000084678 001__ 84678
000084678 005__ 20200117221623.0
000084678 0247_ $$2doi$$a10.1021/acs.iecr.8b04209
000084678 0248_ $$2sideral$$a109815
000084678 037__ $$aART-2018-109815
000084678 041__ $$aeng
000084678 100__ $$0(orcid)0000-0001-6627-0079$$aSánchez-Laínez, J.$$uUniversidad de Zaragoza
000084678 245__ $$aHydrogen Separation at High Temperature with Dense and Asymmetric Membranes Based on PIM-EA(H2)-TB/PBI Blends
000084678 260__ $$c2018
000084678 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084678 5203_ $$aThe preparation of dense and asymmetric flat membranes from the blending of polybenzimidazole (PBI) and (1.5-20 wt %) of a polymer of intrinsic microporosity (PIM-EA(H2)-TB) is reported. Thermal characterization validated the blend by revealing a single glass transition temperature, which suggests the absence of polymer phase segregation. In addition, the decomposition activation energy and d-spacing of the blends follow trends that correlate with the amount of PIM component. The membranes have been tested for the separation of H2/CO2 mixtures. The properties of the dense membranes, which also incorporate zeolitic imidazolate-8 (ZIF-8) nanoparticles, helped understanding of the behavior of the PIM/PBI blends by which phase inversion results in high separation performance asymmetric membranes. Asymmetric membranes show H2/CO2 selectivities of 23.8 (10/90 wt % PIM/PBI) and 19.4 (20/80 wt % PIM/PBI) together with respective H2 permeances of 57.9 and 83.5 GPU at 250 °C and 6 bar feed pressure. The gas separation performance of these asymmetric blends has been fitted to an empirical model, showing the influence of the amount of PIM and the feed pressure.
000084678 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T43-17R$$9info:eu-repo/grantAgreement/EC/FP7/608490/EU/Energy efficient MOF-based Mixed Matrix Membranes for CO2 Capture/M4CO2$$9info:eu-repo/grantAgreement/ES/MEC/FPU2014$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2016-77290-R
000084678 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000084678 590__ $$a3.375$$b2018
000084678 591__ $$aENGINEERING, CHEMICAL$$b33 / 138 = 0.239$$c2018$$dQ1$$eT1
000084678 592__ $$a0.907$$b2018
000084678 593__ $$aChemical Engineering (miscellaneous)$$c2018$$dQ1
000084678 593__ $$aIndustrial and Manufacturing Engineering$$c2018$$dQ1
000084678 593__ $$aChemistry (miscellaneous)$$c2018$$dQ1
000084678 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000084678 700__ $$0(orcid)0000-0002-9934-1707$$aZornoza, B.$$uUniversidad de Zaragoza
000084678 700__ $$aCarta, M.
000084678 700__ $$aMalpass-Evans, R.
000084678 700__ $$aMcKeown, N.B.
000084678 700__ $$0(orcid)0000-0002-4954-1188$$aTéllez, C.$$uUniversidad de Zaragoza
000084678 700__ $$0(orcid)0000-0003-1512-4500$$aCoronas, J.$$uUniversidad de Zaragoza
000084678 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000084678 773__ $$g57, 49 (2018), 16909-16916$$pInd. eng. chem. res.$$tINDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH$$x0888-5885
000084678 8564_ $$s660618$$uhttps://zaguan.unizar.es/record/84678/files/texto_completo.pdf$$yPostprint
000084678 8564_ $$s308455$$uhttps://zaguan.unizar.es/record/84678/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000084678 909CO $$ooai:zaguan.unizar.es:84678$$particulos$$pdriver
000084678 951__ $$a2020-01-17-21:55:13
000084678 980__ $$aARTICLE