Accepted Manuscript

A fault-tolerant last level cache for CMPs operating at ultra-low voltage

Alexandra Ferreron, Jesus Alastruey-Benedé, Dario Sudrez Gracia,
Teresa Monreal Arnal, Pablo Ibafiez Marin, Victor Vifials Yufera

PII: S0743-7315(18)30781-0
DOI: https://doi.org/10.1016/j.jpdc.2018.10.010
Reference: YJPDC 3966

To appear in: J. Parallel Distrib. Comput.

Received date: 19 December 2017
Revised date: 23 July 2018
Accepted date: 22 October 2018

Please cite this article as: A. Ferrerdn, J. Alastruey-Benedé, D.S. Gracia et al., A fault-tolerant last
level cache for CMPs operating at ultra-low voltage, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2018.10.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jpdc.2018.10.010

Highlights (for review)

Highlights

- Fault-Tolerant Last Level Cache for CMPs Operating at Ultra-Low

Voltage.

- Mechanism that exploits redundancy and reuse to enhance F 'ock disabling
performance.

- Fault-aware LLC management that maps critical blocks tr (werative cache
entries.

- Detailed evaluation of block disabling techniques in a .~ared-memory
coherent CMP.

*Manuscript

Click here to view linked References

A Fault-Tolerant Last Level Cache for CMPs Opcoating
at Ultra-Low Voltage

Alexandra Ferreréon®%!, Jests Alastruey-Benedé®®*, T"..io Sua.ez Gracia®®,
Teresa Monreal Arnal®°, Pablo Ibafiez Marin®©, V ztor Vi als Yifera®©

% Departamento de Informdtica e Ingenieria de Sistemas. = stituc. w«c Investigacion en
Ingenieria de Aragén. Universidad de [arage ., Spain
b Universitat Politécnica de Catalunya, Bai o1 waTec 1, Spain
¢HiPEAC European Network ¢ Ezcellene

Abstract

Voltage scaling to values near the ... "~1d voltage is a promising technique
to hold off the many-core power wal' Hov :ver, as voltage decreases, some SRAM
cells are unable to operate reliably a."d . ow a behavior consistent with a hard
fault. Block disabling is a micro-. “cnivectural technique that allows low-voltage
operation by deactivating faulty cache entries, at the expense of reducing the
effective cache capacity. I'. the ca: » of the last-level cache, this capacity reduction
leads to an increase in Off-ch., v emory accesses, diminishing the overall energy
benefit of reducing t' = ve cage supply. In this work, we exploit the reuse locality
and the intrinsic » :dundawn y of multi-level inclusive hierarchies to enhance the
performance of vlock '=abling with negligible cost. The proposed fault-aware
last-level cac’.e m wnagement policy maps critical blocks, those not present in
private carhes « ~d with a higher probability of being reused, to active cache
entries. “yur valvxtion shows that this fault-aware management results in up to
37.3 a~" 54..7% fewer misses per kilo instruction (MPKI) than block disabling
for 1 wltipro rammed and parallel workloads, respectively. This translates to
P _‘ormia.ce enhancements of up to 13% and 34.6% for multiprogrammed and

rarallel vorkloads, respectively.

*Corresponding author:
Email address: jalastru@unizar.es (Jesus Alastruey-Benedé)
INow at Google.

Preprint submitted to Journal of Parallel and Distributed Computing July 23, 2018

20

Keywords: Near-threshold voltage, SRAM reliability, fault-tole. *nce, « a-chip

caches, cache management

1. Introduction

For recent CMOS technologies, power density is t’.c .nain performance limiting
factor across most computing segments. Moore’s '~ v cor sinues to hold, with
a doubling of the number of transistors and integ ation density in each new
process generation, but Dennard scaling no lo.. ~er ap lies, and we are not able
to keep a constant power density across techno.. ~v generations. Power budgets
prevent us from utilizing all the available . ausistors, leading to dark silicon [1].

For years, industry has relied on . a... , *he supply voltage (Vi) to reduce
power consumption, but this trer 1 has 1ramatically slowed since the 90 nm
generation because of leakage. Redu ing operating voltages to values near the
threshold voltage (V;,) would min. nize wakage and switching power consumption.
The resulting power reduction could be used to activate more chip resources and
potentially achieve perfor mance i\ uprovements [2].

Unfortunately, Vg scalin, 7, limited by the tight margins of the on-chip
cache SRAM transis! “vs. dxcr ssive parameter variations in SRAM cells limit the

voltage scaling of - \lemory s.cuctures to a minimum voltage, Vyq below which

min ?

SRAM cells may not o, ~rate reliably. Vg . usually determines the minimum

voltage of tb . wh le processor, and in current technologies is typically of the
order of 0.7-1.0 7 when regular 6T SRAM cells are employed.

In tF - lit _ratr ce, various solutions have been proposed to enable reliable
cache |, aratic. at low voltages. At the circuit level, the use of larger transistors
or 1 Ore tran jistors (assist circuitry) improves SRAM cell resilience [3, 4]. The
r wa drawpacks of this approach are the associated increases in area and power
‘onsumy cion. First-level caches in chip multiprocessors (CMPs) occupy little area,
and their access time often determines the processor cycle time. Commercial

rocessors, such as the Intel Nehalem family, use robust 8T SRAM cells to

build reliable first-level caches, since this represents an affordable overhead [5].

30

35

40

45

50

55

In contrast, last-level caches (LLCs) are usually shared and . -= laigar sizes
and associativity, accounting for much of the die area [6] H. rce, tor LLCs,
minimum-geometry 67T cells are preferred to achieve higher '~ .sities.

At the architectural level, fault-tolerant cache desigr s rely ¢ 1 disabling faulty
resources at different granularities [7], or correcting defe. “ive b'.s through either
error correction codes (ECCs) [8] or a distributed dup’c. tion of blocks [9, 10].
Block Disabling (BD) is a simple technique th -t disable, a cache entry when
a defective bit is found [11]. Tt is already implemen. >d in modern processors
to protect against hard faults [6]. Howev.~ duc *. the random distribution
of defective cells, the capacity of the ca~t~ i~ == .dly compromised. Complex
techniques based on ECCs or the combinat.. ~ of faulty resources are able to
rescue more cache capacity, but incur 'ar je storage overheads and sometimes
require complex remapping that pc.-w« izes "he cache access latency.

In our work, we have devel~~ed a ~ew approach to mitigate the impact of
SRAM failures in LLCs due to pa. meter variations, based on BD but also
relying on the underlying ,uw *ures already present in CMPs. We identify a
natural source of on-chip ~ta rec andancy that arises because of the replication
of blocks in inclusive nult-lever cache hierarchies and exploit this redundancy
through a smart falt- are cache management policy.

In this paper, . ~ make the following contributions. First, we provide an
evaluation of PT “echniques in a shared-memory coherent CMP running parallel
and multipr. ~rar imed workloads with a complete and detailed memory model,
exploring >RAM ce.is with different probabilities of failure. Second, we introduce
a techniqu “nat ' eeps the tags of the LLC and, therefore, the tracking capabilities
of tb : coher ~nce directory operational. This way, a block not physically stored
in the LLC an reside in the private level and be made available to other cores.
1s an lternative to main memory supply, we set up a cache-to-cache copy
s vice .o support code or data sharing (thread migration, operating system, or
p .« el workloads). Finally, we propose a fault-aware cache management policy
“hat predicts the usefulness of a block based on its use pattern, and guides the

allocation of blocks to faulty and non-faulty cache entries, adding no overhead

60

65

70

75

80

to the original replacement policy.

Our fault-aware cache management policy is able to decr” ase “he LLC misses
per kilo instruction (MPKI) by up to 37.3%, with respect to L™ which translates
to speedup improvements of 2 to 13% for multiprogr tamme< workloads. For
parallel workloads, the MPKI values decrease by 5 to 54.%, w’ h respect to BD,
for the different SRAM cells considered, improvin |, per”,. nance up to 34.6%.

This paper extends our previous work [12] in « ~veral sie .ificant ways: 1) a new
fault-aware cache management policy aiming at caches »perating at low voltages,
ii) a detailed implementation of block disal“ng v."*' operational tags (BDOT)
technique, iii) a more realistic SRAM fr='* ~- " improving the accuracy of
the results, and iv) a more detailed evalua.’~n including multi-programmed
workloads and cache capacity/energy «al ssis.

The rest of the paper is organize. .~ foli. ws. Section 2 introduces the problem
of process variations and its effr -+ on SRAM cell reliability. Section 3 comments
on BD and its impact on large cache . *ructures. In Section 4, we describe how to
take advantage of the cohr cuc infrastructure to operate at low Vy4. Section 5
introduces a fault-aware -che r anagement policy for LLC operating at low
voltages. Section 6 de crib s the methodology. Section 7 presents our evaluation.
Section 8 discusses the vst m impact. In Section 9, we comment on related

work, and in Sec .. 10, we outline our conclusions.

2. Process ‘ar .ations in SRAM cells

SRAT [str ictu es are especially vulnerable to failures due to process variations,
as the - are a_~ essively sized to meet high density requirements, and because
of tl e vast 1 umber of cells that comprise on-chip SRAM structures [13]. In
p - 'icula., mtra-die random dopant fluctuations (RDFs) are the main cause of

hreshol | voltage variation [14]. The stochastic nature of the ion implantation
process leads to a distribution of V;;, values across a chip, which reduces the
tready tight transistor margins. Hence, SRAM structures have a minimum

voltage, Vg to guarantee reliable operation, which is typically of the order

min ?

90

95

100

105

110

of 0.7-1.0 V in current process generations, when 6T cells are u. .
The robustness of SRAM cells under the Vy,
analyzed in the literature [10, 9, 3, 8, 15]. Zhou et al. s. 1ed six different

i TaNge I s L 2om extensively
sizes of 6T SRAM cells in 32 nm technology, and their srobabities of failure as
Vaa decreases [4]. According to that study, at 0.5 V, the ~roba’ ility of failure of
an SRAM cell (Pyq) is between 107 and 1072. Tae ve . . € larger cells reduces
the probability of failure, as non-uniformities a -erage ov’, increasing read and
write margins and resulting in more robust devices. L. owever, large cells reduce
the density and increase power and energy ~nsu. T ..on.

Table 1 describes the six SRAM cells ~f 7~ , study (C1, C2, C3, C4, C5,
and C6) in terms of their area relative to tu. smallest cell (Cl), and lists the
percentage of non-faulty entries in caci. »s "uilt from these cells operating at 0.5
V, assuming 64-byte cache entries. \. enti - is considered faulty if it contains at
least one defective bit.

As Table 1 shows, less than 10, ~f the cache entries are non-faulty for the
small cells C1 and C2 at 0" v. "¢ the cache is implemented with the more robust
C6 cells, however, the pei. "ntage »f non-faulty cache entries rises to 60%, but at
the cost of a 58% inc ;ase in area (relative to C1), and the consequent increase
in leakage, which is nov sui’ able option for a large structure such as an on-chip
LLC.

