debido a fenómenos de escorrentía, estudiando los parámetros de cálculo, las 
limitaciones de aplicación y la interpretación de los resultados. En una primera fase se realizó 
un estudio cuantitativo contrastando las deformaciones registradas mediante interferometría 
diferencial con las registradas mediante un LIDAR terrestre (el sistema más preciso disponible 
actualmente), concluyendo la suficiente capacidad del sistema para medir pequeñas erosiones. 
En la segunda y actual fase se está realizando un estudio cualitativo en una cuenca agrícola 
monitorizada (eminentemente cerealista) en Daganzo de Arriba (Madrid) con resultados que 
muestran una erosión proporcional a la intensidad de lluvia, a la cobertura del suelo en el 
momento de la precipitación y acorde con lo observado durante las inspecciones visuales. 
Además, se ha observado que no existe interferencia en los resultados debido a actividades 
agrícolas que alteran la altura del cultivo como puede ser la cosecha. 
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1. Introducción 

Si bien la técnica de interferometría diferencial a partir de imágenes de radar de apertura 
sintética no es algo nuevo (las misiones ERS de la Agencia Espacial Europea se remontan a 
1991), sí que lo es la resolución, frecuencia de revisitación, cobertura y disponibilidad de 
imágenes que ofrece la misión Sentinel-1 del Proyecto Copernicus [1] (iniciativa conjunta de la 
Agencia Espacial Europea y la Comisión Europea), lo que posibilita nuevos usos y aplicaciones. 

1.1.- La misión Sentinel-1 

La misión Sentinel-1 está compuesta por dos satélites equipados con radares de apertura 
sintética (SAR) que trabajan en la banda C de las microondas, lo cual capacita a tomar imágenes 
tanto de día como de noche, e independientemente de las condiciones de nubosidad. 

Los satélites Sentinel-1 tienen órbitas casi polares con un desfase de 180º en el mismo 
plano, de tal forma que cada satélite visita una zona determinada de la superficie terrestre al 
menos una vez cada 12 días, y cada zona de la superficie terrestre es visitada por alguno de los 
dos satélites al menos una vez cada 6 días [1]. 
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Los sensores equipados disponen de 4 modos de adquisición: Strip Map, Interferometric 
Wide Swath, Wave y Extra Wide Swath [2]. 

El modo Interferometric Wide Swath (IW) tiene una resolución media-alta (5x20 metros), 
muy buena cobertura (franja de 250 km) y, sobre todo, alta disponibilidad, con las imágenes 
listas para su descarga pocas horas después de su adquisición. Estas características lo 
convierten en el modo más adecuado para el presente estudio. 

El modo IW captura las imágenes en tres sub-franjas usando la técnica de Observación 
Terrestre con Barridos SAR Progresivos (TOPSAR - Terrain Observation with Progressive Scans 
SAR). Cada una de estas sub-franjas se compone de varias ráfagas.  

El modo TOPSAR presenta una serie de mejoras sobre el modo ScanSAR precedente, 
relativos al control electrónico de la orientación de las ráfagas y sincronización entre pasadas 
que logran mejorar el SNR (Signal to Noise Ratio) y DTAR (Distributed Target Ambiguity 
Ratio), logrando imágenes con menos ruido y deformaciones [3]. 

1.2.- Interferometría diferencial 

La interferometría en radares de apertura sintética (InSAR) que equipan estos satélites 
permite la medición precisa del viaje de ida y vuelta de la radiación, registrando la intensidad y 
la fase de la señal electromagnética en una imagen SAR. Una imagen SAR está compuesta por 
un mosaico bidimensional de elementos llamados pixeles, cada uno referenciado a una pequeña 
área de la superficie terrestre o celda. Cada pixel contiene la información de intensidad y fase de 
la radiación rebotada en su celda o superficie terrestre correspondiente. 

La interferometría SAR aprovecha la diferencia de fase entre dos observaciones SAR de 
una misma área de la superficie terrestre, tomadas desde posiciones del sensor ligeramente 
distintas, para extraer la información de la distancia a la tierra [4]. 

 

Figura 1: Diferencia de fase. Fuente ESA-TM19 InSAR Principles. 

