000084715 001__ 84715
000084715 005__ 20250619084223.0
000084715 0247_ $$2doi$$a10.1063/1.5099038
000084715 0248_ $$2sideral$$a114032
000084715 037__ $$aART-2019-114032
000084715 041__ $$aeng
000084715 100__ $$aFaci-Lázaro, Sergio$$uUniversidad de Zaragoza
000084715 245__ $$aImpact of targeted attack on the spontaneous activity in spatial and biologically-inspired neuronal networks
000084715 260__ $$c2019
000084715 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084715 5203_ $$aWe study the structural and dynamical consequences of damage in spatial neuronal networks. Inspired by real in vitro networks, we construct directed networks embedded in a two-dimensional space and follow biological rules for designing the wiring of the system. As a result, synthetic cultures display strong metric correlations similar to those observed in real experiments. In its turn, neuronal dynamics is incorporated through the Izhikevich model adopting the parameters derived from observation in real cultures. We consider two scenarios for damage, targeted attacks on those neurons with the highest out-degree and random failures. By analyzing the evolution of both the giant connected component and the dynamical patterns of the neurons as nodes are removed, we observe that network activity halts for a removal of 50% of the nodes in targeted attacks, much lower than the 70% node removal required in the case of random failures. Notably, the decrease of neuronal activity is not gradual. Both damage scenarios portray "boosts" of activity just before full silencing that are not present in equivalent random (Erdös-Rényi) graphs. These boosts correspond to small, spatially compact subnetworks that are able to maintain high levels of activity. Since these subnetworks are absent in the equivalent random graphs, we hypothesize that metric correlations facilitate the existence of local circuits sufficiently integrated to maintain activity, shaping an intrinsic mechanism for resilience.
000084715 536__ $$9info:eu-repo/grantAgreement/ES/DGA/FENOL-GROUP$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2015-71582-C2$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2016-78507-C2-2-P$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2017-87519-P$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2017-90782-REDT
000084715 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000084715 590__ $$a2.832$$b2019
000084715 591__ $$aPHYSICS, MATHEMATICAL$$b5 / 55 = 0.091$$c2019$$dQ1$$eT1
000084715 591__ $$aMATHEMATICS, APPLIED$$b16 / 260 = 0.062$$c2019$$dQ1$$eT1
000084715 592__ $$a0.934$$b2019
000084715 593__ $$aMedicine (miscellaneous)$$c2019$$dQ1
000084715 593__ $$aMathematical Physics$$c2019$$dQ1
000084715 593__ $$aStatistical and Nonlinear Physics$$c2019$$dQ1
000084715 593__ $$aPhysics and Astronomy (miscellaneous)$$c2019$$dQ1
000084715 593__ $$aApplied Mathematics$$c2019$$dQ2
000084715 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000084715 700__ $$aSoriano, Jordi
000084715 700__ $$0(orcid)0000-0001-5204-1937$$aGómez-Gardeñes, Jesús$$uUniversidad de Zaragoza
000084715 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000084715 773__ $$g29, 8 (2019), 083126 1-11$$pChaos$$tCHAOS$$x1054-1500
000084715 8564_ $$s2667405$$uhttps://zaguan.unizar.es/record/84715/files/texto_completo.pdf$$yVersión publicada
000084715 8564_ $$s29226$$uhttps://zaguan.unizar.es/record/84715/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000084715 909CO $$ooai:zaguan.unizar.es:84715$$particulos$$pdriver
000084715 951__ $$a2025-06-19-08:41:25
000084715 980__ $$aARTICLE