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In this paper, we study high-dimensional random projections of ℓn
p-balls. More precisely, for any n ∈ N let

En be a random subspace of dimension kn ∈ {1, . . . , n} and Xn be a random point in the unit ball of ℓn
p .

Our work provides a description of the Gaussian fluctuations of the Euclidean norm ∥PEn
Xn∥2 of random

orthogonal projections of Xn onto En. In particular, under the condition that kn → ∞ it is shown that
these random variables satisfy a central limit theorem, as the space dimension n tends to infinity. Moreover,
if kn → ∞ fast enough, we provide a Berry–Esseen bound on the rate of convergence in the central limit
theorem. At the end, we provide a discussion of the large deviations counterpart to our central limit theorem.
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1. Introduction and results

The study of high-dimensional phenomena and, in particular, the description of geometric proper-
ties of high-dimensional convex bodies is what is known today as asymptotic geometric analysis.
In this branch of mathematics analysis, geometry, and probability intertwine in a highly non-
trivial way. It has become clear that the presence of high dimensions forces a certain regularity in
the geometry of convex bodies in the same way in which the presence of high dimensions forces
a regularity in the behavior of random vectors. One instance is the central limit theorem, which is
widely known in probability theory to capture the fluctuations of sums of (independent) random
variables. This theorem has a geometric counterpart. It was proved by Klartag [14,15] that most
k-dimensional marginals of a random vector uniformly distributed in an isotropic convex body
are approximately Gaussian, provided that k = kn is smaller than nκ for some absolute constant
κ ∈ (0,1) which is known to satisfy κ < 1/14. Furthermore, he obtained a rate of convergence in
the total variation distance. Let us mention that in the case of 1-unconditional isotropic convex
bodies the value of κ was improved by M. Meckes [17] to κ < 1/7. In this context let us also
refer to another work of Klartag [16] for an optimal rate of convergence for such bodies in the
so-called Kolmogorov distance when k = 1 (see also the detailed discussion at the end of [17]).

Besides the k-dimensional marginals of a random vector, only few random geometric param-
eters associated to convex bodies in high dimensions have been shown to satisfy a central limit
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theorem. In [19], Paouris, Pivovarov and Zinn have proved the central limit behavior for the vol-
ume of k-dimensional random projections of the n-dimensional cube (in this set-up, k was not
allowed to vary with n). When taking k = 1, their result turns into a central limit theorem for a
random projection of the 1-norm ∥θ∥1, where θ is a random vector uniformly distributed on the
Euclidean sphere Sn−1 (by a different method this has also been obtained in [11], Theorem 3.6).
This particular case was recently extended in [12] to a central limit theorem for arbitrary ℓn

p-balls
Bn

p with 1 < p ≤ ∞. This is a consequence of a multivariate central limit theorem that the au-
thors proved in [12] (all notions and notation will be introduced in Section 2 below). Moreover,
central and non-central limit theorems for the volume of random simplices in high dimensions
have recently been studied in [10].

While the central limit theorem underlines the universal behavior of Gaussian fluctuations,
it is widely known in probability theory that the large deviation behavior, which deals with
probabilities far beyond the scale of the central limit theorem, is much more sensitive to the
involved random variables. However, it was only recently that large deviation principles (LDP)
for random vectors uniformly distributed on convex bodies have been studied in order to access
non-universal features and unveil properties that distinguish between different convex bodies. In
[8], Gantert, Kim and Ramanan proved an LDP for 1-dimensional projections of random vec-
tors uniformly distributed in the ℓn

p-ball. In the annealed case, this result was extended in [1]
to a higher-dimensional setting, showing that the Euclidean norm of the projection of a random
vector uniformly distributed in Bn

p onto a random subspace satisfies an LDP. Our main result,
Theorem 1.1 below, complements these findings on the limiting behavior of the Euclidean norm
of random projections. More precisely, we prove a normal fluctuations counterpart, that is, we
show that the Euclidean norm of such random orthogonal projections satisfies a central limit
theorem, as the space dimension n tends to infinity. Let us remark that in our set-up, where the
vectors and subspaces are chosen simultaneously at random and only for the special case of the
uniform distribution on Bn

p this is a direct consequence of the central limit theorems of Klartag
or M. Meckes, provided that the subspace dimensions kn tend to infinity and satisfy kn < nκ

with κ < 1/7 (see Remark 3.2 below). However, this is not the case for the other probability
measures on Bn

p we consider and also not when the subspace dimensions kn grow faster with n.
With this paper, we provide a central limit theorem for the Euclidean norm of random projec-
tions of random vectors distributed on Bn

p in the full regime where kn → ∞, as n → ∞, while
kn/n → λ ∈ [0,1]. In addition to that, when the subspace dimensions grow faster than n2/3, we
are able to provide a Berry–Esseen type rate of convergence. Let us point out that for a fixed
1-dimensional subspace, a Berry–Esseen estimate was proved in [9] for a standarized projection.

In addition and opposed to [1,8], our central limit theorem will describe the Gaussian fluctua-
tions of a whole family of probability distributions on Bn

p that has been introduced in the paper
[2] of Barthe, Guédon, Mendelson and Naor. As a special case, this class contains the uniform
distribution considered in [1,8] as well as the cone probability measure on Bn

p (compare with
the discussion below). To introduce these distributions, for 1 ≤ p < ∞, we let W be any Borel
probability measure on [0,∞), Un,p be the uniform distribution and Cn,p stand for the cone
probability measure on Bn

p . The distributions we consider are of the form

Pn,p,W := W
(
{0}

)
Cn,p + HUn,p, (1)
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where the function H : Bn
p → R is given by H(x) = h(∥x∥p) with

h(r) = 1
pn/p%(1 + n

p )

1
(1 − rp)1+n/p

∫ ∞

0
sn/pe

− 1
p

rps
1−rp W(ds), r ∈ [0,1].

The class of measures of the form Pn,p,W contains the following important cases, which are of
particular interest (see Theorem 1, Theorem 3, Corollary 3 and Corollary 4 in [2]):

(i) If W is the exponential distribution with mean 1/p, then W({0}) = 0, H ≡ 1 and Pn,p,W
reduces to the uniform distribution Un,p on Bn

p .
(ii) If W = δ0 is the Dirac measure concentrated at 0, then W({0}) = 1, H ≡ 0 and Pn,p,W is

just the cone probability measure on Bn
p .

(iii) If W = Gamma(α,1/p) is a gamma distribution with shape parameter α > 0 and rate
1/p, then Pn,p,W is the beta-type probability measure on Bn

p with density given by

x (→
%(α + n

p )

%(α)%(1 + n
p )

(
1 − ∥x∥p

p

)α−1
, x ∈ Bn

p.

In particular, if α = m/p for some m ∈ N, this is the image of the cone probability measure
Cn+m,p on Bn+m

p under the orthogonal projection onto the first n coordinates. Similarly, if α =
1 + m/p, this is the image of the uniform distribution Un+m,p on Bn

p under the same projection.

We are now prepared to present our main results. Let us denote by Gn,k the Grassmannian of k

dimensional subspaces of Rn equipped with the Haar probability measure νn,k and for E ∈ Gn,k

write PE for the orthogonal projection onto E.

Theorem 1.1. Let 1 ≤ p < ∞ and W be a probability distribution on [0,∞). Further, let
(kn)n∈N be a sequence in N with kn ∈ {1, . . . , n}, (Xn)n∈N be a sequence of independent ran-
dom vectors distributed in Bn

p according to Pn,p,W and (En)n∈N be a sequence of independent
kn-dimensional random subspaces En ⊂ Rn distributed according to νn,kn . Assume that for each
n ∈ N, Xn is independent of En. Then, if kn → ∞ and kn

n → λ ∈ [0,1], as n → ∞,

Xn,p := n1/p

√√√√ %( 1
p )

p2/p%( 3
p )

∥PEnXn∥2 −
√

kn
d−→ N,

where N is a centered Gaussian random variable with variance

σ 2(p,λ) := λ

4

%( 1
p )%( 5

p )

%( 3
p )2

− λ

(
3
4

+ 1
p

)
+ 1

2
.