In this wo ', we take Zhou’s reliability study as a reference to test our
proposals o1. ~ w de range of failure probabilities. We will only consider C2 to
C6 operat ng »t 0.5 V (our target near-threshold Vy4), as at this voltage, a cache

built witi, © t ce'.s would have all its capacity compromised.

Tablc 1: Area velative to cell C1 and percentage of non-faulty 64-byte entries in a cache

operat. ~ at © 5V, for the 6 bit cells introduced in [4].

Cell type C1 Cc2 C3 C4 C5 Cé6
Relative area 1.00 | 1.12 | 1.23 | 1.35 | 1.46 | 1.58
% non-faulty 0.0 9.9 27.8 | 35.8 | 50.6 | 59.9

115

120

35 35 S

1
% 30 30 3c
5 25 25 5
g 20 20 2z
g 15 15 ‘5
g 10 10 1
o s 5

0 0 0

O x @) WP O X @ N D NN
Number of operative ways
(a) C6 (b) C5 (c) C4

35 35 35 49
j%2]
T 30 30 30
12}
s 25 25 25
@ 20 20 20
g 15 15 3 15
@ 10 10 10
IS4
o s 5 u 5

0 0 v —_— 0

S e e O v

Numw - of operative ways

(d) C3 ‘=) C2 (f) C1

Figure 1: Available associatir .ty of a '6-way set associative block disabling cache (64-byte

block) made up of cells C6-C1 ~eratir g at 0.5 V.

3. Impact of Blrck "tisa'sling on Large Shared Caches at Ultra-low
Voltages

A simple - ppr: ach to handling hard faults is the disabling of faulty elements.
BD deactivates sources at block (cache entry?) granularity: when a fault is
detected at s givrn cache entry, that entry is marked as defective and it can
no lor~-r ste. ~ a cache block [11]. This technique is implemented in modern
proc ssors tc enable them to tolerate hard faults [6].

3D ... also been studied for operation at low voltages because of its easy

wmpleme¢ atation and low overhead [15]. From the implementation perspective,

2In this work, we differentiate between cache block and cache entry: block refers to the
v ansfer unit, the content per se, while entry refers to the physical group of cells that store a

block.

125

130

135

140

145

150

only one bit per entry suffices to mark the entry as faulty. The . ain «. awback
of this approach is that the amount of capacity dramatic .lly f=lls when the
probability of failure increases, as shown in Table 1. Even .. * ie total count of
faulty cells in the cache is less than 1%, the effective ¢ .che ce hacity is strongly
affected because of the random distribution of faulty ce.'~ BD results in caches
with variable associativity per set, determined by che » .. ber and distribution
of faults in the cache.

The interaction between BD and a system’s cacL » organization also plays
an important role. Modern commercial p. “cess. -~ such as the Intel Core i7,

implement inclusive hierarchies to facilit~*~ -~~~

2nce management. Inclusive
hierarchies require that all the blocks cachea " a private cache are also stored
in the shared LLC. The coherence info. mo .1on is embedded in the LLC; i.e., the
sharing state and a bit vector to re, '« "ent he current sharers are added to each
block. To force inclusion, wher = bloc™~ is evicted from the LLC, explicit back
invalidations are required to remov. the copies of the private cache blocks, if
present (inclusion victims® |1v,

Inclusive hierarchies . “form - oorly when the aggregated size of the private
caches is similar to t! e si- ¢ of the LLC [17], and BD exacerbates the problem
because of the sub-tai. 2l @ sociativity and capacity degradation in the LLC.
Figure 1 shows t’ ¢ wailable associativity in a 16-way set associative cache bank
with 64-byte V1 -ks, when built with cells C1-C6 (Table 1) operating at 0.5
V. The num.. =t - [faulty ways per set follows a binomial distribution B(n, p),
where n i the associativity, and p denotes the probability of failure of a cache
entry. Fiy_ ~: 1 ¢".ows how the associativity degrades as more faulty cells appear
on t! e cach ~ structure. On average, 50% of the ways are faulty if the cache is
built -ith C') cells, and this percentage rises to 90% when using C2 cells. The
1ssocia *vity loss directly translates to a significant increase in the number of
L. ~lusic victims. For instance, the number of invalidations in a cache built with
U o lls is 10 times larger than in a cache implemented with fault-free SRAM
alls.

This finding suggests that inclusive hierarchies are not particularly suitable

155

160

165

170

175

180

for systems that implement BD in the presence of a significant 1.. mber . { faults.
From the coherence management perspective, however, only dir. ctory inclusion
is required: blocks present in the private levels have to be .~ cked only in the
shared level tag array, without the need for a replica in ne dat >~ array [16]. This
observation is the basis for the techniques we propose 1. this - aper.

Our proposal has been designed for inclusive me mory ... rarchies, but most of
the proposed ideas could benefit non-inclusive e ~d exclus’ve hierarchies as well.
The objectives of our replacement and promotion alg withms are to assign the
non-faulty entries to blocks with reuse and .~ blo.~ .hat are not present in the
private caches. On the one hand, these ohi~~*-~= e still valid in a non-inclusive
hierarchy; however, their relative importanc. is different, and our algorithms
should consider different priorities for -llr cation and promotion decisions. On
the other hand, our proposal alleviac. = sp “cific problem of inclusive hierarchies,
such as the need to invalidate # “lack . a private cache when it is evicted from
the shared cache. This problem doe. not exist in non-inclusive hierarchies, and
therefore our proposal is r v «, nlicable in this specific aspect.

Note on Figure 1 tha. when asing cell types C3 and C2, 0.6% and 18.9%
of the sets have no or srat’ve ways, respectively. To be able to offer a complete
comparison with PD, = = as,ume that at least one of the ways in each set is
non-faulty, althc « this is not a requirement for the techniques we present in
this paper, an” "he LLC is able to operate even when all the ways of a set are

faulty.

4. Expic’t ' ng "aclusive Hierarchies to Enable Ultra-low Voltage Op-
e ation Block Disabling with Operational Tags

The . scheme simply assumes one extra bit per entry to identify faulty
‘ache e1 :ries in the data array (one or more faulty cells). Faulty data entries
are excluded from tag search and replacement, involving a net reduction in
- ssociativity, and a consequent increase in inclusion victims. From the coherence

management perspective, however, tracking blocks in the shared level tag array

185

190

195

200

205

210

suffices to ensure directory inclusion. This is the basis of our pre. ~nus wok, [12],
and the starting point of the first technique we propose: F.ock NMisabling with
Operational Tags (BDOT).

Assuming a two-level inclusive hierarchy, to force dir :ctory mclusion, we turn
on the tags of faulty entries in the LLC, including th m in he conventional
operations of search and replacement. The tag of . fav’., =ntry, if valid, tracks
a cache block that might be present in the pivate racies, but that cannot
be stored in the shared cache. Enabling the tags of e faulty entries restores

- first-level private caches,

the associativity of the shared cache as se = by
eliminating the problem of the increase ir *»~ == er of inclusion victims caused
by the loss in associativity.

In this situation, two kinds of LLC 1t .es have to be distinguished: tag-only
(T'), where the associated data en.~, ‘s fu 1ty and only the tag is stored, and
tag-data (D), where the associ~*ed du‘a entry is non-faulty and both tag and
data are stored. From the implen. ~tation perspective, one resilient bit still
suffices to indicate whethr. v entry is faulty or not. The coherence protocol
needs to be adapted to tn. new ¢ cuation, where a T" entry only stores the block
tag and directory sts ce. "Nhenever a request to a block stored in a T entry
arrives to the LLC baw. thr request needs to be sent to the next level (in this
case, the off-chip u. mory) to recover the block, and the same occurs with dirty
blocks, which _ ~d to be written back to memory after being evicted from a
private cach.

To fu'y evploi. this scheme, no failures should occur in the cells of the
tag array. 7 his an be accomplished, for example, by using robust cells (e.g.,
incre wsing the number of transistors per cell) or increasing the strength of the
ECC. Tags ccupy very little area in comparison to the data array (around 6%

or our -onfiguration, see Table 2 in Section 6), and increasing the cell size by
5>% (asuming 8T SRAM cells [18]) will only increase the total area of a cache
L an. by 2%. Since using sophisticated ECCs could increase the access latency of
e tag array, while using resilient tag cells involves little overhead, we opt for the

latter. This approach is also consistent with prior work [9, 10]. Moreover, many

215

220

225

230

235

240

of today’s CPUs use different cell types for tag and data arrays "19]. Contrary
to other proposals, our mechanism works even when all entri s o1 » set are faulty.
Contrary to other proposals, our mechanism works even w. - 1 all entries of a
set are faulty. The LLC saves the tags for both fault: and r »n-faulty entries,
maintaining the coherence status of all the blocks, an." allov .ng blocks to be
stored in the private levels without the need of a d .ta r~ .. ~a in the shared level.
Hence, it is possible to store a block in the pri te cach s even if all the data

ways of the corresponding LLC set are faulty.

4.1. BDOT Limitations

BDOT, as described above, has two pote..“*al limitations, both related to the
allocation of blocks to faulty entries.

First, BDOT always forwards - *uest. to blocks allocated to faulty entries
to the off-chip memory. However, a block allocated to a faulty entry might
be present on-chip, if it is being u. ~d by a private cache (L1). This situation
is common in parallel wor' I_~ds, which share data and instructions. In this
case, the directory inforrn. ~tion ca be used to orchestrate cooperation among L1
caches. When the dir cto~y prutocol receives an L1 request to a shared block

L

mapped to a T entry, '* .orw .rds the request to one of the sharers of the block,
namely, the L1 ¢ . he closest to the requester in terms of Manhattan distance.
That L1 will se~ve the biock through a cache-to-cache transfer.

Cache-te ~ack : transfers are already implemented in the baseline coherence
protocol fr r exclus. ely owned blocks. Hence, no additional hardware is required
and a siL._ht mod fication of the directory protocol suffices to trigger a shared
block cransfer. so from now on, we assume that BDOT includes this feature.