Tras un corregistro y mediante la combinación de las diferencias de fases de las dos 
observaciones, se puede generar un interferograma en donde la información de la diferencia de 
fase está altamente relacionada con la topografía del terreno [5], y las deformaciones del mismo 
pueden ser incorporadas a un mapa. 
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Figura 2: Esquema de la disposición de los satélites en la interferometría diferencial Fuente 
ESA-TOPS Interferometry Tutorial. 

La diferencia de fase puede deberse a 5 factores [4]: 
Δ𝜑𝜑 = Δ𝜑𝜑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + Δ𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + Δ𝜑𝜑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + Δ𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒 + Δ𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  (1) 

 
Flat: Curvatura de la tierra. 
Elevation: Topografía. 
Displacement: Deformaciones del terreno entre ambas adquisiciones. 
Atmosphere: Debidos a las diferencias de humedad, presión y temperatura 
entre adquisiciones. 

Noise: Cambios temporales en los reflectores, volume scattering y ángulos de 
adquisición. 

A través del análisis interferométrico se procura eliminar las fuentes de error (flat, 
atmosphere y noise) para quedarse tan solo con las contribuciones de interés: elevation (para 
generar modelos digitales del terreno) y displacement (para analizar los cambios en el terreno). 

Si el desfase debido a la topografía es restado al interferograma, la diferencia de fase 
resultante corresponderá a los patrones de deformación entre las dos fechas de adquisición. 

Simultáneamente al interferograma se genera la banda de coherencia, que muestra cuanto 
de similar son ambas imágenes a nivel de pixel en una escala del 0 (baja) al 1 (alta).  

La pérdida de coherencia entre un par de imágenes puede deberse a varios factores [6,7]: 

𝛾𝛾 = 𝛾𝛾𝑇𝑇 ∗ 𝛾𝛾𝐺𝐺 ∗ 𝛾𝛾𝑉𝑉 ∗ 𝛾𝛾𝑃𝑃  (2) 
 
Temporal: No puede ser evitado, es debido a diferencias en el terreno entre ambas tomas, y 

precisamente uno de los objetivos de la interferometría diferencial. 
Geometric: Debidos a errores en las órbitas de los satélites, puede ser parcialmente 

eliminado. 
Volumetric: Debido a la vegetación existente, no puede ser evitado. 
Processing: Debido a errores de cálculo. Debe de ser evitada. 
La técnica de la Interferometría diferencial se ha empleado con éxito en el análisis de 

subsidencias debidas a obra civil, deslizamientos de laderas, terremotos y erupciones 
volcánicas. 

2. Materiales y métodos 

Se ha realizado el estudio de las variaciones topográficas en la cuenca del arroyo del Monte 
(TM Daganzo de Arriba, Madrid), mediante imágenes TOPSAR procedentes de la misión 
Sentinel-1 y la técnica de la interferometría diferencial.  
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Al mismo tiempo se ha procedido a monitorizar visualmente las condiciones de la 
superficie, la cobertura del suelo y los cambios en los cultivos, cárcavas y zonas inundadas. 

Los resultados obtenidos del proceso de interferometría diferencial han sido interpretados 
empleando la información recogida durante las inspecciones visuales. 

Para el análisis interferométrico se emplean un par de imágenes obtenidas del Scientist 
Data Hub de la Agencia Espacial Europea, de tipo IW (Interferometric Wide Swath), SLC 
(Single Look Capture) y Banda VV (la polarización VV minimiza el efecto de la vegetación 
pequeña [8,9]). 

Se utiliza la herramienta Sentinel Application Platform SNAP Desktop de la Agencia 
Espacial Europea [10,11] y el algoritmo SNAPHU de la Universidad de Stanford para el 
“desdoblado” de fase [12,13,14]. Con el análisis mediante esta herramienta de interferometría 
diferencial de imágenes satélite se pueden detectar pequeñas variaciones (del orden de 
milímetros) en la elevación del suelo, si bien hay que tener en cuenta las siguientes 
consideraciones: 

- Las microondas de la banda C son capaces de penetrar la pequeña vegetación, si bien 
no las masas arbóreas ni vegetación de hoja o fruto grande [15,16]. 
- Diferencias de saturación de agua en el suelo entre tomas, puede generar falsas 
deformaciones [6]. 
- Las láminas de agua y zonas con abundante vegetación arrojan poca coherencia en los 
resultados, mientras que los suelos desnudos, pavimentados y edificios arrojan una alta 
coherencia en los resultados [16]. 
- Las variaciones en altura del terreno entre una toma y otra pueden deberse a varios 
factores distintos a los procesos de erosión: 

Crecimiento de la vegetación, prácticas de laboreo y cultivo y des/aparición de 
elementos [26,27,28].  
Otros procesos geológicos (fenómenos de expansión de las arcillas, 
subsidencia del terreno, terremotos, deslizamiento de laderas, disolución de 
calizas, etc) [17,18,19,20,21,22,23]. 