Moreover, if kn tends to infinity fast enough, then we obtain the following Berry–Esseen type
bound measuring the speed of convergence in the previous central limit theorem.
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Theorem 1.2. Under the assumptions of Theorem 1.1 and if additionally we assume kn

n2/3 → ∞,
as n → ∞, then there exists an absolute constant α ∈ (0,∞) and a constant Cp ∈ (0,∞) only
depending on p such that, for any n ≥ 2,

sup
t∈R

∣∣Fn,p(t) − *(t)
∣∣ ≤ Cp max

{
logkn√

kn

,
n

k
3/2
n

,

∣∣∣∣
kn

n
− λ

∣∣∣∣

}

+ P
(

|W | > αpn logkn

kn

)
+ 2P

(
|W | >

√
n2 logkn

kn

)
,

where W is a random variable with distribution W, Fn,p denotes the distribution function of
Xn,p and * the distribution function of the Gaussian random variable N from Theorem 1.1.

For the examples (i), (ii) and (iii) of distributions discussed above (before Theorem 1.1) the
probabilities in Theorem 1.2 involving W will either be 0 or exponentially small and can thus be
absorbed by the constant Cp . The upper bound for supt∈R |Fn,p(t) − *(t)| then reduces to the
maximum term in Theorem 1.2.

Let us finally discuss the remaining case p = ∞. Here we only consider the uniform distribu-
tion on Bn

∞ = [−1,1]n and obtain the following central limit theorem as well as a Berry–Esseen
type rate of convergence when the subspace dimensions increase fast enough.

Theorem 1.3. Let (kn)n∈N be a sequence in N with kn ∈ {1, . . . , n}, (Xn)n∈N be a sequence of
independent random vectors uniformly distributed in Bn

∞ and (En)n∈N be a sequence of indepen-
dent kn-dimensional random subspaces En ⊂ Rn that are distributed according to νn,kn . Assume
that for each n ∈ N, Xn is independent of En.

(a) Then, if kn → ∞ and kn
n → λ ∈ [0,1], as n → ∞,

Xn,∞ :=
√

3∥PEnXn∥2 −
√

kn
d−→ N

where N is a centered Gaussian random variable with variance

σ 2(∞,λ) := 1
2

− 3λ

10
.

(b) Moreover, if we assume kn

n2/3 → ∞, as n → ∞, then there exists an absolute constant
C∞ ∈ (0,∞) such that, for any n ≥ 2,

sup
t∈R

∣∣Fn,∞(t) − *(t)
∣∣ ≤ C∞ max

{
logkn√

kn

,
n

k
3/2
n

,

∣∣∣∣
kn

n
− λ

∣∣∣∣

}
,

where Fn,∞ is the distribution function of Xn,∞ and * the one of the Gaussian random variable
N from part (a).
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Remark 1.4. The asymptotic variance σ 2(∞,λ) in Theorem 1.3(a) appears as the limit of the
asymptotic variances σ 2(p,λ) from Theorem 1.1, as p → ∞. Indeed, we have

σ 2(p,λ) = λ

4
9
5

%(1 + 1
p )%(1 + 5

p )

%(1 + 3
p )2

− λ

(
3
4

+ 1
p

)
+ 1

2
p→∞−→ 9λ

20
− 3λ

4
+ 1

2
= 1

2
− 3λ

10
,

as desired.

Remark 1.5. The central limit theorem in Theorem 1.1 and Theorem 1.3(a) holds under the
condition that kn → ∞. Against this light the additional condition that kn/n2/3 → ∞ in The-
orem 1.2 and Theorem 1.3(b) seems to be suboptimal and appears for technical reasons in our
proof. To remove this condition is an open problem we leave for future research.

The rest of this paper is structured as follows. In Section 2, below we introduce our general no-
tation as well as the probabilistic and geometric background material. Section 3 is then devoted
to the proof of the central limit theorem, where we consider separately the cases 1 ≤ p < ∞
(Part A) and p = ∞ (Part B). The corresponding Berry–Esseen bounds on the rate of conver-
gence in our central limit theorems are presented in Section 4. The last part, Section 5, briefly
discusses and sketches the extension of the large deviations results from [1] to the class of prob-
ability measures on Bn

p considered in this work.

2. Preliminaries and notation

2.1. Notation

In this paper, we will be working in Rn equipped with the standard Euclidean structure. We shall
use the notation | · | to indicate the Lebesgue measure of the argument set, whose dimension
will always be clear from the context. We will also write | · | to denote the modulus of a real or
complex number, but the meaning will always be unambiguous.

For any 1 ≤ k ≤ n we will denote by Gn,k the Grassmannian of k-dimensional linear subspaces
in Rn endowed with the unique Haar probability measure νn,k , which is invariant under the action
of the orthogonal group O(n). By the uniqueness of the Haar measure it can be identified with
the image of the Haar probability measure ν̃ on O(n) under the map O(n) → Gn,k , T (→ T E0,
where E0 := span({e1, . . . , ek}) and {ei}ni=1 is the canonical basis of Rn.

We will use the Landau symbol o(f ), and may write ψ ∈ o(f ), to denote the class of functions
ψ : Rn → R for which

lim
x→0

∣∣∣∣
ψ(x)

f (x)

∣∣∣∣ = 0

or, equivalently, that for all M ∈ (0,∞) there exists δ > 0 such that for all x ∈ Rn with ∥x∥2 < δ,
∣∣ψ(x)

∣∣ ≤ M
∣∣f (x)

∣∣.
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We will write O(f ) to represent the class of functions , : Rn → R that satisfy that there exist
M, δ > 0 such that, for any ∥x∥2 < δ,

∣∣,(x)
∣∣ ≤ M

∣∣f (x)
∣∣.

We will indicate by g1(x) = g2(x) + o(f (x)) or g1(x) = g2(x) + O(f (x)) the existence of a
function ψ ∈ o(f ) or , ∈ O(f ) such that g1(x) = g2(x) + ψ(x) or g1(x) = g2(x) + ,(x),
respectively.

2.2. Definitions and results in probability theory

Given a random variable X on a probability space (-,A,P), its distribution function is F(t) =
P(X ≤ t), t ∈ R. Its expectation and variance with respect to P will be denoted by EX and

VarX, respectively. For any pair of random variables X,Y , we will write X
d= Y when X and Y

have the same distribution function. The characteristic function of X is ϕX(t) := EeitX , t ∈ R.
From the definition, we have that if X and Y are independent random variables, then ϕX+Y (t) =
ϕX(t)ϕY (t) and, for any b, c ∈ R, we have ϕb+cX(t) = eitbϕX(ct). If N is a Gaussian random
variable with mean µ ∈ R and variance σ 2 > 0, its characteristic function is

ϕN(t) = eitµ− 1
2 σ 2t2

, t ∈ R,

the characteristic function of N2 is

ϕN2(t) = 1
(1 − 2it)1/2 (2)

and, therefore, the characteristic function of a χ2-random variable χ2
k with k ∈ N degrees of

freedom (recall that this means that χ2
k

d= N2
1 + · · · + N2

k , where N1, . . . ,Nk are independent
copies of N ) is

ϕχ2
k
(t) = 1

(1 − 2it)k/2 .

A sequence of random variables Xn is said to converge to a random variable X in distribution
if the sequence of distribution functions of Xn converges to the distribution function F of X for

every point of continuity of F . In such a case, we will write Xn
d−→ X. By Levy’s continuity

theorem [13], Theorem 5.3, the sequence Xn converges in distribution to X if and only if ϕXn(t)

converges to ϕX(t) pointwise. The following lemma gives an estimate between the difference
of the distribution functions of two random variables in terms of the difference between their
characteristic functions.