1 e seco .d limitation comes from allocating blocks to LLC entries without
“aking ‘uto account their T' or D nature. Unfortunately, this blind allocation
«~n resv .t in heavily reused blocks being attached to faulty entries. Indeed, if a
+ “*ieular block of the LLC is required repeatedly from an L1 cache (i.e., the
©lock shows reuse), any replacement algorithm will tend to protect it, reducing

its eviction chances. Thus, if a block with reuse is initially allocated to a T" entry,

10

245

250

255

260

265

unless replicated in other cores, all L1 cache misses will be forwa. '=d ow chip by
the LLC.
In the next section, we introduce a specific allocation anc - allocation policy

for BDOT caches that differentiates between T and D entries

5. Fault-aware Cache Management Policy for P T Caches

Conventional cache management policies assun. that every cache entry can
store a block, while BDOT breaks this assuwn.~tion: .ach set in an N-way set
associative cache contains T entries that stoi. only tags, and D entries that
store tags and data. Keeping in mind tn. main goal of improving the overall
LLC performance under BDOT, th: .. **~n introduces a fault-aware cache
management policy that takes in*o acc unt the distinct nature of T' and D
entries, and the reuse pattern of the -ete. nce stream. In particular, we seek to

achieve the following two goals:

1. To allocate blocks th- . a. most likely to be used in the future to D entries.
2. To maximize the an. "mt of on-chip data by giving greater priority (higher
chances of bein‘, allc catea to D entries) to blocks that are not present in

private cache leve

Prior work has sho. ~ that reuse is a very effective predictor of the usefulness
of a given ble :k i1 the LLC [20, 21]. Reuse locality can be described as follows:
lines accessad a. ~ast twice tend to be reused many times in the near future, and
recently -eus .d lines are more useful than those reused earlier [20]. Therefore,
seekine +o ac.. '~ e our first goal, we exploit reuse locality to predict which blocks
shot d be a1 ocated to D entries. With respect to our second goal, a request
tr blooi allocated to a T entry and present in L1 can be serviced through a
ache-tc cache transaction, whilst if the block is not present in L1, the request
will aiways be forwarded to the off-chip memory, incurring a penalty in access
‘.me and energy. Therefore, it is preferable to dedicate D entries to blocks not

available on the L1 caches.

11

270

275

280

285

1st use:
L1 request
Reu a:
L7 test

Reset reuse bit

Figure 2: Reuse and inclusion states for a block in LLC NR, R 7 and NC represent: Non-
Reused, Reused, Cached (in L1), and Non-Cached (in L1), 1. spectively. Replacement and

coherence transitions are not shown.

These goals may be added to any me. ~agement policy. In this work, we
will build on top of a state-of-the-art c.. "“=sed replacement algorithm: Not-
Recently Reused (NRR) [20]. Ne -, we describe the baseline replacement in

some depth and then we add awaren.ss . the existence of faulty entries.

5.1. Baseline NRR Replacement Algo . ithm

The NRR algorithm cequire four states per LLC block, as depicted in
Figure 2. When a block not . ~sr at in the LLC is requested by the processor (15
use: L1 request), it i~ stor =d ir the L1 and the LLC (to force inclusion), its state
being in the LLC ".R-C (1v ".-Reused, Cached). When the block is evicted from
the private cack.e (L1 miction), its LLC state changes to NR-NC (Non-Reused,
Non-Cached) O1 a new request (2*¢ use: L1 request), a copy of the block is
stored again in I ‘. and its LLC state is R-C (Reused, Cached). At this point, the
block ha shc vn reuse in the LLC and, very likely, it will be reused many times
in the »ear . +' re. Finally, when the block is evicted again from the L1, the
stat. becomu 3 R-NC (Reused, Non-Cached). Subsequent requests and evictions
svtch «_".veen the R-NC and R-C states.

Hawv1 g LLC blocks classified this way, the replacement policy can exploit L1
tempural locality and LLC reuse. In an inclusive hierarchy, the replacement of a
Viock in the LLC forces the invalidation of its copies in the private caches, if any,

a..d this usually implies performance degradation, assuming that blocks in L1 are

12

290

295

300

305

being actively used [17]. Therefore, the highest priority (protec..) is _iven to
blocks stored in private caches. As a secondary objective, th : hi hest priority is
given to blocks that have shown reuse in the LLC. Hence, Nr.™ selects victims in
the following order: NR-NC, R-NC, NR-C, R-C. Reuse rece icy is t ~ken into account
by resetting the reuse bit when all the non-cached bloc. ~ are - 1arked as reused
(transition from R-NC to NR-NC). This way, more r .cent’, <used blocks become
more protected.

The implementation of NRR only requires one ., 2use bit per block. The
protection of private copies can be implem ntea '~ .arious different ways [17],
but one simple solution is to use the prese~~~-** -~ tor of the coherence directory,

assuming non-silent tag evictions of clean bic “s.

from main memory (@) writeback to memory (if dirty)
{/é \LLC | @swap tags ,demonon candldates\ LLC
demotion
Ny faulty ™~ fault N fault fault
‘ y—\'—\ DECE o e -
promotlon
tags data (®insert R data

R from L1 private cache

(a) Insertion from main nemory a..er LLC (b) Insertion from L1 after L1 eviction (promo-

miss. tion and demotion).

Figure 3: Insertion - a. ~romotion actions for a fault-aware cache management policy example
in a cache set with two faui.y cache entries. Lowercase and capital letters indicate tag and

data, respectivr y.

5.2. Reu.~d oase . and Fault-aware Management for BDOT Caches

S eking ‘o guarantee that valuable blocks remain in the LLC, we devise a
fault-. ware - 1anagement policy by distinguishing between T and D entries. One
yption - to promote blocks by reallocating them from T to D entries, if needed,
t« imp ove the overall cache performance. The design choices include where
v o , romoted data comes from and which victim is chosen as a target of the
.onsequent demotion. At the same time, we want to continue exploiting reuse in

the simple and efficient way offered by an NRR-like replacement algorithm, which

13

310

315

320

325

330

335

is unaware of faulty entries. Thus, our goal is to design a comp. hens:.z2 cache
management policy, merging reuse exploitation and faulty :nt1v management.
Below, we elaborate on the two mechanisms that are ke, *) achieving this,

namely block insertion/replacement and block promot’ on/der ~otion.

5.2.1. Insertion and Replacement of Blocks

On a first insertion (LLC miss), an incoming blc . has 1ot shown reuse, and
hence allocating it to a T entry seems a reasonabic ‘dea. Figure 3a shows an
example of a cache block to be inserted in a 4-v. « ca ne set with two T entries
(those storing q and r tags) and two D entries . "ose storing p and s tags and
the corresponding P and S data). A victim 1. ~elected among the blocks allocated
to T entries. The baseline replaceme 't p ...y dictates which of those blocks

L

(Q and R) is selected for replacemc TL = is equivalent to predicting that the
incoming block X is not going to be 1. used. If the reuse pattern of the block is
mispredicted, block X should be .. ~llocated to a D entry, to reduce its access
time and transfer energy in #-*vre L1 misses. This reallocation will be performed
using the promotion mer 'anism ° e detail in the next subsection.

Dealing with first nsertio.. this way is very simple but has a clear disad-
vantage, related to .. = listr pution of T and D entries, with respect to the
percentage of rev ~d and non-reused blocks. For example, if the number of T
entries is small. the inse.sion policy would place considerable pressure on these
scarce entrie .. R ocks would be unavoidably forced to leave the LLC before
having ha . enoug™ time to show a reuse pattern, even though there are many
availabl. D :ntri:s. In an extreme case, when all the entries in a set are D
type. «us cacu: management policy could not be implemented. Solving this
prob ~m is n/ t easy. We explored various adaptive mechanisms in which some D
r.atries are used as T. However, it is difficult to determine the optimal number
T ent -es, this being highly dependent on the workload. After carrying out
~~veral experiments (data not shown in Section 7, for the sake of brevity), the
verformance returns were disappointing given the required complexity.

Given that our promotion mechanism reallocates reused blocks to D entries

14

340

345

350

355

360

365

and non-reused ones to T entries (as we will see in the following . *bsec. on), we
realized that the baseline NRR replacement policy itself su’.ace: *o achieve our
initial goals because it protects reused blocks. Since NRRK '~ es lower priority
to non-reused blocks, blocks allocated to T entries w’ .1 have more chances to
be evicted. This implies that, with a balanced distrib. “ion F :tween T and D
entries, an incoming block will have a higher prcoabi',, of being inserted in
a T entry than in a D entry. If the number o” T entrie, in a set is very low,
and even if there are no T entries in a set, the mecha \ism still works correctly.

'~ _Ks not present in private

NRR periodically resets the reuse bit of .~ose .
caches, so some D entries become replace~=* -~~~ idates with the same priority
as T entries. Hence, the initial insertion doe. not necessarily have to consider
the nature of the entry, and our imp =1 :ntation relies only on the baseline

replacement policy to select the vic..~ blc k.

5.2.2. Promotion and Demotion . f Blocks

A blind allocation of blo~'~ to cache entries may result in valuable blocks (i.e.,
those with reuse) being i itially a located to T entries, and vice versa. However,
this undesirable situat on can . . tracked on the fly through the reuse footprint,

v oo T
and reversed by swap, iv s a’

entry with a D entry: when a block allocated to
a T entry shows ‘- ~use, we will promote it to a D entry. Promotion involves a
complementary demotio.. of the block stored in the selected D entry.

To select whi n block is demoted, we also rely on reuse and L1 presence
informatic.a. Re.~ed blocks should be kept in the LLC, but unlike in the
baseline =] cem .nt policy, block demotion does not involve an LLC tag eviction.
Furt} _i.inore, .. the block is present in L1, losing the contents of the LLC is
not « "itical, recause there is at least one on-chip copy of the block, which can
' ¢ supnlied by a cache-to-cache transaction. Thus, to maximize the amount of
. n-chip lata, the demotion algorithm will select the victim block among those
~recent in L1. Among the blocks in L1, non-reused ones should have more
‘hances of being demoted.

Note that the promotion of a block can be performed at two different times:

15

370

375

380

385

390

395

at reuse detection (i.e., on a second L1 request to a block stored .. a1 < itry) or
after the second eviction from L1 (i.e., on eviction after rev .e). Performing the
promotion after the second request from L1 duplicates the ntent, as a copy
of the block is also stored in a private cache, whilst pe sformi g the promotion
after the L1 eviction meets the goal of maximizing the . mour of on-chip data.
Therefore, we opt for the latter and trigger promc ¢ion< .. ly after L1 evictions,
non-silent block data evictions being necessary.

The promotion/demotion process is illustrated n Figure 3b. When block
R, which is stored in a T entry, is evicted ™om "~ .l cache and selected for
promotion (i.e., its reuse bit is set), we =~'~~* - yictim among the demotion
candidates (P and S in Figure 3b). Once the v..“im is selected (P in our example),
we swap the cache contents in three stu»s- (1) discard the data entry P, writing
back the data to memory, if dirty; -, “wa, p and r tags; and (3) copy the data
(R) to the available D entry, w)*~h wa. occupied by the demoted block (P).

5.2.3. Summary and Imple™entation

Figure 4 illustrates t ‘e imple nentation of the aforementioned ideas. The
states of the baseline re placeme. algorithm shown in Figure 2 are now superstates
split into 7" and D s. *e,. T e initial allocation of blocks (Ist use: L1 request
in Figure 4) does not take into account the nature of the entry, and it solely
depends on the victim s.iection arising from reuse and L1 presence; i.e., it only
depends on .he } aseline replacement algorithm. After insertion, blocks will
move alon', NR-C, "R-NC, R-C, and R-NC superstates as they would do in a cache
without -ons.deri g faulty entries.

