000084712 001__ 84712
000084712 005__ 20200716101537.0
000084712 0247_ $$2doi$$a10.1093/nar/gkz468
000084712 0248_ $$2sideral$$a114026
000084712 037__ $$aART-2019-114026
000084712 041__ $$aeng
000084712 100__ $$aGarcía-Rodríguez, Fernando M.
000084712 245__ $$aA group II intron-encoded protein interacts with the cellular replicative machinery through the ß-sliding clamp
000084712 260__ $$c2019
000084712 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084712 5203_ $$aGroup II introns are self-splicing mobile genetic retroelements. The spliced intron RNA and the intron-encoded protein (IEP) form ribonucleoprotein particles (RNPs) that recognize and invade specific DNA target sites. The IEP is a reverse transcriptase/maturase that may bear a C-terminal endonuclease domain enabling the RNP to cleave the target DNA strand to prime reverse transcription. However, some mobile introns, such as RmInt1, lack the En domain but nevertheless retrohome efficiently to transient single-stranded DNA target sites at a DNA replication fork. Their mobility is associated with host DNA replication, and they use the nascent lagging strand as a primer for reverse transcription. We searched for proteins that interact with RmInt1 RNPs and direct these RNPs to the DNA replication fork. Co-immunoprecipitation assays suggested that DnaN (the ß-sliding clamp), a component of DNA polymerase III, interacts with the protein component of the RmInt1 RNP. Pulldown assays, far-western blots and biolayer interferometry supported this interaction. Peptide binding assays also identified a putative DnaN-interacting motif in the RmInt1 IEP structurally conserved in group II intron IEPs. Our results suggest that intron RNP interacts with the ß-sliding clamp of the DNA replication machinery, favouring reverse splicing into the transient ssDNA at DNA replication forks.
000084712 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/BIO2014-51953-P$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/BIO2017-82244-P
000084712 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000084712 590__ $$a11.501$$b2019
000084712 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b15 / 297 = 0.051$$c2019$$dQ1$$eT1
000084712 592__ $$a8.907$$b2019
000084712 593__ $$aGenetics$$c2019$$dQ1
000084712 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000084712 700__ $$0(orcid)0000-0003-0668-977X$$aNeira, José L.$$uUniversidad de Zaragoza
000084712 700__ $$aMarcia, Marco
000084712 700__ $$aMolina-Sánchez, María D.
000084712 700__ $$aToro, Nicolás
000084712 7102_ $$15007$$2570$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Lenguajes y Sistemas Inf.
000084712 773__ $$g47, 14 (2019), 7605-7617$$pNucleic acids res.$$tNucleic Acids Research$$x0305-1048
000084712 8564_ $$s3368913$$uhttps://zaguan.unizar.es/record/84712/files/texto_completo.pdf$$yVersión publicada
000084712 8564_ $$s138488$$uhttps://zaguan.unizar.es/record/84712/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000084712 909CO $$ooai:zaguan.unizar.es:84712$$particulos$$pdriver
000084712 951__ $$a2020-07-16-09:37:26
000084712 980__ $$aARTICLE