Lemma 2.1 ([7], Chapter XVI.3, Lemma 2). Assume that F is the distribution function of a
centered random variable X with characteristic function ϕX and G is the distribution function
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of a random variable Y with characteristic function ϕY . Suppose that G is continuously differ-
entiable with |G′(x)| ≤ β < ∞ for all x ∈ R and that ϕY is continuously differentiable with
ϕ′

Y (0) = 0. Then, for any 1 > 0,

sup
t∈R

∣∣F(t) − G(t)
∣∣ ≤ 1

π

∫ 1

−1

|ϕX(t) − ϕY (t)|
|t | dt + 24β

π1
.

Remark 2.2. In the special case that Y is a centered Gaussian random variable with variance
σ 2 > 0, we may take β = 1√

2πσ 2
in Lemma 2.1.

A sequence of random variables Xn is said to converge to a random variable X in probability

if for every ε > 0, limn→∞ P(|Xn − X| > ε) = 0. We denote this by Xn
P−→ X. If a sequence

of random variables converges to X in probability, then it also converges in distribution. The
following result of Slutsky gives the convergence in distribution of the sum and the product of
two sequences of random variables provided that one of the sequences converges in probability
to a constant.

Lemma 2.3 ([3], Proposition A.42 (b)). Let (Xn)n∈N, (Yn)n∈N, and X be random variables and
c ∈ R a constant such that, as n → ∞,

Xn
d−→ X and Yn

P−→ c.

Then, as n → ∞,

YnXn
d−→ cX and Xn + Yn

d−→ X + c.

We will also make use of the classical Berry–Esseen theorem for sums of independent and
identically distributed random variables.

Lemma 2.4 ([7], Chapter XVI.5, Theorem 1). Let (Xn)n∈N be a sequence of independent
copies of a centered random variable X such that σ 2 := EX2 ∈ (0,∞) and ϱ := E|X|3 < ∞.
Further, let Fn be the distribution function of 1√

σ 2n

∑n
i=1 Xi . Then there exists an absolute con-

stant C ∈ (0,∞) such that

sup
t∈R

∣∣Fn(t) − *(t)
∣∣ ≤ C

ϱ

σ 3√n
,

where * is the distribution function of a standard Gaussian random variable.

Remark 2.5. In this paper, we shall work with the value C = 1 for the constant in Lemma 2.4,
although sharper estimates for C are known.
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2.3. Geometry of ℓn
p-balls

Let n ∈ N and consider the n-dimensional space Rn. For any 1 ≤ p ≤ ∞, the ℓn
p-norm, ∥ · ∥p , of

a vector x = (x1, . . . , xn) ∈ Rn is given by

∥x∥p :=

⎧
⎪⎪⎨

⎪⎪⎩

(
n∑

i=1

|xi |p
)1/p

: p < ∞

max
{
|x1|, . . . , |xn|

}
: p = ∞.

For any n and p we will denote by Bn
p := {x ∈ Rn : ∥x∥p ≤ 1} the ℓn

p-ball in Rn and by Sn−1
p :=

{x ∈ Rn : ∥x∥p = 1} the corresponding unit sphere. The restriction of the Lebesgue measure
to Bn

p provides a natural volume measure on Bn
p . Although one could supply Sn−1

p with the
(n − 1)-dimensional Hausdorff measure, the so-called cone measure turns out to be more useful
as explained later (see [18] for the relation between these two measures). For a measurable set
A ⊆ Sn−1

p , the cone (probability) measure of A is defined by

µp(A) := |{rx : x ∈ A, r ∈ [0,1]}|
|Bn

p| .

We remark that the cone measure µp coincides with the (n − 1)-dimensional Hausdorff proba-
bility measure on Sn−1

p if and only if p ∈ {1,2,∞}. In particular, this means that µ2 is the same
as σn−1, the normalized spherical Lebesgue measure.

The proofs of our results rely on the following probabilistic representation from [2], The-
orem 3, for the probability measures Pn,p,W on Bn

p defined in (1). Recall that W can be any
probability measure on [0,∞).

Proposition 2.6. Let n ∈ N and 1 ≤ p < ∞. Suppose that Z1, . . . ,Zn are independent p-
generalized Gaussian random variables whose distribution has density

fp(x) := 1

2p1/p%(1 + 1
p )

e−|x|p/p

with respect to the Lebesgue measure on R. Consider the random vector Z := (Z1, . . . ,Zn) ∈ Rn

and let W be a random variable with distribution W, which is independent from Z. Then the n-
dimensional random vector

Z

(∥Z∥p
p + W)1/p

has distribution Pn,p,W.

Remark 2.7. We remark that Proposition 2.6 slightly differs from [2], Theorem 3, for three
reasons. First, a factor 2n is missing in the statement of [2], Theorem 3. Second, We work with
the uniform distribution on Bn

p instead of the (non-normalized) Lebesgue measure. Third, we use
a slightly different normalization for our p-generalized Gaussian random variables (our density
is proportional to e−|x|p/p instead of e−|x|p ).
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In the rest of this paper and for 1 ≤ p < ∞, (Zi)i∈N will denote a sequence of independent p-
generalized Gaussian random variables with density fp . When p = ∞ they will be understood as
uniform random variables in [−1,1]. All these random variables are assumed to be independent.
Moreover, we assume that W is a random variable with distribution W, which is independent of
the sequence (Zi)i∈N. Finally, (gi)i∈N will denote a sequence of independent standard Gaussian
random variables that are independent of (Zi)i∈N and of W .

Using the previous representation of the measure Pn,p,W, the following representation for the
Euclidean norm of a random projection of a random vector in Bn

p distributed according to Pn,p,W
can be proved along the lines of [1], Theorem 3.1, and for this reason we skip the details.

Proposition 2.8. Let W be a probability measure on [0,∞). For any 1 ≤ p ≤ ∞, n ∈ N and
k ∈ {1, . . . , n} let X be a random vector in Bn

p distributed according to Pn,p,W if p < ∞ or
according to the uniform probability measure if p = ∞, and E ∈ Gn,k be a random subspace
distributed according to νn,k , independent from X. Then,

∥PEX∥2
d=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
∑n

i=1 Z2
i )

1/2

(
∑n

i=1 |Zi |p + W)1/p

(
∑k

i=1 g2
i )

1/2

(
∑n

i=1 g2
i )

1/2
: 1 ≤ p < ∞

(
∑n

i=1 Z2
i )

1/2(
∑k

i=1 g2
i )

1/2

(
∑n

i=1 g2
i )

1/2
: p = ∞.

The difference to [1], Theorem 3.1, is that for 1 ≤ p < ∞ the denominator contains the factor
(
∑n

i=1 |Zi |p + W)1/p instead of (
∑n

i=1 |Zi |p)1/p and the whole expression needs to be mul-
tiplied with a factor U1/n, where U is uniformly distributed on [0,1] and independent from
Z1, . . . ,Zn and g1, . . . , gn. The reason for this difference lies in the fact that here we use the
probabilistic representation of Proposition 2.6 taken from [2], while in [1] we were relying on
the more classical representation of Schechtman and Zinn [20]. The advantage of using the for-
mer representation lies in the fact that more general probability distributions on Bn

p can be treated
this way simultaneously.

2.4. Central limit theorem for convex bodies

In this section, we recall Klartag’s central limit theorem for convex bodies (see [14,15]) in the
form taken from [17] for bodies with sufficiently many symmetries.

Proposition 2.9. Let X be a random vector uniformly distributed in a centred convex body K ⊂
Rn having covariance matrix equal to the identity matrix. Assume that K is symmetric with
respect to all coordinate hyperplanes in Rn. Suppose that k ∈ N is such that k ≤ nκ for some κ <

1/7. Then there exists a measurable subset E ⊂ Gn,k and absolute constants c1, c2, c3 ∈ (0,∞)

with νn,k(E) ≥ 1 − e−c1n
c2 such that

sup
E∈E

sup
A⊆E

∣∣P(PEX ∈ A) − P(NE ∈ A)
∣∣ ≤ c3n

−ζ ,
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where ζ := 1−7κ
6 , the second supremum runs over all measurable subsets A ⊆ E and where NE

denotes a standard Gaussian random vector in E.