Tr gaaranvee that high value blocks—those showing reuse—remain in the
LLC the pc icy reallocates them from T to D entries when they are evicted
om the L1 and reside in a faulty LLC entry: R-C-T state. After L1 eviction,
locks ir R-C-T trigger a promotion, which results in the transition to an R-NC-D
“+ate and reallocation to a D entry, with the consequent demotion of another
lock within the set to a T entry. A block being demoted can be in any of the

superstates, and according to the victim selection algorithm, we first demote

16

400

405

410

INVALID

(not present)

15t use:
L1 request

1stuse:
L1 request

| NR-C-D |--=—=-=-=- NP 7 ,'
\\ ~ //
L1 eviction L1 eviction
e mm ey mm e — N —=——
/ A Y
0 [-NC-) Demotion (NG T} AN
,\ NR-NC-D e Swap)-> NR-NC .R-NC)
R S — e 7
2" use (reuse): 2M use \ \use):'_
/ Reset. L1 request L1 req sst
reuse bit emm Ny ———mmm———- S Y

N

Demotion ~_ ol
"(LL(:'S'V;A;;)*L“ Tk R

L1 eviction / Reuse:
L1 request

’

Reuse:

L1 request intinn; "';?eset

7
7/ . "om tion (LLC swap) " reuse bit
e ey il
tior 3
. _motion A
. = motion /" R-NC
'Co o) |

» Transition trig. by L1 action

(D LLC block state (T/D;

— ----» Transition trig. by another block
.'. ___! LLC block superstate

--------- » Transition trig. by repl. algorithm

Figure 4: Reuse « 4 inclus n states for a block in LLC with BDOT.

blocks that are prese. * “a th . private levels, in order to maximize the amount
of data available -~ the on-chip hierarchy. As a secondary objective, the policy
attempts to first demove low priority blocks, that is, those without reuse. In

particular, it seler s blocks in the following order: NR-C-D, R-C-D, NR-NC-D, and

R-NC-D.

This -=ur 2-ba ed, fault-aware policy adds no extra storage overhead to the
basel’ .¢ reuse-Lased replacement policy, as only the bit indicating reuse and the
presc nce bit vector are needed to orchestrate the replacement and promotion
~ecisions. Moreover, swapping blocks only requires some extra control logic to
, erforr the following actions: first, the logic reads the demoted victim and
*-~orts the promoted block, as for conventional block insertion, and, then, it
vrites back the tag of the demoted block. Promoting blocks after L1 eviction

implies non-silent eviction of data blocks. This overhead does not affect latency,

17

415

420

425

430

435

440

as L1 replacements are not in the critical path, and has a neghyg "le 1. pact on
energy consumption.

The fault-aware cache management technique here pre. - ved could be im-
plemented on top of other replacement algorithms (sua as LU or NRU). We
decided to rely on NRR because of its simple, yet efficic *t imr ementation, and
because it fits the general principles behind our ide . F'...'ly, and regarding the
reallocation from 7' to D entries and vice versa, nther ne'.cies are also possible.
For example, instead of relying on the reuse informat. m of the blocks, a future
use predictor [22] could be utilized to decide vhic.. *'scks should be allocated to
D entries, or a dead block predictor [23] ~~'" - sed to indicate which blocks
may be demoted to T entries, but these solu.’~ns add complexity to the cache

logic as well as requiring more storage ‘e head.

6. Methodology

6.1. Ouverview of the System

Our baseline system ¢ msists o a tiled CMP, with an inclusive two-level cache
hierarchy, where the sr cond le. = cache or LLC is shared and distributed among
the processor cores. ."les are “aterconnected by means of a mesh. Each tile has a
processor core wit™ a private first level cache (L1) split into instructions and data,
and a bank of the share. LLC, both connected to the router (Figure 5). Similarly
to most CM” | th write-policy for L1 data caches is write-back because other
policies, s ch as rite-through, may collapse the interconnection network [24].
The me 2 w 1 h-ve to convoy every single store from the cores to the LLC
banks .. guara. cee content inclusion. The CMP includes two memory controllers
loca. »d at tl > edges of the chip. Table 2 shows the parameters of the baseline
v .ucessor, memory hierarchy, and interconnection network.

We ¢ ssume it runs at a frequency of 1 GHz with an operating voltage of 0.5
V7 Note that the DRAM module voltage is not scaled like the rest of the system,
ad hence, the relative speed of main memory with respect to the chip increases

as the voltage decreases. This model is consistent with prior work [9, 10].

18

445

450

455

460

CMP i
CORE

| Register files, branch I’ | |

predictor, ALUs, control, 3 l
L11 [IL1D =7

LLC
DRAM

Main memory tag&data v

Figure 5: Modeled 8-cor. "MP.

Our baseline coherence protocol relies ¢ ~ a full-map directory with Modified,
Exclusive, Shared, Invalid (MESI) st veo. ¥~ use explicit eviction notification
of both shared and exclusively owned b. \cks. L1 caches are built with robust
SRAM cells that can run reliably at "ow r near-threshold voltages, while LL.C
data banks are built with conver. *onai T SRAM cells and, therefore, they are
sensitive to failures [5].

As in previous studies 3, 10], v = assume that the LLC tag arrays are hardened
by using upsized cells uch as 27 [18]. The baseline LLC replacement policy is
Not-Recently Used [YRT) [27| extended with private copy protection [17]. We
implement this pr tection .y using coherence directory information updated by

non-silent L1 block evi.“ions.

6.2. Experim. ~t. Set-up

Rega dinc, our experimental set-up, we model the CMP system described
in Table 2. 7= .se Simics [26] in combination with GEMS [27] to simulate the
on-c iip men ory hierarchy and interconnection network, and DRAMSim?2 [28]
te ~imul '~ the DDR3 DRAM in detail. To obtain timing, area, and energy
onsum, tion, we use the McPAT framework [29] for the on-chip components,
anua —«AMSim2 for the DRAM module. We extend the Ruby module (GEMS)
t) simulate the cache swaps in detail in order to take into account their dynamic

e, ergy overhead.

19

Table 2: Main characteristics of the CMP system.

Cores 8, Ultrasparc III Plus, in-order, 1 instr./cyc’ ;,;Je-», eaded, 1 GHz at
Vaa 0.5V

Coherence proto- || MESI, directory-based (full-map) distri! ated ar »ng LLC cache banks

col

Consistency model Sequential -

L1 cache Private, 64 KB data and instr. cacl »s. ~ way, 34 B block size, LRU, 2-cycle
hit access time

LLC eache Shared, inclusive, interleaved by line ddress, 1 bank/tile, 1 MB/bank,
16-way, 64 B block size, NRU re, 'ace” .ent
8-cycle hit access time (4-cycle . o access + 4-cycle data access)

Mermory 2 memory controllers, 1. ~ted at the edges of the chip; 1333 MHz DDR3
2 channels, 8 Gb/ch~nnel, 8 bu. ks, 8 KB page size, open page policy; raw
access time 50 cycles
Mesh, 2 virtual . “work. (VNs): requests and replies; 2 virtual channels

Ned per VN; 16-byte fli. size
1-cycle laten. hop, = stage routing

We use a set of 20 mul’ iprogr. nmed workloads built as random combinations
of the 29 SPEC CPU 2906 «, »lir ations [30], with no special distinction between
integer and floating »oir prcrams. Each application appears on average 5.5
times with a stan ard de * .tion of 2.5. Programs were run on a real machine
until completio:. wit.. the reference inputs. Hardware counters were used to
locate the enc of he initialization phase. Every multiprogrammed mix was run
for as manv 1. ructions as the longest initialization phase, and a checkpoint
was crea’ 2d 2, this point. We then run cycle-accurate simulations including 300
million cycle. tc warm up the memory hierarchy and 700 million cycles for data
colle :tion.

We ' include a selection of shared-memory parallel applications from
°ARSE 7 [31] with a significant memory footprint (MPKI, o > 1.0) when
run...g the sim-large input in the baseline system: canneal (MPKI ;o = 4.3),

farret (1.6), streamcluster (1.0), and vips (1.2). We proceed in a similar

20

475

480

485

490

495

way to that used for multiprogrammed workloads® and run 300 .. lion « scles to
warm up the memory structures once the parallel phase hz , st. r*ed, and then
collect statistics for 700 million cycles.

One challenge for analyzing fault mitigation techr .ques - the large set of
required simulations. Running all workloads and simulay 1 mor els combinations
for a single fault map can lead to wrong result , as .., er authors have de-
scribed [32, 33]. For example, if all the faults aff~<t to the most/least frequently
accessed cache sets, the observed speed-up would be 1. uch lower/higher than in
reality.

To address this issue, we rely on sto+i~*~~" mpling to generate random
fault maps and run Monte Carlo experiments .~ guarantee a 5% margin of error
with a confidence level of 95% [34]. Tn. ot wer words, the number of samples is
increased as necessary to reach the (. ot 1. argin of error within the desired level
of confidence. For our worklos 1< sin. 1lated models, metrics, margin of error
and confidence level, each point of 1.~ design space has to be simulated between
20 and 30 times, each one wiw. a different fault map. We pick the 5% margin
of error and the 95% co.."dence ievel as a good trade-off between simulation
time and accuracy, ir :rea ing both has a large impact in the required number
of simulations. To ~ns. ~ al' simulations have similar numbers of faults but at
different locatior ., . » compute the faultiness of each memory cell randomly and
independently _ ather cells [35, 36]. Finally, we consider that the number and

location of f. "1ty cells do not change during workload execution.

7. Evalu. *.0on

" his sect >n evaluates the effectiveness of the proposed BDOT management

t~ Zniqguc or LLC caches in terms of MPKI, adding up the misses in all LLC

.~ observed that no OS activity appeared when our parallel applications were run and
t! ¢ 1acio of CPU utilization between the different threads was practically constant across the

‘mulations.

21

500

505

510

515

520

5.

banks and dividing by the aggregated instruction count of all ¢ res. . ater, in
Section 8, we analyze the impact on system performance, a ea, »d energy.

To assess the effectiveness of our proposals, we incluac ~ veral additional
configurations. First, as an upper bound in performar ce, a r ~bust cache built
with unrealistically robust cells (Robust); i.e., cells th + ope ate at ultra-low
voltages with neither failures nor power or area over 1ead-, . hich corresponds to a
perfect unattainable solution. Then, we also incl “de block .isabling (BD), as our
proposal emerges from it. Finally, we add results for vord disabling (WD) [10].
Word disabling is a more complex techniq. ~ tha. -~ mbines consecutive faulty
cache entries to recreate fully functior~! ~~-- it the cost of reducing the
cache capacity. Section 9 presents a compren. ~sive discussion of this and other
techniques versus our proposals.

In summary, we consider the fo ‘¢ ving configurations:

e Robust: reference systen. tne 0C is built with unrealistically robust

cells. All data are presented with respect to this system.

e BD: system implei. ~nting 1 lock disabling, as presented in Section 3, with

NRU replaceme .t.

e BDOT-NR J: sys. v implementing block disabling with operational tags,

as present d in “~ction 4, with NRU replacement.

e BDO7T-NF R: system implementing BDOT with NRR replacement, as

pres: ated 1.. Section 5.1.

e BDJU *-NRR-FA: system implementing BDOT with fault-aware NRR

replac ment, as presented in Section 5.2.
» W . system implementing word disabling with NRU replacement [10].