 

 
Figura 3. Microondas y constante dieléctrica. Las microondas de la banda C tienen escasa 
capacidad de penetración en el suelo seco, y ninguna en suelos saturados.  Fuente EO College 
Course “Echoes in Space” [16] y Schumann & Moller [25] 

3. Resultados y discusión 

Se han seleccionado 3 tomas realizadas a lo largo del tiempo para mostrar las capacidades 
y limitaciones de la herramienta: 

3.1.- Caso con labores agrícolas y apenas sin precipitaciones (15/06/201727/06/2017) 

Durante este periodo de tiempo apenas hubo precipitaciones (total 12mm en 12 días), y 
bastantes parcelas agrícolas cerealistas de la cuenca fueron cosechadas.  
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Figura 4: Resultados 15-27/05/2017 

La humedad precedente entre ambas fechas era similar. 
El resultado del análisis interferométrico arroja una amplitud de deformación en el global 

de la cuenca (la diferencia entre la celda que más se eleva y la que más desciende) de 8mm. 
Entre ambas adquisiciones todas las parcelas marcadas en magenta fueron cosechadas, no 

observándose diferencias relevantes respecto a las parcelas que no fueron cosechadas. 

 

 
Figura 5: Lluvias en el periodo 15-27/06/2017 
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Del análisis interferométrico basado en microondas de la banda C de este periodo se puede 
concluir que: 

1.- No se ve afectado por cultivos de tipo cerealista. 
2.- Sus resultados fueron coincidentes con lo observado en campo, y por tanto pueden 

considerarse como correctos. 

3.2. Caso de intensas lluvias sin labores agrícolas (28/02/201806/03/2018) 

Durante este periodo de tiempo hubo intensas precipitaciones (total 101,5mm en 6 días).  
Entre ambas fechas no se observó ninguna actividad agrícola relevante. 
La humedad precedente no es la misma entre ambas tomas, estando bastante más cerca de 

la saturación (incluso con zonas encharcadas como se verá más adelante) en la toma del 
segundo día. 

 

 
Figura 6: Resultados 28/02/2018-06/03/2018 

El resultado del análisis interferométrico arroja una amplitud de deformación superior a 
los 8 cm, con las siguientes características: 

Zonas en color rojo y naranja: Zonas donde se ha detectado erosión, hasta 1cm en las zonas 
naranjas y entre 1 – 4 cm en las zonas rojas. Se trata de zonas en las que, durante este periodo, el 
suelo estaba eminentemente desnudo (barbecho). 

Zonas en color amarillo: Representan zonas donde no se detectan procesos erosivos o de 
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sedimentación relevantes. Se trata de zonas en las que, durante este periodo, el suelo estaba 
cubierto por cultivos de tipo cereal (trigo o cebada). 

Zonas de color verde claro: Se trata de extensas zonas en las que se ha observado una ligera 
elevación (entre 0,25 – 1 cm) del terreno, no explicable por procesos erosivos-sedimentarios. 
Debido a que era la primera precipitación tras un largo periodo sin lluvias, las explicaciones a 
este fenómeno son 2: 

1.- Una posible expansión de las arcillas debido al cambio de humedad en el suelo. 
2.- Un seguro y fehaciente cambio en la humedad y constante dieléctrica del suelo 
(durante las visitas se observó que el primer día el suelo estaba seco mientras que el 
segundo día el suelo totalmente encharcado, por lo que estaba saturado), que provoca 
un reflejo más superficial si cabe de las microondas de la banda C. 

Zonas de color verde oscuro: Durante la inspección visual del segundo día se comprobó que 
dichas zonas se correspondían con zonas encharcadas o con mucha sedimentación. 

Por tanto, para el periodo estudiado, el análisis interferométrico basado en microondas de 
la banda C fue coincidente con lo observado en campo, y se puede concluir que sus resultados 
fueron correctos. 