We shall demonstrate later (see Remark 3.2) how for small values of subspace dimensions kn

the result of Theorem 1.1 can be deduced from Klartag’s central limit theorem. Within the setting
of ℓn

p-balls, we will have to choose

K =
Bn

p

|Bn
p|1/nLBn

p

with L2
Bn

p
:=

%( 3
p )%(1 + n

p )

%( 1
p )%(1 + n+2

p )

∣∣Bn
p

∣∣−2/n
,

that is,

K =

√√√√%( 1
p )%(1 + n+2

p )

%( 3
p )%(1 + n

p )
Bn

p, (3)

in order to ensure that the covariance matrix of the random vector X equals the identity matrix.

3. Proof of the central limit theorems

In this section, we will give the proof of Theorem 1.1. The proofs are presented separately for p <

∞ and p = ∞. The following lemma collects the value of some of the constants that frequently
appear in our computations and is proved by direct computations.

Lemma 3.1. Let 1 ≤ p ≤ ∞ and Zp be a p-generalized Gaussian random variable. Then,

Mp(q) := E|Zp|q = pq/p

q + 1

%(1 + q+1
p )

%(1 + 1/p)
and M∞(q) := E|Z∞|q = 1

q + 1
.

Consequently, for any q, r ≥ 1, we have that

Var |Zp|q = Mp(2q) − Mp(q)2

and

Cov
(
|Zp|q, |Zp|r

)
= Mp(q + r) − Mp(q)Mp(r).

In particular, if p = ∞,

Var |Z∞|q = q2

(2q + 1)(q + 1)2

and

Cov
(
|Z∞|q, |Z∞|r

)
= qr

(q + r + 1)(q + 1)(r + 1)
.
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Proof. First, let p < ∞. Recalling the definition of the density fp of Zp , the result follows from

Mp(q) = E|Zp|q =
∫ ∞

−∞
|x|qfp(x)dx = 1

p1/p%(1 + 1
p )

∫ ∞

0
xqe−xp/p dx

and by a direct computation of the integral in terms of a gamma function. The covariance expres-
sion is a consequence of

Cov
(
|Zp|q, |Zp|r

)
=

∫ ∞

−∞
|x|q+rfp(x)dx −

(∫ ∞

−∞
|x|qfp(x)dx

)(∫ ∞

−∞
|x|rfp(x)dx

)
.

The case p = ∞ can be treated similarly by interpreting f∞ as the density of the uniform distri-
bution on [−1,1]. !

3.1. Part A – The case 1 ≤ p < ∞

We will now prove Theorem 1.1.

Proof of Theorem 1.1. For n ∈ N, we define the following random variables:

ξ (1)
n :=

∑n
i=1(|Zi |2 − Mp(2))√

n
and ξ (2)

n :=
∑n

i=1(|Zi |p − Mp(p))√
n

as well as

ξ (3)
n :=

∑kn
i=1(|gi |2 − M2(2))√

kn

and ξ (4)
n :=

∑n
i=1(|gi |2 − M2(2))√

n
.

Since M2(2) = 1 and Mp(p) = 1 by Lemma 3.1, ξ
(2)
n , ξ

(3)
n and ξ

(4)
n reduce to

ξ (2)
n =

∑n
i=1(|Zi |p − 1)√

n
, ξ (3)

n =
∑kn

i=1(|gi |2 − 1)√
kn

and ξ (4)
n =

∑n
i=1(|gi |2 − 1)√

n
.

Using the probabilistic representation of the Euclidean norm of the projection (Proposition 2.8)
and rewriting the expressions that appear in terms of ξ

(1)
n , ξ

(2)
n , ξ

(3)
n and ξ

(4)
n , we obtain

∥PEnXn∥2
d=

√
knMp(2)

n1/p

(1 + ξ
(1)
n√

nMp(2)
)1/2(1 + ξ

(3)
n√
kn

)1/2

(1 + ξ
(2)
n√
n

+ W
n )1/p(1 + ξ

(4)
n√
n
)1/2

. (4)

Let us define the function

F : R5 → R, F (x1, x2, x3, x4, x5) :=
(1 + x1

Mp(2) )
1/2

(1 + x2 + x5)1/p

(1 + x3)
1/2

(1 + x4)1/2 .
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Then,

n1/p

√
knMp(2)

∥PEnXn∥2
d= F

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)
.

Let us point out that since W is a positive random variable, ξ
(2)
n√
n

> −1 with probability 1, and

ξ
(4)
n√
n

> −1 with probability 1, the random vector ( ξ
(1)
n√
n
, ξ

(2)
n√
n
, ξ

(3)
n√
kn

, ξ
(4)
n√
n
, W

n ) belongs to D, the do-
main of F , with probability 1. Using a Taylor expansion around the origin, we obtain that for
every x = (x1, x2, x3, x4, x5) ∈ D,

F(x) = 1 + x1

2Mp(2)
− x2

p
+ x3

2
− x4

2
− x5

p
+ O

(
∥x∥2

2
)
, (5)

where the Landau symbol stands for a function ,p : D ⊆ R5 → R with the property that there
are two constants M, δ > 0 such that |,p(x)| ≤ M∥x∥2

2 whenever ∥x∥2 < δ. For this function
,p , observing that

1
√

Mp(2)
=

√√√√ %( 1
p )

p2/p%( 3
p )

,

taking into account that the identity (5) holds for every x ∈ D, and defining λn := kn/n, we can
write

Xn,p
d=

√
kn

[
ξ

(1)
n

2Mp(2)
√

n
− ξ

(2)
n

p
√

n
+ ξ

(3)
n

2
√

kn

− ξ
(4)
n

2
√

n
− W

pn

+ ,p

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)]

=
√

λn
ξ

(1)
n

2Mp(2)
−

√
λn

ξ
(2)
n

p
+ ξ

(3)
n

2
−

√
λn

ξ
(4)
n

2
−

√
λn

W

p
√

n

+
√

kn,p

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)
.

For each n ∈ N let us define the following three random variables:

Y (1)
n :=

√
λnξ

(1)
n

2Mp(2)
−

√
λnξ

(2)
n

p
+ ξ

(3)
n

2
−

√
λnξ

(4)
n

2
, Y (2)

n := −
√

λnW

p
√

n

and

Y (3)
n :=

√
kn,p

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)
.



Gaussian fluctuations for high-dimensional random projections of ℓn
p-balls 3151

We will now show that the first random variable, Y
(1)
n , converges to a centered Gaussian with the

variance as stated in the theorem, while the other two, Y
(2)
n and Y

(3)
n , converge in probability to

0, as n → ∞. We do this in three steps.
Step 1. For i = 1, . . . , n define the random variables Zi and Gi by

Zi := |Zi |2 − Mp(2)

2Mp(2)
− |Zi |p − 1

p
and Gi := |gi |2 − 1, (6)

and consider the three normalized sums
√

λn

n

n∑

i=1

Zi ,
1 − λn

2
√

λn
√

n

kn∑

i=1

Gi , and −
√

λn

2
√

n

n∑

i=kn+1

Gi .

These three sums are mutually independent and each one of them is a sum of independent and
identically distributed random variables. Moreover, we observe that

√
λn

n

n∑

i=1

Zi + 1 − λn

2
√

λn
√

n

kn∑

i=1

Gi −
√

λn

2
√

n

n∑

i=kn+1

Gi

=
√

λnξ
(1)
n

2Mp(2)
−

√
λnξ

(2)
n

p
+ ξ

(3)
n

2
−

√
λnξ

(4)
n

2
= Y (1)

n .

For any t ∈ R, the characteristic function of Y
(1)
n is therefore

ϕ
Y

(1)
n

(t) = ϕn
Z1

(
t
√

λn√
n

)
ϕ

λnn
G1

(
t (1 − λn)

2
√

λn
√

n

)
ϕ

(1−λn)n
G1

(−t
√

λn

2
√

n

)
.