As "a the case of NRR, the NRU implementation also includes private
¢ o, protection. Our detailed results include multiprogrammed workloads (the
20 SPEC CPU 2006 mixes) and parallel workloads (the 4 selected PARSEC
applications), for the five cell types considered (C6, C5, C4, C3, and C2).

22

530

535

540

2.4

—— Robust
i, = BD
2.2 BDOT-NRU
BDOT-NRR
2 - BDOT-NRR-FA

< 18 I‘ B
©
8 1.6 [
© ’ .I _
€ 1.4 || '
o B . . : q -
5 3

1.2 H | "_i
]

IT |

0.8 L

C6 C5 o 23 Cc2

Figure 6: Normalized MPKI (average for SP. *_ .. with respect to Robust for the different
proposals and cell types. Average MPKIJ for Re" ast: 5.09.

7.1. Multiprogrammed Worklow. -«

Figure 6 shows the LLC MPKI results for the multiprogrammed workloads.

BD is a valid solutior for a ¢ \che with few defective entries, like one built
with C6 cells, where t'.e ave. 2o : MPKI penalization is 23.9%. However, this
penalization increasr : rar 1dly with the number of faulty entries, reaching 136%
for C2. Using the .ags ot . ¢ defective LLC entries to keep the coherence state
of blocks stored m L1 . "ows BDOT-NRU to incur fewer MPKI than BD for C2,
but it does v .t o1 er any advantage (the MPKI value increases) for the rest of
the cells.

To d’ fere itiat> and quantify the benefit of a reuse-based replacement and
our far*-aw. = cache management policy, we first implement NRR on top of
BD(T (BDu'T-NRR), without taking into account the nature of cache entries
(f= lty u. won-faulty). This naive implementation offers a slight improvement
vith res bect to BDOT-NRU for all cell types, but it is still worse than BD,
excepy for C2; as in the case of BDOT-NRU. The explanation for this behavior is
‘e blind allocation of blocks to entries, without taking into account whether the

eLtry can store only the tag (T') or both the tag and the data (D). Allocating a

23

545

550

555

560

565

570

block that shows reuse to a T' entry implies that all the reques.. to tu.t block
are forwarded to the next level (in this case, off-chip). T esices. due to the
reused-based policy, this block will remain in the defective - itry of the LLC,
protected by the replacement algorithm. However, blc :ks wi'h reuse allocated
to D entries are also protected from replacement, ana *hat - xplains why the
relative differences between BDOT-NRR and BDO (-NF U -re larger when using
larger cells (i.e., with less faults, like C6 and CF

BDOT-NRR-FA addresses this issue, adding the information of defective
entries to the cache management policy. T. ~ pen. ' ation in terms of MPKI is
14.6%, 15.1%, 16%, 18.3%, and 37.3% lc=~ +-~ with BD for C6, C5, C4, C3,
and C2, respectively. If we compare BDOT-."RR-FA with BDOT-NRR, there
are 20% fewer MPKI, irrespective of t. ~ ¢ :ll type, demonstrating the goodness
of the design.

Regarding WD, although t"~re ai~ significant differences in terms of the
number of defective entries among ti. cell types considered (Table 1), the MPKI
for the different configurs 1. is almost constant. Two reasons explain this
behavior: i) a single defec ‘ve cel! forces the entry to be classified as faulty, and
ii) the number of de’:ctir 2 celis per entry is usually small (three on average
for the smallest cel': . 371 and, therefore, very often blocks are successfully
stored by combir .1, two consecutive entries. Thus, the average number of ways

per set in our , *tem when implementing WD is eight across the different cell

configuratio. ~ Compared to BD, WD obtains better results when the average
number o’ defrctive entries is greater than half, which is the case of cells C4, C3,
and C2, «. now 1 in Table 1. BDOT-NRR-FA lowers the MPKI with respect
to W by 2%, 16.1%, 8.5%, and 3.4%, for C6, C5, C4, and C3, respectively.
WD ¢ ~ly be .ts BDOT-NRR-FA in caches with a high number of defective cells
C2, wl ore on average 90% of the entries are faulty). However, BDOT-NRR-FA

1. "uires no additional overhead, whilst WD requires additional storage and logic

v ...onstruct blocks.

24

575

580

585

590

4.8

— Robust
444 | = BD
BDOT-NRU
4+ BDOT-NRR
BDOT-NRR-FA

¥ 3.6+ |~ WD
o
= 3.2 I
O
© o8- Ny
Noe .|
©
g 24 l—||_| ’\
o
zZ 294 _ M " | B

1.6 -1,

i L
1.2 I
0.8 Il Il
Cé C5 o 23 Cc2
Figure 7: Normalized MPKI (average for F. tu,.. ~ ~ith respect to Robust for the different

proposals and cell types. Average MPKIJ for Re" ast: 2.01.

7.2. Parallel Workloads

Figure 7 shows the relative LLC MPKI for the parallel workloads, with
respect to the baseline. £ s with 1ultiprogrammed workloads, BDOT-NRR-FA
has a lower average MPK1 ./ 2 BD and non fault-aware implementations of
BDOT. In particul r, FOOT-NRR-FA improves MPKI with respect to BD
by 5%, 5%, 9.6% 19.2%, ad 54.2% on average for C6, C5, C4, C3, and C2,
respectively. Compai.-e with the multiprogrammed workloads, the relative
MPKI numb rs s iown in Figure 7 are larger, moving away from the Robust
system to 2 gre. ter extent for all cell types, even for the winning alternatives
(WD an . BT OT-NRR-FA). But it is worth noting that the absolute MPKI
values “~r the » rallel applications considered are low (Section 6), which makes
the ' =lative i \creases appear more substantial.

Jpou. wwoser examination of the results, we can make some interesting obser-
ations. Figure 8 shows the LLC MPKI analysis per application for the different
cell vypes. BD is better than plain BDOTs (BDOT-NRU, BDOT-NRR) in C6-C3
r2lls (C3 in canneal is an exception), while in cell C2 the trend clearly reverses.

Ga the contrary, BDOT-NRR-FA is better than BD in most cases, being vips

25

595

600

605

610

615

the only exception (cells C6-C3), and giving very noticeable rel »ctiow. s in the
smallest cell C2. For vips, BDOT-NRR-FA only beats BT in ("2 because its
image processing algorithm shows very little reuse with a su.>". working set. In
such non-demanding environment, BD can store the v’ ps wo: king set.

Finally, the costly WD shows a similar tendency to t. 2t obs :rved with multi-
programmed workloads, with a relatively constan . per”.. nance independently
of the cell type. In this case, BDOT-NRR-FA I ~ats WD when using C6 or C5
(12.7% and 6.6% lower MPKI values, respectively), Hut it cannot reach WD
performance for C4, C3, or C2 (5.5%, 12.4™. an 7,.3% higher MPKI values,

respectively).

8. System Impact

This section analyzes the impac. o1 ur proposals on the system in terms
of performance, area, and energ, ~ous.mption. As in the previous section, we
present results relative to the Robust system and compare with the BD and WD

mechanisms.

8.1. Performance

Figure 9 shows che pe. > mance relative to the robust cell for both multipro-
grammed and p .ralle. workloads.

For multir rog. ammed workloads (Figure 9a), performance follows the same
trend as MPk., $DOT-NRR-FA being the best design option except in the case
of C2 cel's, fc . which WD outperforms BDOT-NRR-FA by 2.2%. In particular,
BDOT-NRK.. ¥/ shows a performance degradation with respect to the Robust
refer :nce sys em of 1.3%, 2%, 3.4%, 4.3%, and 6.9% for C6, C5, C4, C3, and C2,

., or, in other words, a performance improvement with respect to BD

of 2%, = 2%, 2.7%, 3.6%, and 13.1%.

resmecu.
.__n the case of multiprogrammed workloads, speedup in parallel application

1 erformance (Figure 9b) also follows the same trend as in the MPKI results, with

a notable exception. For C3, BDOT-NRU and BDOT-NRR perform slightly

26

5 - 6.7
—— Robust
451 = 8D 4.5 1
BDOT-NRU
4 BDOT-NRR -
o BDOT-NRR-FA S i
< 3.5 - WD X o0
= 3 =2 o 1
e = _
N 251 P 25
g 2 £ 2
2 151 S 151
1 1 i
0.5 0.5
0 0 S
Cé6 C5 C4 C3 C2 C6 C5 C4 C3 C2
(a) canneal. (b) ferret.
5 5 -
4.5 A 4.5
4 A 4
X 35 - ' <
[a 8 o -
= 3 =
] ,] I
ta} o} _
N 251 N
S {1 E
= e o £
§ 1.5 o o . . g
1 LS
4
05 | |
0 L} L1
. C5 24 C3 cC2 C3 C2
(c) stre amcluster. (d) vips.

‘igure 8. Per-application normalized MPKI (PARSEC) with respect to Robust for the different
y "oposals and cell types. Average MPKIs for Robust: 4.26, 1.59, 1.0 and 1.19, for canneal,

ferret, streamcluster, and vips, respectively.

27

620

625

630

635

11 1.1 R
:| [— Robust BDOT-NRR :| [— Robust BDOT-N

= BD BDOT-NRR-FA = BD RPPOT-NRR-FA
1.05 BDOT-NRU ---- WD 1.05 BDOT-NR' -+ wbL
g_ 1 — — % 1 —

_ T Voo
§ 0.95 . i B EEEEE B EEE)8 o oo oo @ 0.95 I M _
$ h -

B 09 ®? 09 “ IH
3 3
Noss Noss
5 E I
€ 08 E os '|
S (] |
Zo7s Zo7s | | || || I
07 07 "
0.65 Ll 065 L

Ceé C5 C4 C3 Cc2 -6 5 C4 C3 c2

(a) Multiprogrammed workloads. b) Parallel workloads.

Figure 9: Normalized speedup (average) with respect . Robust for the different proposals and

cell types.

better than BD on average, while in F.~urc 7, the average MPKI value with these
techniques was higher than with .M. As we already mentioned, the LLC MPKI
for the parallel applications in the baseline system is small (Section 6), and small
MPKI increases with res sect to 11is system appear relatively large in Figure 7.
Nevertheless, for C3, s creamc. ster has a dramatic speedup degradation with
BD. This is due to t. ~ I cge - amber of back invalidations to L1 blocks to force
directory inclusic » (inclus.on victims). Specifically, in this application, the
number of invalidation. to L1 blocks decreases 20 times when implementing
BDOT. The "[PK numbers are similar, but the number of instructions executed
differ cons’ lerab,, For this application, we observe a performance improvement
of 6.1% <he’ usi g BDOT-NRU (6.2% for BDOT-NRR), with respect to BD.