 

 
Figura 7: Lluvias en el periodo 28/02/2018-06/03/2018 

3.3. Caso de error indeterminado en el análisis interferométrico(18/04/201930/04/2019) 

Durante este periodo de tiempo hubo precipitación (52,6mm en 12 días).  
Entre ambas fechas no se observó ninguna actividad agrícola relevante, aunque si se 

observaron trabajos de movimiento de tierras en algunas parcelas anexas al camino (acopio de 
material para acondicionar el camino), así como los trabajos de acondicionamiento del propio 
camino. 

La humedad precedente no es la misma entre ambas tomas, pues había llovido el día 
previo e incluso el mismo día de la primera adquisición, mientras que no llovió en los tres días 
precedentes a la segunda adquisición. 

Con una amplitud de deformación superior a los 15 cm el resultado del análisis 
interferométrico no responde a ninguna interpretación lógica relativa a los procesos de erosión-
sedimentación, ni a los posibles efectos de la obra de acondicionamiento del camino central. 

Debido a la existencia de lluvias en uno de los días de adquisición, se procedió a repetir el 
análisis entre los días 12-30/04/2019, con resultados de similar magnitud. 

Se ha observado que durante estas fechas se produjo un reajuste de las órbitas de los 
satélites, si bien eso no debería ser motivo para los resultados obtenidos. 
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Figura 8: Resultados 18-30/04/2019 

Con este ejemplo se quiere remarcar la necesidad de interpretar siempre los resultados, y 
más aún cuando no se encuentran dentro de la horquilla esperada, para descartarlos si no 
pueden ser explicados. 

 

 
Figura 9: Lluvias en el periodo 18-30/04/2019 
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4. Conclusiones 

La interferometría diferencial sobre imágenes TopSAR se presenta como una herramienta 
de gran utilidad para analizar la erosión que provocan eventos singulares de precipitación.  

Su capacidad de análisis temporal, pudiendo analizar periodos de tiempo tan cortos como 
6 días, permite analizar los eventos de precipitación de una forma prácticamente aislada. 

Su capacidad de análisis espacial, con un resultado en raster con 13,93 m de paso de celda, 
permite conocer cómo reacciona cada zona de la cuenca a los procesos de erosión – 
sedimentación en función de la orografía, manejo del suelo, cobertura vegetal e intensidad de 
lluvia. Esto permitiría comprobar que situaciones comportan mayor riesgo, así como evaluar la 
eficacia de posibles medidas antierosión. 

El sistema presenta además las siguientes ventajas: 
Hay adquisiciones disponibles cada seis días. Y gratuitas. 
Al ser un sensor activo basado en las microondas de banda C, funciona 

independientemente del día y la noche y de la existencia de nubes. 
Las mediciones no se ven afectadas por cultivos pequeños como los cereales (trigo y 

cebada). 
Pero se debe de atender a las siguientes limitaciones: 
Diferentes estados de saturación del suelo durante las adquisiciones provocarán una falsa 

deformación a evaluar y corregir, debido a la escasa capacidad de penetración en el suelo seco y 
la nula capacidad de penetración en el agua de las microondas de la banda C. 

Las zonas encharcadas durante la captación de las imágenes darán una falsa 
sedimentación, debido a la incapacidad de las microondas de la banda C de penetrar el agua. 

Cuando la erosión hace desaparecer por completo el primer horizonte de suelo se produce 
una pérdida de coherencia entre las imágenes que no asegura la fiabilidad de las mediciones 
obtenidas. 

Las mediciones se van afectadas por vegetación arbórea, o de hojas o fruto de gran tamaño 
y densidad. 

Es necesario comprobar si las deformaciones registradas se han podido deber a otro 
fenómeno distinto de la erosión-sedimentación, como pueden ser terremotos, subsidencias, 
expansión de las arcillas, etc. 

La lluvia en el preciso momento de una de las adquisiciones puede provocar una pérdida 
de coherencia que altere significativamente los resultados. 

Los resultados siempre deben de ser interpretados y, a ser posible contrastados 
parcialmente sobre el terreno (no hace falta verificar toda la cuenca, pero si es conveniente 
algún punto de control para dar validez a la totalidad de la cuenca), máxime si se obtienen 
resultados que no respondan a las condiciones de precipitaciones y laboreo acaecidas. 
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