Using a Taylor expansion of the exponential function at 0 and the Bienaymé identity, we observe
that

ϕZ1

(
t
√

λn√
n

)

= 1 − VarZ1
λnt

2

2n
+ o

(
t2λn

n

)

= 1 −
(

Var |Z1|2
4M2

p(2)
+ Var |Z1|p

p2 − Cov(|Z1|2, |Z1|p)

pMp(2)

)
λnt

2

2n
+ o

(
t2λn

n

)
,

and similarly

ϕG1

(
t (1 − λn)

2
√

λn
√

n

)
= 1 − Var |g1|2

4
t2(1 − λn)

2

2nλn
+ o

(
t2(1 − λn)

2

4λnn

)
,

ϕG1

(
− t

√
λn

2
√

n

)
= 1 − Var |g1|2

4
λnt

2

2n
+ o

(
t2λn

4n

)
.

(7)
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Therefore, since by assumption λnn = kn → ∞, we obtain, for every t ∈ R,

lim
n→∞ϕ

Y
(1)
n

(t) = e− t2
2 η2

,

with the exponent η2 ∈ R given by

η2 := λVarZ1 + (1 − λ)Var |g1|2
4

= λVar |Z1|2
4M2

p(2)
+ λVar |Z1|p

p2 − λCov(|Z1|2, |Z1|p)

pMp(2)
+ (1 − λ)Var |g1|2

4
.

Thus, by Levy’s continuity theorem, as n → ∞, the random variable Y
(1)
n converges in distribu-

tion to a centered Gaussian random variable with variance

η2 = λMp(4)

4M2
p(2)

+ λMp(2p)

p2 − λMp(p + 2)

pMp(2)
− λ

[
3
4

− 1
p

+ 1
p2

]
+ 1

2
.

Using the explicit expressions in terms of gamma functions provided by Lemma 3.1, we see that
η2 coincides with the constant σ 2(p,λ) in the statement of the theorem.

Step 2. Since the random variables W√
n

converges to 0 in probability as n → ∞, also Y
(2)
n =

−
√

λnW

p
√

n
converges to 0 in probability.

Step 3. By Slutsky’s theorem (see Lemma 2.3) it is now left to prove that, as n → ∞,

Y (3)
n =

√
kn,p

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)

converges to 0 in probability as well. We observe that

Y (3)
n =

√
kn

(
(ξ

(1)
n )2

n
+ (ξ

(2)
n )2

n
+ (ξ

(3)
n )2

kn
+ (ξ

(4)
n )2

n
+ W 2

n2

)

×
,p( ξ

(1)
n√
n
, ξ

(2)
n√
n
, ξ

(3)
n√
kn

, ξ
(4)
n√
n
, W

n )

∥( ξ
(1)
n√
n
, ξ

(2)
n√
n
, ξ

(3)
n√
kn

, ξ
(4)
n√
n
, W

n )∥2
2

=
(√

λnξ
(1)
n

ξ
(1)
n√
n

+
√

λnξ
(2)
n

ξ
(2)
n√
n

+ ξ (3)
n

ξ
(3)
n√
kn

+
√

λnξ
(4)
n

ξ
(4)
n√
n

+
√

λn
W 2

n3/2

)

×
,p( ξ

(1)
n√
n
, ξ

(2)
n√
n
, ξ

(3)
n√
kn

, ξ
(4)
n√
n
, W

n )

∥( ξ
(1)
n√
n
, ξ

(2)
n√
n
, ξ

(3)
n√
kn

, ξ
(4)
n√
n
, W

n )∥2
2

.
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Also, we have

P
( |,p( ξ

(1)
n√
n
, ξ

(2)
n√
n
, ξ

(3)
n√
kn

, ξ
(4)
n√
n
, W

n )|

∥( ξ
(1)
n√
n
, ξ

(2)
n√
n
, ξ

(3)
n√
kn

, ξ
(4)
n√
n
, W

n )∥2
2

> M

)

≤ P
(∥∥∥∥

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)∥∥∥∥
2
> δ

)

≤ P
(

ξ
(1)
n√
n

≥ δ√
5

)
+ P

(
ξ

(2)
n√
n

≥ δ√
5

)
+ P

(
ξ

(3)
n√
kn

≥ δ√
5

)

+ P
(

ξ
(4)
n√
n

≥ δ√
5

)
+ P

(
W

n
≥ δ√

5

)
.

Since by the weak law of large numbers all the random variables ξ
(1)
n√
n
, ξ

(2)
n√
n
, ξ

(3)
n√
kn

, ξ
(4)
n√
n

and W
n con-

verge to 0 in probability, we have that these probabilities converges to 0, as n → ∞. Therefore,
for any ε > 0, we have that

P
((√

λnξ
(1)
n

ξ
(1)
n√
n

+
√

λnξ
(2)
n

ξ
(2)
n√
n

+ ξ (3)
n

ξ
(3)
n√
kn

+
√

λnξ
(4)
n

ξ
(4)
n√
n

+
√

λn
W 2

n3/2

)

×
|,p( ξ

(1)
n√
n
, ξ

(2)
n√
n
, ξ

(3)
n√
kn

, ξ
(4)
n√
n
, W

n )|

∥( ξ
(1)
n√
n
, ξ

(2)
n√
n
, ξ

(3)
n√
kn

, ξ
(4)
n√
n
, W

n )∥2
2

> ε

)

≤ P
(√

λnξ
(1)
n

ξ
(1)
n√
n

+
√

λnξ
(2)
n

ξ
(2)
n√
n

+ ξ (3)
n

ξ
(3)
n√
kn

+
√

λnξ
(4)
n

ξ
(4)
n√
n

+
√

λn
W 2

n3/2 >
ε

M

)

+ P
( |,p( ξ

(1)
n√
n
, ξ

(2)
n√
n
, ξ

(3)
n√
kn

, ξ
(4)
n√
n
, W

n )|

∥( ξ
(1)
n√
n
, ξ

(2)
n√
n
, ξ

(3)
n√
kn

, ξ
(4)
n√
n
, W

n )∥2
2

> M

)
.

Again, recall that by the weak law of large numbers, as n → ∞, the random variables ξ
(1)
n√
n

, ξ
(2)
n√
n

,

ξ
(3)
n√
kn

, ξ
(4)
n√
n

converge in probability to 0 and observe that also W 2

n3/2 converges in probability to 0.
Therefore, since by the classical central limit theorem for sums of independent random variables
(see [13], Proposition 5.9), ξ

(1)
n , ξ

(2)
n , ξ

(3)
n , and ξ

(4)
n converge in distribution to (non-independent)

Gaussian random variables, as n → ∞, by Slutsky’s theorem (Lemma 2.3) the random variable

√
λnξ

(1)
n

ξ
(1)
n√
n

+
√

λnξ
(2)
n

ξ
(2)
n√
n

+ ξ (3)
n

ξ
(3)
n√
kn

+
√

λnξ
(4)
n

ξ
(4)
n√
n

+
√

λn
W 2

n3/2
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converges to 0 in probability, as n → ∞. Consequently, the random variables Y
(3)
n also converges

to 0 in probability, as n → ∞.
The proof of Theorem 1.1 is now a direct consequence of Steps 1 to 3. !