O wverage, BDOT-NRR-FA shows a similar performance to BD for C6 and
C5, ‘here tl : performance degradation with respect to the reference system is
2 2,0 and 2.9%, respectively, and for C4, C3, and C2, the performance is better,
wv 1.8% 7.1%, and 34.6%, respectively. BDOT-NRR-FA and WD have similar
nerformance (within 1%), except for in the case of C2, for which WD achieves a
.1% better performance.

In summary, BDOT-NRR-FA is an excellent choice for caches with different

28

640

645

650

numbers of defective entries, as it achieves as good performance a. more omplex

fault-tolerant techniques without adding any extra storage ov :rhe 21 to the cache.

8.2. Area and Energy

2

— Robust BDOT-NRR — F bust BDOT-NRR
1.8 = BD BDOT-NRR-FA 1.8 =) BDOT NRR-FA
BDOT-NRU -+ WD B T AU
1.6

B Off-chip B On-chip 14 a . "hlp ks on-chip

T e s E - AL - 12‘|_||_|rL' R/ PIER i
| 0.82_!!“ 1
-

Normalized EPI
ormalized EPI

r

Ccé C5 C4 C3 Cc2

Ceé C5 C4 C3

(a) Multiprogrammed workloads. (b) Parallel workloads.

Figure 10: Normalized EPI (average) with . sspect to Robust for the different proposals and
cell types.

Larger SRAM cells are less " .kely to fail, but at the cost of larger areas and
higher power consuw. ~t')n. _ven the largest cell considered by Zhou’s study
(C6), which requ -es a 41..% larger area than C2, is far from reaching fully
functional performance: 0.1% of the cache entries are faulty at 0.5 V (Table 1).

Our fault awa e mechanism has a minimal impact on area. Only two extra
bits suffice to imp ~ment BDOT-NRR-FA: one bit marks entries as defective (as
in BD), nd .he ¢ her one stores the replacement policy (i.e., NRR) information.
Thus v extra storage overhead is added compared to the BD system.

N inimizir g area helps to reduce energy in the LLC. Signals traveling smaller
.svances require less dynamic power for switching, and, most importantly, small

alls co’ sume less static power. To estimate the sub-threshold current, I,
~~nsing the static consumption, we assume that I, is directly proportional
.0 the transistor width of the cells considered, and estimate it with respect to

C2 [4]. For the unrealistically robust cell, we assume that it is the same size as

29

655

660

665

670

675

680

C2, but with a null probability of failure. Energy consumption a. ~ inc.. des the
dynamic overhead of LLC block swaps and L1 clean data ¢ vict o required by
the fault-aware BDOT policy. Finally, we account for botw. *’.e on-chip power
and the off-chip DRAM power.

Figure 10 shows the energy per instruction (EPI) "~ all he systems and
cell types considered, both for multiprogramme { (F'_. e 10a) and parallel
(Figure 10b) workloads, with respect to a syster implems ited with robust cells
at 0.5 V, distinguishing between on-chip and off-chip ‘onsumption.

For BD, the 2.4-fold higher MPKI for CZ ~scai.'~ the off-chip DRAM traffic,
and in turn, significantly increases off-chip ™ A*** DT for both multiprogrammed
and parallel workloads. On average, BDO'L->"RR-FA results in a 5.4%, 5.8%,
6.8%, 8.2%, and 20.4% lower overall P than BD for C6, C5, C4, C3, and
C2, respectively, for the multiproy . "me ' workloads. In the case of parallel
workloads, the EPI of BDOT-MNRR-Fx is within 2% of BD for C6, C5, and C4,
and 7.4% and 26.8% lower for C3 a..? C2, respectively.

Regarding WD, the re_uiv. show the same trend as performance, namely,
BDOT-NRR-FA EPI res.’*s are ' .5%, 9.8%, 7%, and 4% lower for C6, C5, C4,
and C3, respectively, whe . considering multiprogrammed workloads, while for
parallel workloads, *he © PI - alues of the two techniques are very similar for C6
and C5, but BD/,. NRR-FA cannot achieve the efficiency of WD for the other
cell configurat’ _ -.

The ene. v 7 sults shown above do not consider any block power gating
technique |38] Assuming a more aggressive approach, where fine-grained block
power ga.'~ ¢ is .ffordable [39], the benefits of BD-based techniques in terms
of pc wer ar 1 energy will be enhanced, as faulty entries do not consume static
powe. durin‘, operation. Applying this technique, the EPI with BDOT-NRR-FA
vould © e 6.2%, 6.7%, 7.2%, 6.3%, and 5.5% lower for the multiprogrammed
w “rklos s than the EPI values in Figure 10 with C6, C5, C4, C3, and C2 cells,
1+ 5, ctively. The same tendency is observed in the parallel workload results.

Figure 11 compares the EPI values with BD and BDOT-NRR-FA when
implementing block power gating with those obtained with WD. We observe that

30

685

690

695

for multiprogrammed workloads all the cell configurations acu. ve sig aificant
improvements in terms of EPI with respect to WD, and in che ~~se of parallel

workloads, only the C2 configuration is not able to reach tn. " VD efficiency.

1.5 15
— wD]
141 BD 14
& 1.3 { [+« BDOT-NRR-FA 13
o 127 1.2 J
Q11 1.
© 1 1 ﬂi
. % —
E o9 x___,{,,—x—/”/, 0.9 T‘—
)
Z 0.8 [V
07 - T T & J T T
Cé6 C5 C4 C3 C2 <6 C5 C4 C3 C2
(a) Multiprogrammed workloads. (b) Parallel workloads.

Figure 11: Normalized EPI (average) v-ith re. ect to word disabling, when implementing

fine-grained block power gating.

9. Related Work

Conventional 6T SRAM ¢ s fail to operate reliably in the near-threshold
regime, as the ratio ons rair.s for read stability and writability of transistors
cannot be guarar eed, esp.cially in view of V};, variations. Prior proposals to
mitigate the impact ot . AM cell failures due to parameter variation at ultra-low
voltages can e c:i segorized into circuit and architectural solutions.

Circuit solu.. ~ns include methods that improve the bit cell resilience by
increasir = its size [4], or by adding assist/spare circuitry [18, 3]. Increasing the
cell si- or ti. aumber of transistors per cell comes at the cost of significant
incrcases in she SRAM area (lower density) and power consumption. Since
t'.c LLU accounts for much of the die size, increasing its area (e.g., ST SRAM
ells [3] louble the area of the SRAM structure) is not a design option.

Architectural solutions include redundancy through ECCs, disabling tech-
.dques, and duplication mechanisms. Our proposal fits in this category.

ECCs are extensively employed to protect designs against soft errors. Some

31

705

710

715

720

725

730

1

studies have extended the use of ECCs to protect against ha. ' errc.3 when

running at ultra-low voltages [40, 8]. ECCs are usually opt miz > to minimize

' ¢ect and correct

their storage requirements, at the cost of complex logic to
errors. Thus, the ability to detect and correct more er ors co: “es at the cost of
increasing the complexity of the decoding stage, or the *orag’ requirements of
the check bits [8]. Our proposal is orthogonal tc the ... of ECCs to provide
more functional entries (or any other techniqu- that in-_eases the number of
functional entries), as it adapts seamlessly to the a nount of functional and
non-functional data entries in the cache.

Regarding BD [11], Lee et al. examir~ =~ .nce degradation of disabling
cache lines, sets, ways, ports, or the complev. ~ache in a single processor envi-
ronment [7]. Ladas et al. implement a vic.im cache to compensate for the loss
in associativity [15]. Our approack »."0 re ‘es on BD, but does not require any
additional structures.

Ghasemi et al. propose the use 0. “eterogeneous cell sizes, in order that when
operating at low-power, we s u. “ets made of smaller SRAM cells are deactivated
if they start to fail [41]. 1.7 an et I. propose a mixed-cell memory design, where
a small portion of the cac! e is implemented with robust cells, which store dirty
cache blocks, and *he . maji ider with non-robust cells [19]. They modify the
replacement poli y .~ guide the allocation of blocks based on the type of request
(load or store) “hou et al. combine spare cells, heterogeneous cell sizes, and
ECCs into « hy’ rid design to improve on the effectiveness obtained by any
single tec miorie aivne [4]. In contrast to these techniques, we do not rely on
the existe. - : of obust ways and we guide the allocation of blocks to faulty or
oper cional T.LC entries based on their reuse.

1. = gra’ alarity at which capacity is disabled could be finer, though this

vould « 1d complexity to cache accesses. Word disabling tracks defects at word-
lc el gr .nularity, combining two consecutive cache entries into a single fault-free
¢ .., halving both associativity and capacity [10]. Abella et al. propose to
vpass faulty subentries rather than disable full cache lines, but this technique

is suitable only for the first-level cache, where accesses are word wide [42].

32

735

740

745

750

755

760

Palframan et al. follow a similar approach, patching faulty wo. 1s fro.a other
microprocessor structures, such as the store queue or the "aiss status holding
register [43]. Ferrerén et al. compress cache blocks to fit the - in faulty entries,
allowing the utilization of 100% of the cache entries [37". More ~omplex schemes
couple faulty cache entries using a remapping mechanisn. 19, 44 45]. They group
collision-free cache entries (from the same or diffe ;ent . he banks) relying on
the execution of a complex algorithm and stru *+ures to core all the mapping
strategy. Re-mapping mechanisms add a level of indir ction to the cache access
(increasing its latency), and the combinatioi. of ca™>- entries to recreate a cache
block adds complexity. Besides, several -~~~ - ssses are needed to obtain a
fault-free cache block, increasing the energy co. nmption and/or the block access
latency. Unlike the aforementioned p. Hp ssals, we do not add any additional
structures or re-mapping mechan. .. =~ o. ly minor changes to the coherence
protocol and replacement polic-—-

In the context of ultra-low voltage. Keramidas et al. use a PC-indexed spatial
predictor to orchestrate t'.c 1. ~lacement decisions among fully and partially
usable entries in first-leve” ~aches [46]. We based our allocation predictions on
reuse patterns, which imr'ifies the hardware, and we do not consider the use of
partially faulty ent-ies.

Regarding tF : . ~plementation of our techniques, it is worth referring to
the work of J="_ 1 et al. [17]. In inclusive hierarchies, the private caches filter
the tempore locality and hot blocks (i.e., blocks being actively used by the
processor are deg.aded in the replacement algorithm of the LLC, eventually
being evic '~ 1. Taey address this problem by protecting blocks present in the
privs ve cac! es and preventing their replacement in the LLC through several
techn ~ues, ‘acluding: sending hints to the LLC, identifying temporal locality

da ear 7 invalidation, and querying the private caches about the presence of
L ~cks. We also protect private copies in all the replacement policies considered
(- ding the baseline one), in our case by using the coherence information and
. ssuming non-silent evictions of clean blocks.

Albericio et al. base replacement decisions on block reuse locality [20]. They

33

765

770

775

780

785

790

propose the Not-Recently Reused (NRR) algorithm, which protecu. hlock. present
in the private caches and blocks that have shown reuse in thr LL ™ Their simple
yet efficient implementation achieved better performance .. - a more complex
techniques such as RRIP [47]. Our proposal uses NRR as the hase replacement
policy.

