000084672 001__ 84672
000084672 005__ 20191113143157.0
000084672 0247_ $$2doi$$a10.1016/j.energy.2017.06.101
000084672 0248_ $$2sideral$$a100758
000084672 037__ $$aART-2017-100758
000084672 041__ $$aeng
000084672 100__ $$0(orcid)0000-0001-8350-6485$$aPina, Eduardo A.
000084672 245__ $$aOptimal operation and marginal costs in simple trigeneration systems including thermal energy storage
000084672 260__ $$c2017
000084672 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084672 5203_ $$aThe development of high-efficiency energy systems is a pressing issue nowadays, motivated by economic, environmental, and social aspects. Trigeneration systems allow for the rational use of energy by means of appropriate energy integration and provide greater operational flexibility, which is particularly interesting for buildings, often characterized by variable electricity, heating, and cooling demands. The benefits of trigeneration systems can be enhanced by the incorporation of thermal energy storage (TES), which decouples production and consumption. This paper analyses the operation of a simple trigeneration system including TES. The optimal operation is obtained by a linear programming model that minimizes the total variable cost. A thermoeconomic analysis based on marginal cost assessment of the internal flows and final products of the system is carried out, allowing to explain the optimal operation of the system and the role of the TES in achieving the optimal solution. The analysis unravels the marginal cost formation process, presenting a clear route from the final products obtained to the resources consumed. This information can aid the design of new plants, the retrofit of existing ones, and the operational management to achieve the minimum operational cost.
000084672 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/ENE2014-57262-R
000084672 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000084672 590__ $$a4.968$$b2017
000084672 591__ $$aTHERMODYNAMICS$$b4 / 59 = 0.068$$c2017$$dQ1$$eT1
000084672 591__ $$aENERGY & FUELS$$b18 / 97 = 0.186$$c2017$$dQ1$$eT1
000084672 592__ $$a1.99$$b2017
000084672 593__ $$aBuilding and Construction$$c2017$$dQ1
000084672 593__ $$aCivil and Structural Engineering$$c2017$$dQ1
000084672 593__ $$aElectrical and Electronic Engineering$$c2017$$dQ1
000084672 593__ $$aPollution$$c2017$$dQ1
000084672 593__ $$aIndustrial and Manufacturing Engineering$$c2017$$dQ1
000084672 593__ $$aMechanical Engineering$$c2017$$dQ1
000084672 593__ $$aEnergy (miscellaneous)$$c2017$$dQ1
000084672 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000084672 700__ $$0(orcid)0000-0002-4411-9834$$aLozano, Miguel A.$$uUniversidad de Zaragoza
000084672 700__ $$0(orcid)0000-0002-5161-7209$$aSerra, Luis M.$$uUniversidad de Zaragoza
000084672 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000084672 773__ $$g135 (2017), 788-798$$pEnergy$$tEnergy$$x0360-5442
000084672 8564_ $$s972652$$uhttps://zaguan.unizar.es/record/84672/files/texto_completo.pdf$$yPostprint
000084672 8564_ $$s117050$$uhttps://zaguan.unizar.es/record/84672/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000084672 909CO $$ooai:zaguan.unizar.es:84672$$particulos$$pdriver
000084672 951__ $$a2019-11-13-13:39:25
000084672 980__ $$aARTICLE