Remark 3.2. Let us notice that for small values of kn the result of our Theorem 1.1 can be
deduced from Klartag’s central limit theorem in Proposition 2.9. Indeed, notice that if kn ≤ nκ

for some κ < 1/7 the Gaussian random variable N in Theorem 1.1 has variance equal to 1/2.
According to Proposition 2.9 for every kn there exists En ⊂ Gn,kn with νn,kn(En) ≥ 1 − e−c1n

c2

such that

sup
E∈En

sup
A⊆E

∣∣P(PEUn ∈ A) − P(NE ∈ A)
∣∣ ≤ c3n

−ζ , (8)

where Un is uniformly distributed in the normalized ℓn
p-ball defined in (3). Letting AE

t,p,n be the
ball in E centred at the origin with radius

(t +
√

kn)n
−1/p

√
Mp(2)L−1

Bn
p

∣∣Bn
p

∣∣−1/n = (t +
√

kn)

(
p

n

)1/p

√√√√%(1 + n+2
p )

%(1 + n
p )

,

we conclude from (8), taking into account that the probability P(NE ∈ AE
t,p,n) only depends on

the dimension of E, that, for each t ∈ R,
∣∣P(Xn,p ≤ t) − P(N ≤ t)

∣∣

≤
∫

En

∣∣P
(
PEUn ∈ AE

t,p,n

)
− P

(
NE ∈ AE

t,p,n

)∣∣νn,kn(dE)

+
∣∣P

(
NRkn ∈ ARkn

t,p,n

)
− P(N ≤ t)

∣∣ + 2e−c1n
c2

≤ c4n
−ζ +

∣∣P
(
NRkn ∈ ARkn

t,p,n

)
− P(N ≤ t)

∣∣ (9)

for some absolute constant c4 ∈ (0,∞).
Notice now that

P
(
NRkn ∈ ARkn

t,p,n

)
= P

(
kn∑

i=1

g2
i − 1√

2kn

≤ (t + √
kn)

2
√

2kn

(
p

n

)2/p %(1 + n+2
p )

%(1 + n
p )

−
√

kn

2

)

,

where g1, . . . , gkn are independent standard Gaussian random variables. This yields that the sec-
ond term in (9) is bounded above by

∣∣∣∣∣P
(

kn∑

i=1

g2
i − 1√

2kn

≤ (t + √
kn)

2
√

2kn

(
p

n

)2/p %(1 + n+2
p )

%(1 + n
p )

−
√

kn

2

)

− P
(

kn∑

i=1

g2
i − 1√

2kn

≤
√

2t

)∣∣∣∣∣

+
∣∣∣∣∣P

(
kn∑

i=1

g2
i − 1√

2kn

≤
√

2t

)

− P(N ≤ t)

∣∣∣∣∣. (10)
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By the classical central limit theorem for sums of independent random variables, if kn tends to ∞
the random variable Sn := ∑kn

i=1
g2
i −1√
2kn

converges in distribution to a standard Gaussian random

variable and, since N is a Gaussian random variable with variance 1
2 , the second term in (10)

tends to 0, as n → ∞.

By the mean value theorem, calling cn := (p
n )2/p %(1+ n+2

p )

%(1+ n
p )

, the first term in (10) is bounded by

∣∣∣∣
t2cn√

2kn

+
√

2t (cn − 1) +
√

kn

2
(cn − 1)

∣∣∣∣ sup
x∈R

fn(x),

where fn is the density of the random variable Sn. By Stirling’s formula cn = 1 + O( 1
n ). More-

over, the density version of the central limit theorem (see [4], Theorem 3.1) implies that the
supremum is bounded. Therefore, the latter quantity tends to 0, as n → ∞.

Summarizing, we conclude that for kn with kn → ∞ and kn ≤ nκ our Theorem 1.1 (and The-
orem 1.3 (a)) is a consequence of the central limit theorems in [15,17].

Remark 3.3. In the case that kn → k ∈ N, as n → ∞, we cannot use the Taylor approximation
argument exploited in the previous proof, as the argument in the o-term in (7) does not tend to
zero. However, it follows from (4) that in this set-up

n1/p

√
Mp(2)

∥PEnXn∥2
d=

(1 + ξ
(1)
n√

nMp(2)
)1/2

(1 + ξ
(2)
n√
n

+ W
n )1/p(1 + ξ

(4)
n√
n
)1/2

√√√√
kn∑

i=1

|gi |2.

By the weak law of large numbers the random variables ξ
(1)
n√
n

, ξ
(2)
n√
n

, and also ξ
(4)
n√
n

and W
n converges

to 0 in probability. Thus, using Lemma 2.3, and the fact that convergence in distribution to a
constant implies convergence in probability, we obtain that

(1 + ξ
(1)
n√

nMp(2)
)1/2

(1 + ξ
(2)
n√
n

+ W
n )1/p(1 + ξ

(4)
n√
n
)1/2

P−→ 1.

By Levy’s continuity theorem,

kn∑

i=1

|gi |2 d−→ χ2
k ,

where χ2
k is a χ2-random variable with k degrees of freedom. Thus,

√√√√
kn∑

i=1

|gi |2 d−→
√

χ2
k .
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Using again Lemma 2.3, we obtain that

Xn,p = n1/p

√
Mp(2)

∥PEnXn∥2 −
√

kn
d−→

√
χ2

k −
√

k,

as n → ∞. We remark that in the special case that W is the exponential distribution with mean 1
this can also be concluded from Klartag’s central limit theorem from [14,15]. Note that this also
holds in the case p = ∞ if 1/p is interpreted as 0.

3.2. Part B – The case p = ∞

We will now present the proof of part (a) of Theorem 1.3.

Proof of Theorem 1.3(a). The proof for p = ∞ is similar to that for p < ∞, but some technical
details are different. For the sake of completeness, we present it below.

For each n ∈ N let us define the random variables

ξ (1)
n :=

∑n
i=1(|Zi |2 − M∞(2))√

n
, ξ (2)

n :=
∑kn

i=1(|gi |2 − M2(2))√
kn

=
∑kn

i=1(|gi |2 − 1)√
kn

and

ξ (3)
n :=

∑n
i=1(|gi |2 − M2(2))√

n
=

∑n
i=1(|gi |2 − 1)√

n
.

By Proposition 2.8, we have

∥PEnXn∥2√
knM∞(2)

d=
(1 + ξ

(1)
n√

nM∞(2)
)1/2(1 + ξ

(2)
n√
kn

)1/2

(1 + ξ
(3)
n√
n
)1/2

d= F

(
ξ

(1)
n√
n

,
ξ

(2)
n√
kn

,
ξ

(3)
n√
n

)
,

where

F(x1, x2, x3) :=
(1 + x1

M∞(2) )
1/2(1 + x2)

1/2

(1 + x3)1/2 .

Using Taylor expansion at the origin, we obtain that for x = (x1, x2, x3),

F(x) = 1 + x1

2M∞(2)
+ x2

2
− x3

2
+ O

(
∥x∥2

2
)
.

Again, the Landau symbol stands for a function ,∞ : R3 → R for which there are two constants
M, δ > 0 such that |,∞(x)| ≤ M∥x∥2

2 for any ∥x∥2 < δ. As a consequence, we obtain

Xn,∞
d=

√
λnξ

(1)
n

2M∞(2)
+ ξ

(2)
n

2
−

√
λnξ

(3)
n

2
+

√
kn,∞

(
ξ

(1)
n√
n

,
ξ

(2)
n√
kn

,
ξ

(3)
n√
n

)
.
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Next, we call, for i = 1, . . . , n,

Zi := |Zi |2 − M∞(2) and Gi := |gi |2 − 1

and, for each n ∈ N,

Y (1)
n :=

√
λn

2
√

nM∞(2)

n∑

i=1

Zi + 1 − λn

2
√

kn

kn∑

i=1

Gi −
√

λn

2
√

n

n∑

i=kn+1

Gi .

These three sums are mutually independent and each one of them is a sum of independent iden-
tically distributed random variables. Moreover, we observe that

Y (1)
n =

√
λnξ

(1)
n

2M∞(2)
+ ξ

(2)
n

2
−

√
λnξ

(3)
n

2
.

Therefore, for any t ∈ R, the characteristic function of Y
(1)
n is

ϕ
Y

(1)
n

(t) = ϕn
Z1

(
t
√

λn

2
√

nM∞(2)

)
ϕ

λnn
G1

(
t (1 − λn)

2
√

λn
√

n

)
ϕ

(1−λn)n
G1

(−t
√

λn

2
√

n

)
.