10. Summary and Conclusions

Voltage reduction has been the primary di. ~r to 1~ duce power during recent
decades, but ultra-deep-submicron technolog. < have suddenly stopped this
trend because of problems with leakage « - stability. Manufacturing-induced
parameter variations make SRAM cell ... *~hle at lower voltages, meaning that
they require a minimum voltage tec oper. e reliably. SRAM cell failures can be
tolerated by deactivating faulty cac.'e ¢ tries. This technique is called Block
Disabling (BD) and requires oniy ~ne wu.. per tag. Unfortunately, as the number
of defective entries increases. so does performance degradation, and the energy
saved from decreasing V, ; does 1ot compensate for the extra energy required
for the additional mair men.. v accesses.

The reduction ir assr ciati /ity and capacity experienced by inclusive LLCs
extended with B”s has tv. , specific drawbacks in multicore systems. First,
the number of inclusic ~ victims in private L1 caches increases. Second, the
MPKI values also grow, increasing LLC miss latency and main memory energy
consumptirn.

To cr ve v .th the first problem, we propose Block Disabling with Operational
Tags (PDO'L, /hich uses robust cells to implement the LLC tag array. BDOT
enal 'es somc cache blocks to be only in private levels by simply tracking their
tro. (1 caeries), and extends the existing cache-to-cache coherence service to
‘lean bl cks. Thus, with regard to inclusion victims, the LLC associativity is
fully restored. BDOT requires a small amount of extra control, and it adds
".0 storage overhead to BD (the bit that marks operative entries sufficing to

dustinguish between LLC T and D entries). Any replacement algorithm may work

34

795

800

805

810

815

820

with BDOT, and we have tested NRU and NRR, two low-cost . "ate-o. the-art
proposals for LLCs.

After the last copy L1 eviction of a block tracked by . ~ entry, a future
reference to this block will involve an off-chip access, even ‘hough we know
that reuse chances are high. Hence, we tackle the secon ' prob em from the key
observation that we can preserve the data cache . on-» by exchanging the
valuable, just evicted T entry block (promotion), ‘or an T.1 present D entry block
(demotion). Furthermore, if all blocks allocated to I mtries lack L1 copies, we
can still resort to demotion, losing effective ~n-ci._ > _apacity, assuming that an

incoming L1 block showing reuse (second T

PR

cment) is more valuable than
any older block allocated to a D entry. We “ave implemented these ideas in
BDOT-NRR-FA, the fault-aware versi. n f BOOT that selects for demotion a
D entry victim block that has a v «'np opy in L1 (first criterion), and has
not shown reuse in the LLC (-~~ond -riterion). Compared to a BDOT LLC
using NRR replacement, BDOT-IN"R-FA improves performance and energy
efficiency with no area ove .ical because the bits per block required, namely for
the presence vector, opere. ‘ve ent y, and reuse are required, respectively, by the
coherence mechanism BI?, and conventional replacement.

We tested our pro, ‘sal- against a wide range of multiprogrammed and
parallel workloar s . nder different Py,; situations. Our best proposal, BDOT-
NRR-FA, bea* 7D, results in up to 37.3% and 54.2% lower MPKI values for
multiprograi. mer and parallel workloads, respectively. These decreases translate
to perforr anc~ imp. ovements of 13% and 34.6%, respectively. Regarding energy
use, our p. * osal tecreases EPI by between 5.4% and 20.4% for multiprogrammed,
and etwee ~ 2% and 26.8% for parallel workloads. The largest savings come
from " .Cs » ith the most faulty cells, and gains are consistent across programs,
naking our proposal very suitable for the operation of multicore LLCs at low

v. tage: for current and future technology nodes.

35

825

830

835

840

845

References

[1]

M. Taylor, A landscape of the new dark silicon desigr regi' ie, »sEE Micro
33 (5) (2013) 8-19. doi:10.1109/MM.2013.90.

R. Dreslinski, M. Wieckowski, D. Blaauw, D. Syl. ~ster, .. Mudge, Near-
threshold computing: Reclaiming moore’s "aw t'. ‘ugh energy efficient
integrated circuits, Proc. of the IEEE 98 (2} (2010) 2% ,-266. doi:10.1109/
JPROC.2009.2034764.

J. Kulkarni, K. Kim, K. Roy, A 160n."" robust schmitt trigger based
subthreshold SRAM, IEEE Journa. ~t Solid-State Circuits 42 (10) (2007)
2303-2313. doi:10.1109/JSSC.” °°7 R!97.48.

S.-T. Zhou, S. Katariya, H. « Z2sen.” S. Draper, N. S. Kim, Minimizing
total area of low-voltage SRAM ~rrays through joint optimization of cell
size, redundancy, and ECC, in. TEEE Int. Conf. on Computer Design, 2010,
pp- 112-117. doi:10.*.""/ICCD.2010.5647605.

R. Kumar, G. Hintown., A “umily of 45nm IA processors, in: IEEE Int.
Solid-State Cirr aits Con*. Digest of Technical Papers, 2009, pp. 58-59.
doi:10.1109 [SSCu 27 09.4977306.

J. Chang, M. Huu.g, J. Shoemaker, J. Benoit, S.-L.. Chen, W. Chen,
S. Chiu R. (anesan, G. Leong, V. Lukka, S. Rusu, D. Srivastava, The 65-
nm 1F-MB »>. ~red On-Die L3 Cache for the Dual-Core Intel Xeon Processor
71C * Se 1es, .EEE Journal of Solid-State Circuits 42 (4) (2007) 846-852.
@51:10.1.09/JSSC.2007.892185.

k. Tee 3. Cho, B. Childers, Performance of graceful degradation for cache
fai'ts, in: IEEE Computer Society Annual Symp. on VLSI, 2007, pp.
AP ,—415. doi:10.1109/ISVLSI.2007.81.

Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, S.-L. Lu, Improving
cache lifetime reliability at ultra-low voltages, in: 42nd Annual IEEE/ACM

36

850

855

860

865

870

875

[11]

[13]

Int. Symp. on Microarchitecture, 2009, pp. 89-99. doi:10. 145,.369112.
1669126.

A. Ansari, S. Feng, S. Gupta, S. Mahlke, Archipelage: A po’ morphic cache
design for enabling robust near-threshold opera ion, in: IEEE 17th Int.
Symp. on High Performance Computer Arch? _ztuic, J11, pp. 539-550.
doi:10.1109/HPCA.2011.5749758.

C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chy wti, M. Khellah, S.-L. Lu,
Trading off cache capacity for reliabil’*v to ~n~"le low voltage operation,
in: 35th Annual Int. Symp. on Comnnter A. hitecture, 2008, pp. 203—-214.
doi:10.1109/ISCA.2008.22.

G. Sohi, Cache memory organizat. . to enhance the yield of high perfor-
mance VLSI processors, IEEE “va.» on Computers 38 (4) (1989) 484-492.
doi:10.1109/12.21141.

A. Ferrerén, D. Sudrer “'=acia, J. Alastruey-Benedé, T. Monreal, V. Vifials,
Block disabling ch: -acteriz: tion and improvements in CMPs operating
at ultra-low volt .ges in: 2014 IEEE 26" International Symposium on
Computer Archi. ~ are .nd High Performance Computing, 2014, pp. 238—
245. doi:10 *109/SBAC-PAD.2014.12.

A. J. Bhs vne varwala, X. Tang, J. D. Meindl, The impact of intrinsic device
fluctuatic < on CMOS SRAM cell stability, IEEE Journal of Solid-State
Circ .its “.6 (4) (2001) 658-665. doi:10.1109/4.913744.

V. Tang, * . K. De, J. D. Meindl, Intrinsic MOSFET parameter fluctua-
jons duv > to random dopant placement, IEEE Trans. on Very Large Scale

Integration (VLSI) Systems 5 (4) (1997) 369-376. doi:10.1109/92.645063.

7! N padas, Y. Sazeides, V. Desmet, Performance-effective operation below

Jee-min, in: IEEE Int. Symp. on Performance Analysis of Systems Software,

2010, pp. 223-234. doi:10.1109/ISPASS.2010.5452017.

37

880

885

890

895

900

[16]

[19]

[21]

3]

J. L. Baer, W. Wang, On the inclusion properties for m. '*i-lev.] cache
hierarchies, in: 15th Annual Int. Symp. on Computer Arcitecture, 1988,

pp. 73-80. doi:10.1145/633625.52409.

A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr. J. Eme , Achieving non-
inclusive cache performance with inclusive cack . Tew. oral locality aware
(TLA) cache management policies, in: 43rd A ' 4l ITF ZE/ACM Int. Symp.
on Microarchitecture, 2010, pp. 151-162. do. *0..:109/MICR0.2010.52.

L. Chang, R. Montoye, Y. Nakamura, K Bats » ".. Eickemeyer, R. Dennard,
W. Haensch, D. Jamsek, An 8T-SRAM for griability tolerance and low-
voltage operation in high-performance c. ~hes, IEEE Journal of Solid-State
Circuits 43 (4) (2008) 956-963. a. i:“v..1109/JSSC.2007.917509.

S. M. Khan, A. R. Alameldeen, C. Wilkerson, J. Kulkarni, D. A. Jimenez,
Improving multi-core peric "ua..~ asing mixed-cell cache architecture, in:
IEEE 19th Int. Symp. on High Ferformance Computer Architecture, 2013,
pp. 119-130. doi:10.1109, TPCA.2013.6522312.

J. Albericio, P. IF ane», V. /inals, J. M. Llaberia, Exploiting reuse locality
on inclusive sharc ' "ust-) vel caches, ACM Trans. Archit. Code Optim. 9 (4)
(2013) 38:1-" ’-19. doi:10.1145/2400682.2400697.

M. Chau au.’, J. Gaur, N. Bashyam, S. Subramoney, J. Nuzman, Introduc-
ing hiera. v -awareness in replacement and bypass algorithms for last-level
cach s, ir. 21st Int. Conf. on Parallel Architectures and Compilation Tech-

niques, 2017, pp. 293-304. doi:10.1145/2370816.2370860.

O.-J. W, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely, Jr.,
J. kmer, SHiP: Signature-based hit predictor for high performance caching,
in: 44th Annual IEEE/ACM Int. Symp. on Microarchitecture, 2011, pp.
430-441. doi:10.1145/2155620.2155671.

S. M. Khan, Y. Tian, D. A. Jimenez, Sampling dead block prediction for last-

38

905

910

915

920

925

28]

level caches, in: 43rd Annual IEEE/ACM Int. Symp. on M. -narcw’Secture,
2010, pp. 175-186. doi:10.1109/MICR0.2010.24.

J. Handy, The Cache Memory Book, Morgan Kaufr-~nn, ."08.

S. Microsystems, UltraSPARC T2 supplement to t. » Ultrs SPARC architec-
ture, Draft d1.4.3, Sun Microsystems Inc. (2 7).

P. Magnusson, M. Christensson, J. Eskils.. D. corsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, B. "Verner, imics: A full system sim-

ulation platform, Computer 35 (2) (200, 50-53. doi:10.1109/2.982916.

