000084719 001__ 84719
000084719 005__ 20191113143159.0
000084719 0247_ $$2doi$$a10.1371/journal.pone.0049174
000084719 0248_ $$2sideral$$a80051
000084719 037__ $$aART-2012-80051
000084719 041__ $$aeng
000084719 100__ $$0(orcid)0000-0002-3784-1140$$aBorau, C.$$uUniversidad de Zaragoza
000084719 245__ $$aDynamic Mechanisms of Cell Rigidity Sensing: Insights from a Computational Model of Actomyosin Networks
000084719 260__ $$c2012
000084719 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084719 5203_ $$aCells modulate themselves in response to the surrounding environment like substrate elasticity, exhibiting structural reorganization driven by the contractility of cytoskeleton. The cytoskeleton is the scaffolding structure of eukaryotic cells, playing a central role in many mechanical and biological functions. It is composed of a network of actins, actin cross-linking proteins (ACPs), and molecular motors. The motors generate contractile forces by sliding couples of actin filaments in a polar fashion, and the contractile response of the cytoskeleton network is known to be modulated also by external stimuli, such as substrate stiffness. This implies an important role of actomyosin contractility in the cell mechano-sensing. However, how cells sense matrix stiffness via the contractility remains an open question. Here, we present a 3-D Brownian dynamics computational model of a cross-linked actin network including the dynamics of molecular motors and ACPs. The mechano-sensing properties of this active network are investigated by evaluating contraction and stress in response to different substrate stiffness. Results demonstrate two mechanisms that act to limit internal stress: (i) In stiff substrates, motors walk until they exert their maximum force, leading to a plateau stress that is independent of substrate stiffness, whereas (ii) in soft substrates, motors walk until they become blocked by other motors or ACPs, leading to submaximal stress levels. Therefore, this study provides new insights into the role of molecular motors in the contraction and rigidity sensing of cells.
000084719 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/BES-2010-029927-FPI$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2009-14115-CO3-01
000084719 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000084719 590__ $$a3.73$$b2012
000084719 591__ $$aMULTIDISCIPLINARY SCIENCES$$b7 / 57 = 0.123$$c2012$$dQ1$$eT1
000084719 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000084719 700__ $$aKim, T.
000084719 700__ $$aBidone, T.
000084719 700__ $$0(orcid)0000-0002-9864-7683$$aGarcía-Aznar, J. M.$$uUniversidad de Zaragoza
000084719 700__ $$aKamm, R. D.
000084719 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000084719 773__ $$g7, 11 (2012), e49174 [8 PP.]$$pPLoS One$$tPloS one$$x1932-6203
000084719 8564_ $$s1193221$$uhttps://zaguan.unizar.es/record/84719/files/texto_completo.pdf$$yVersión publicada
000084719 8564_ $$s130625$$uhttps://zaguan.unizar.es/record/84719/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000084719 909CO $$ooai:zaguan.unizar.es:84719$$particulos$$pdriver
000084719 951__ $$a2019-11-13-13:41:18
000084719 980__ $$aARTICLE