Since

ϕZ1

(
t
√

λn

2M∞(2)
√

n

)
= 1 − Var |Z1|2

4M2∞(2)

t2λn

2n
+ o

(
t2λn

4nM∞(2)2

)
,

ϕG1

(
t (1 − λn)

2
√

λn
√

n

)
= 1 − Var |g1|2(1 − λn)

2

4λn

t2

2n
+ o

(
t2(1 − λn)

2

4λnn

)

and

ϕG1

(
− t

√
λn

2
√

n

)
= 1 − Var |g1|2

4
t2λn

2n
+ o

(
t2λn

4n

)

we have that if λnn = kn → ∞, as n → ∞, for every t ∈ R,

lim
n→∞ϕ

Y
(1)
n

(t) = e− t2
2 η2

,

with the exponent η2 given by

η2 := λVar |Z1|2
4M2∞(2)

+ (1 − λ)Var |g1|2
4

.

Therefore, as n → ∞, the random variable Y
(1)
n converges in distribution to a centered Gaussian

random variable with variance

η2 = λVar |Z1|2
4M2∞(2)

+ (1 − λ)Var |g1|2
4

= 1
2

− 3λ

10
= σ 2(∞,λ).
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By Slutsky’s theorem (see Lemma 2.3) all that is left to prove is that

Y (3)
n :=

√
kn,∞

(
ξ

(1)
n√
n

,
ξ

(2)
n√
kn

,
ξ

(3)
n√
n

)

converges to 0 in probability. To this end, we observe that

Y (3)
n =

√
kn

(
(ξ

(1)
n )2

n
+ (ξ

(2)
n )2

kn
+ (ξ

(3)
n )2

n

),∞( ξ
(1)
n√
n
, ξ

(2)
n√
kn

, ξ
(3)
n√
n
)

∥( ξ
(1)
n√
n
, ξ

(2)
n√
kn

, ξ
(3)
n√
n
)∥2

2

=
(√

λnξ
(1)
n

ξ
(1)
n√
n

+ ξ (2)
n

ξ
(2)
n√
kn

+
√

λnξ
(3)
n

ξ
(3)
n√
n

),∞( ξ
(1)
n√
n
, ξ

(2)
n√
kn

, ξ
(3)
n√
n
)

∥( ξ
(1)
n√
n
, ξ

(2)
n√
kn

, ξ
(3)
n√
n
)∥2

2

.

Using the same argument as in the case where p < ∞, we obtain that this random variable
converges to 0 in probability, as n → ∞. This finishes the proof of part (a) of Theorem 1.3. !

4. Proof of the Berry–Esseen bounds

In this section, we will present the proof of the Berry–Esseen bounds in Theorem 1.2 if p < ∞
and Theorem 1.3 if p = ∞. Recall that we need that the subspace dimensions grow fast enough
with n. More precisely, we require that kn

n2/3 → ∞, as n → ∞, and refer to Remark 4.7 for a
related discussion.

Postponing the proof for p = ∞ to Section 4.4, we fix 1 ≤ p < ∞ and recall the definitions of
the random variables Y

(1)
n , Y

(2)
n , and Y

(3)
n that were introduced in Section 3:

Y (1)
n =

√
λnξ

(1)
n

2Mp(2)
−

√
λnξ

(2)
n

p
+ ξ

(3)
n

2
−

√
λnξ

(4)
n

2
,

Y (2)
n = −

√
λn

p
√

n
W,

Y (3)
n =

√
kn,p

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)
.

The starting point for our proof is the following lemma which we will apply later with an ε

depending on the dimension parameter n and to Y
(1)
n , Y

(2)
n and Y

(3)
n .
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Lemma 4.1. Let Y1, Y2, Y3 be three random variables, let G be a centered Gaussian random
variable with variance σ 2 > 0 and let ε > 0. Then

sup
t∈R

∣∣P(Y1 + Y2 + Y3 ≥ t) − P(G ≥ t)
∣∣

≤ sup
x∈R

∣∣P(Y1 ≥ x) − P(G ≥ x)
∣∣ + P

(
|Y2| >

ε

2

)
+ P

(
|Y3| >

ε

2

)
+ ε√

2πσ 2
.

Proof. For any t ∈ R we have that

P(Y1 + Y2 + Y3 ≥ t) = P
(
Y1 + Y2 + Y3 ≥ t, |Y2 + Y3| ≤ ε

)

+ P
(
Y1 + Y2 + Y3 ≥ t, |Y2 + Y3| > ε

)
.

Therefore, using the mean value theorem,

P(Y1 + Y2 + Y3 ≥ t) − P(G ≥ t)

= P
(
Y1 + Y2 + Y3 ≥ t, |Y2 + Y3| ≤ ε

)
− P(G ≥ t)

+ P
(
Y1 + Y2 + Y3 ≥ t, |Y2 + Y3| > ε

)

≤ P(Y1 ≥ t − ε) − P(G ≥ t) + P
(
|Y2 + Y3| > ε

)

= P(Y1 ≥ t − ε) − P(G ≥ t − ε)

+ P(G ≥ t − ε) − P(G ≥ t) + P
(
|Y2 + Y3| > ε

)

≤
∣∣P(Y1 ≥ t − ε) − P(G ≥ t − ε)

∣∣

+
∣∣P(G ≥ t − ε) − P(G ≥ t)

∣∣ + P
(
|Y2 + Y3| > ε

)

≤
∣∣P(Y1 ≥ t − ε) − P(G ≥ t − ε)

∣∣

+ ε√
2πσ 2

+ P
(

|Y2| >
ε

2

)
+ P

(
|Y3| >

ε

2

)
.

In the same way,

P(Y1 + Y2 + Y3 ≥ t) − P(G ≥ t)

= P(G < t) − P(Y1 + Y2 + Y3 < t)

= P(G < t) − P
(
Y1 + Y2 + Y3 < t, |Y2 + Y3| ≤ ε

)

− P
(
Y1 + Y2 + Y3 < t, |Y2 + Y3| > ε

)

≥ P(G < t) − P(Y1 < t + ε) − P
(
|Y2 + Y3| > ε

)

= P(G < t) − P(G < t + ε)

+ P(G < t + ε) − P(Y1 < t + ε) − P
(
|Y2 + Y3| > ε

)
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≥ −
∣∣P(G < t + ε) − P(G < t)

∣∣

−
∣∣P(G < t + ε) − P(Y1 < t + ε)

∣∣ − P
(
|Y2 + Y3| > ε

)

≥ − ε√
2πσ 2

−
∣∣P(G ≥ t + ε) − P(Y1 ≥ t + ε)

∣∣ − P
(

|Y2| >
ε

2

)
− P

(
|Y3| >

ε

2

)
.

Putting together both inequalities and taking the supremum over all t ∈ R completes the
proof. !

Our goal is to apply Lemma 4.1 to the random variables Y
(1)
n , Y

(2)
n , and Y

(3)
n and to estimate

each one of the three terms separately. The terms that involve Y
(1)
n and Y

(3)
n will be handled in

the next two subsections. The proof of Theorem 1.2 will then be completed in Section 4.3.

4.1. Part A – Estimate for Y (1)
n

In order to bound the first term, we will use the following three lemmas. The first one is elemen-
tary and we refrain from giving a proof.

Lemma 4.2. (a) Let w,z ∈ C be such that |w| ≤ |z| and n ∈ N. Then

∣∣wn − zn
∣∣ ≤ n|w − z||z|n−1.

(b) Let y ∈ R. Then
∣∣∣∣e

iy − 1 − iy + y2

2

∣∣∣∣ ≤ |y|3
6

.

Lemma 4.3. Let X be a centered random variable with characteristic function ϕX and finite
third moment. Then, for t ∈ R,

∣∣∣∣ϕX(t) − 1 + t2

2
VarX

∣∣∣∣ ≤ E|X|3|t |3
6

.

Moreover, if |t | ≤ min{
√

2√
VarX

, 4 VarX
3E|X|3 },

∣∣ϕX(t)
∣∣ ≤ 1 − 5 VarX

18
t2 ≤ e− 5 VarX

18 t2
.