M. M. K. Martin, D. J. Sorin, B. M. be."»mann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hu', .. A. Wood, Multifacet’s General
Execution-driven Multiproce ~r Si ulator (GEMS) toolset, SIGARCH
Comput. Archit. News 33 (4) (2005) 92-99. doi:10.1145/1105734.
1105747.

P. Rosenfeld, E. Cor per-b. lis, B. Jacob, DRAMSim2: A cycle accurate
memory system simu.. *or, Jomputer Architecture Letters 10 (1) (2011)

16-19. doi:10.” 109 L-CA.2011.4.

S. Li, J. H. A v, R. D. strong, J. B. Brockman, D. M. Tullsen, N. P. Jouppi,
McPAT: an integi. 'ed power, area, and timing modeling framework for
multico’ ¢ an + manycore architectures, in: 42nd Annual IEEE/ACM Int.
Symp on . ~roarchitecture, 2009, pp. 469-480. doi:10.1145/1669112.
16€ 177.

s. L. Honing, SPEC CPU2006 benchmark descriptions, SIGARCH Comput.
£-chit News 34 (4) (2006) 1-17. doi:10.1145/1186736.1186737.

C. lienia, S. Kumar, J. P. Singh, K. Li, The PARSEC benchmark suite:
characterization and architectural implications, in: 17th Int. Conf. on
Parallel Architectures and Compilation Techniques, 2008, pp. 72-81. doi:
http://doi.acm.org/10.1145/1454115.1454128.

39

930

935

940

945

950

[32]

[37]

‘!9]

D. Sanchez, Y. Sazeides, J. M. Cebrian, J. M. Garcia, J. L. Ai. *6n, 1. odeling
the impact of permanent faults in caches, ACM Trar s. ¢r Architecture
and Code Optimization 10 (4) (2013) 29:1-29:23. do1.* " .1145/2541228.
2541236.

D. Hardy, I. Sideris, N. Ladas, Y. Sazeides, Tk »eric....ance vulnerability
of architectural and non-architectural arrays o » crm: nent faults, in: 45th
Annual IEEE/ACM Int. Symp. on Microa. hitecoure, 2012, pp. 48-59.
doi:10.1109/MICR0.2012.14.

R. Jain, The Art of Computer Systems Per.. ‘mance Analysis: Techniques
for Experimental Design, Measuremeny, Simulation, and Modeling, Wiley,

1991.

A. Agarwal, B. Paul, H. Mahn.~o.* A. Datta, K. Roy, A process-tolerant
cache architecture for imp. vci 7~ 1 in nanoscale technologies, IEEE Tran.
on Very Large Scale Integration \ VLSI) Systems 13 (1) (2005) 27-38. doi:
10.1109/TVLSI.200/ .840x 7.

L. Cheng, P. Gu’ ¢a, C. o 3panos, K. Qian, L. He, Physically justifiable
die-level model.. ~ < [sp .tial variation in view of systematic across wafer
variability, I" &E Trans. on Computer-Aided Design of Integrated Circuits
and Systems 30 (i3, (2011) 388-401. doi:10.1109/TCAD.2010.2089568.

A. Ferrc. ~» D. Suarez, J. Alastruey, T. Monreal, P. Ibanez, Concertina:
Sque :zins in cache content to operate at near-threshold voltage, IEEE Trans.

on Co. nut rs 65 (3) (2016) 755-769. doi:10.1109/TC.2015.2479585.

M. Pow 1, S.-H. Yang, B. Falsafi, K. Roy, T. N. Vijaykumar, Gated-Vdd:
a cucuit technique to reduce leakage in deep-submicron cache memories,
in: Int. Symp. on Low Power Electronics and Design, 2000, pp. 90-95.
a0i:10.1109/LPE.2000. 155259.

M. Gottscho, A. BanaiyanMofrad, N. Dutt, A. Nicolau, P. Gupta, DPCS:

Dynamic power/capacity scaling for SRAM caches in the nanoscale era,

40

960

965

970

975

980

985

[40]

[42]

[44]

ACM Trans. on Architecture and Code Optimization 12 (>} (20.7) 27:1-
27:26. doi:10.1145/2792982.

A. Alameldeen, I. Wagner, Z. Chishti, W. Wu, " Wilsx_~son, S.-L. Lu,
Energy-efficient cache design using variable-streng h error- ‘orrecting codes,
in: 38th Annual Int. Symp. on Computer Arck’ sctu.., 2011, pp. 461-471.
doi:10.1145/2000064.2000118.

H. Ghasemi, S. Draper, N. S. Kim, Low-voltage n-chip cache architecture
using heterogeneous cell sizes for higl -ver.. “m-.nce processors, in: IEEE
17th Int. Symp. on High Performance Cion. uter Architecture, 2011, pp.
38-49. doi:10.1109/HPCA.2011.5749, 5.

J. Abella, J. Carretero, P. Chapai. -, X. Vera, A. Gonzélez, Low Vccmin
fault-tolerant cache with highly v. dictable performance, in: 42nd Annual
IEEE/ACM Int. Symp. ¢ »Ii -~ wchitecture, 2009, pp. 111-121. doi:
10.1145/1669112.1669128.

D. J. Palframan, N. "-. Kim, | [. H. Lipasti, iPatch: Intelligent fault patching
to improve energ s efficie. .y, in: IEEE 21st Int. Symp. on High Perfor-
mance Compuue * / rchi ecture, 2015, pp. 428-438. doi:10.1109/HPCA.
2015.70560fF

C.-K. Kc¢'., V.-F. Wong, Y. Chen, H. Li, Tolerating process variations in
large, se. ~< ociative caches: The buddy cache, ACM Trans. on Architecture
and Cod . Opuimization 6 (2) (2009) 8:1-8:34. doi:10.1145/1543753.
1543,/

T. Mah 100d, S. Kim, S. Hong, Macho: A failure model-oriented adaptive
cacue architecture to enable near-threshold voltage scaling, in: IEEE 19th
Int. Symp. on High Performance Computer Architecture, 2013, pp. 532-541.
a0i:10.1109/HPCA.2013.6522347.

G. Keramidas, M. Mavropoulos, A. Karvouniari, D. Nikolos, Spatial pattern

prediction based management of faulty data caches, in: Conference on

41

Design, Automation & Test in Europe, 2014, pp. 60:1-o. 8. ac’:http:
//dl.acm.org/citation.cfm?id=2616606.2616680.

[47] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., J. Er~~ h._" performance

cache replacement using re-reference interval pre iction (RRIP), in: 37th

990 Annual Int. Symp. on Computer Architecturs, 201vu, Lp. 60—71. doi:10.
1145/1816038.1815971.

42

Alexandra Ferreron Photograph
Click here to download high resolution image

Jesus AIastruey-Benee Potograp

Click here to download high resolution image

Dario Suéarez-Gracia Photograph
Click here to download high resolution image

Teresa Monreal Arnal Photograph
Click here to download high resolution image

Pablo Ibafiez Marin Photograph
Click here to download high resolution image

Victor Vifals Yufera Photograph

Click here to download high resolution image

(e

L

;1‘ '

i
£ §

;
v

é

N

»

Author Biographies

Alexandra Ferrerdn received the MS and PhD degrees in computer science
engineering from the Universidad de Zaragoza, Spain, in 2013 and 2016,
respectively. Her research interests include high-performance low-power
on-chip memory hierarchies, ultra-low and near-threshold vo’tage
computing, and High Performance Computing. She currently wrc "ks as Site
Reliability Engineer for BigQuery (Google Cloud Platform) at ¢ ngle
Switzerland.

JesUs Alastruey-Benedé received the Telecommunications En.‘neering degree
and the PhD degree in Computer Science from the Univers. 'ad de Zaragoza,
Spain, in 1997 and 2009, respectively. He is a Lectu_.e. in the
Departmento de Informdtica e Ingenieria de Sistemas (D .IS,, Universidad
de Zaragoza, Spain. His research interests include p.1 ~essor
microarchitecture, memory hierarchy, and High Per rormance Computing (HPC)
applications. He is a member of the Instituto de Inves:igacién en
Ingenieria de Aragdn (I3A) and the European HiPEAC No7.,

Dario Suédrez-Gracia (S'08, M'l2) received the P'.D c:gree in computer
engineering from the Universidad de Zaragoze, Sp~*.1, in 2011. From 2012
to 2015, he was been working at Qualcomm Resear h Silicon Valley on power
aware parallel and heterogeneous computing for robile devices. Currently,
he is an assistant professor at the Unive.siawu de Zaragoza in Spain. His
research interests include parallel proaramm. ~g, heterogeneous computing,
memory hierarchy design, networks-on-ch.», and accelerators for computer
vision applications. He is also a member o. the IEEE, the IEEE Computer
Society, and the Association for Comgp 'ti.y Machinery.

Teresa Monreal-Arnal received the M ‘eg.ee in Mathematics and the PhD
degree in Computer Science from the tniversity of Zaragoza, Spain, in
1991 and 2003, respectively. Unt.' 2ul7, she was with the Informatica e
Ingenieria de Sistemas Department (L IS) at the University of Zaragoza,
Spain. Currently, she is an A< ~ciate Professor with the Computer
Architecture Department (DAC at he Universitat Politecnica de Catalunya
(UPC), Spain. Her research ii."ererts include processor microarchitecture,
memory hierarchy, and pare.lel c.mputer architecture. She collaborates
actively with the Grupo = 2_-qu .tectura de Computadores from the
University of Zaragoza ’Jau,

Pablo Ibafiez received the .S degree in Computer Science from the
Universitat Politeécn’c.. de Catalunya in 1989, and the PhD degree in
Computer Science fr .m tae Universidad de Zaragoza in 1998. He is an
Associate Professor 1. the Departamento de Informdtica e Ingenieria de
Sistemas (DIIS) a. the Universidad de Zaragoza, Spain. His research
interests includ. p ocrssor microarchitecture, memory hierarchy, parallel
computer archite~tu.~ and High Performance Computing (HPC) applications.
He is a member of the Instituto de Investigacién en Ingenieria de Aragdn
(I3A) and the “uropr an HiPEAC NoE.

Victor Vifi¢ Is=YL fera received the MS degree in Telecommunications and the
PhD degree ‘n Co iputer Science from the Universitat Politécnica de
Catalunya (Urc, in 1982 and 1987, respectively. He was associate
professo. 11 .he Facultat d'Informatica de Barcelona from 1983 to 1988.
Currently, ae is full professor in the Informdtica e Ingenieria de
Sistemas Department at the University of Zaragoza (Spain). His research
interests include processor microarchitecture, memory hierarchy, and
parallel computer architecture. He is member of the ACM, the IEEE
Computer Society, and HiPEAC. He also belongs to the Computer
Architecture Group and the I3A Institute of the University of Zaragoza.