Proof. Applying Lemma 4.2(b) with y = tX, we obtain

∣∣∣∣e
itX − 1 − itX + t2X2

2

∣∣∣∣ ≤ |t |3|X|3
6

.
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Taking expectations and using the triangle inequality together with the fact that X is centered,
we see that

∣∣∣∣ϕX(t) − 1 + t2

2
VarX

∣∣∣∣ ≤ E
∣∣∣∣e

itX − 1 − itX + t2X2

2

∣∣∣∣ ≤ E|X|3|t |3
6

.

Consequently, by the triangle inequality

∣∣ϕX(t)
∣∣ −

∣∣∣∣1 − t2

2
VarX

∣∣∣∣ ≤ E|X|3|t |3
6

,

which, if |t | ≤
√

2√
VarX

, gives

∣∣ϕX(t)
∣∣ ≤ 1 − t2

2
VarX + E|X|3|t |3

6
.

If, in addition, |t | ≤ 4 VarX
3E|X|3 , then we obtain

∣∣ϕX(t)
∣∣ ≤ 1 − t2

2
VarX + 4t2

18
VarX = 1 − 5t2

18
VarX ≤ e− 5t2

18 VarX.

This gives the desired bound. !

We will also need the following fact from complex analysis, see Theorem 3.1.1, Theorem 3.1.8
and Equation (3.1.7) in [21].

Lemma 4.4. Let f be a holomorphic function in an open disc D(z, δ) of radius δ > 0 around
z ∈ C. Then f is analytic at z and, for any w ∈ D(z, δ) and n0 ∈ N,

f (w) =
n0∑

n=0

an(w − z)n + Rn0(w),

where, for any 0 < δ′ < δ and n = 0, . . . , n0,

an = 1
2π i

∮

C(z,δ′)

f (ζ )

(ζ − z)n+1 dζ and
∣∣RN(w)

∣∣ ≤ |w|N+1

1 − |w| sup
ζ∈D(z,δ′)

∣∣f (ζ )
∣∣

with C(z, δ′) being the boundary of the disc D(z, δ′).

In the following lemma, we estimate the first term Y
(1)
n .

Lemma 4.5. Let Y
(1)
n be the random variable defined before and N be a centered Gaussian

random variable with variance σ 2(p,λ), where σ 2(p,λ) is the constant defined in Theorem 1.1.
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Then, there exists a constant C(p) ∈ (0,∞) depending only on p such that

sup
t∈R

∣∣F
Y

(1)
n

(t) − *(t)
∣∣ ≤ C(p)max

{
1

λn

√
kn

, |λn − λ|
}
,

where * is the distribution function of N .

Proof. Recall the definitions of the random variables Zi and Gi from (6), let us introduce the
shorthand notation

σ 2
1 := VarZ1 = Mp(4)

4M2
p(2)

+ Mp(2p)

p2M2
p(p)

− Mp(p + 2)

p2Mp(2)Mp(p)
− 1

4
,

ρ1 := E|Z1|3,
σ 2

2 = σ 2
3 := Var(G1) = M2(4) − 1 = 2,

ρ2 = ρ3 := E|G1|3

and note that

σ 2 = λσ 2
1 + 1 − λ

4
σ 2

2 = λσ 2
1 + (1 − λ)Var |g1|2

4
= λσ 2

1 + (1 − λ)

2
. (11)

Notice also that all these numbers are well-defined and do not depend on the parameter n. Let
1 := min{11,12,13,14,15}, where

11 :=
√

n

λn
min

{√
2

σ1
,

4σ 2
1

3ρ1

}
, 12 := 2

√
λnn

1 − λn
min

{√
2

σ2
,

4σ 2
2

3ρ2

}
,

13 := 2
√

n

λn
min

{√
2

σ3
,

4σ 2
3

3ρ3

}
, 14 :=

√
kn

4(1 − λn)
and 15 :=

√
n

4
√

λn

.

Observe that

1 ≥ c0(p)
√

kn, (12)

where c0(p) ∈ (0,∞) is a constant only depending on p or, more precisely, on σ1 and ρ1.
From the very definition of 1, for any t such that |t | ≤ min{11,12,13} we have, by

Lemma 4.3, that
∣∣∣∣ϕZ1

(
t
√

λn√
n

)∣∣∣∣ ≤ e− 5σ2
1 λnt2

18n

as well as
∣∣∣∣ϕ

λn

G1

(
t (1 − λn)

2
√

λnn

)∣∣∣∣ ≤ e− 5σ2
2 (1−λn)2 t2

72n = e− 5(1−λn)2 t2
36n
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and
∣∣∣∣ϕ

1−λn

G1

(
− t

√
λn

2
√

n

)∣∣∣∣ ≤ e− 5σ2
3 (1−λn)λnt2

72n = e− 5(1−λn)λnt2
36n .

Therefore, the product is bounded above by

∣∣∣∣ϕZ1

(
t
√

λn√
n

)
ϕ

λn

G1

(
t (1 − λn)

2
√

λnn

)
ϕ

1−λn

G1

(
− t

√
λn

2
√

n

)∣∣∣∣ ≤ e− 10σ2
1 λn+5(1−λn)

18
t2
2n .

Let us call cp := min{ 10σ 2
1

18 , 5
18 ,σ 2}. Notice that this value only depends on p and not on n.

Therefore,

max
{
e− 10σ2

1 λn+5(1−λn)

18
t2
2n , e− σ2 t2

2n
}

≤ e− cpt2

2n

and, by Lemma 4.2, we have that

∣∣ϕ
Y

(1)
n

(t) − e− σ2 t2
2

∣∣ ≤ ne− cpt2(n−1)

2n

×
∣∣∣∣ϕZ1

(
t
√

λn√
n

)
ϕ

λn

G1

(
t (1 − λn)

2
√

λnn

)
ϕ

1−λn

G1

(
− t

√
λn

2
√

n

)
− e− σ2 t2

2n

∣∣∣∣.

Using the triangle inequality we see that the last term is bounded by

∣∣∣∣ϕZ1

(
t
√

λn√
n

)
ϕ

λn

G1

(
t (1 − λn)

2
√

λnn

)
ϕ

1−λn

G1

(
− t

√
λn

2
√

n

)
− 1 + σ 2t2

2n

∣∣∣∣

+
∣∣∣∣1 − σ 2t2

2n
− e− σ2 t2

2n

∣∣∣∣. (13)

Applying the classical Lagrange remainder for the Taylor expansion of e−x and taking into ac-
count that σ 2t2

2n ≥ 0 we see that

∣∣∣∣1 − σ 2t2

2n
− e− σ2 t2

2n

∣∣∣∣ ≤ σ 4t4

8n2 .

In order to bound the first summand in (13), notice that, by (2), for every t ∈ R,

ϕG1(t) = e−it

(1 − 2it)1/2 .

Therefore, for any t ∈ R,

ϕ
λn

G1
(t) = e−λnit

(1 − 2it)λn/2 and ϕ
1−λn

G1
(t) = e−(1−λn)it

(1 − 2it)(1−λn)/2 .
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For z ∈ C, let us call

f (z) := e− λnz
2

(1 − z)λn/2 and g(z) := e− (1−λn)z
2

(1 − z)(1−λn)/2 ,

and observe that

ϕ
λn

G1
(t) = f (2it) and ϕ

1−λn

G1
(t) = g(2it).

By Lemma 4.4, we obtain

f (z) = 1 + λn

4
z2 + Rf (z) and g(z) = 1 + 1 − λn

4
z2 + Rg(z)

where Rf ,Rg are remainder terms satisfying

∣∣Rf (z)
∣∣ ≤ Cλn

|z|3
1 − |z| and

∣∣Rg(z)
∣∣ ≤ C1−λn

|z|3
1 − |z|

for every z ∈ C such that |z| ≤ 1
4 , where C := max|w|= 1

2
| e

− w
2

(1−w)1/2 |. Then,

ϕ
λn

G1

(
t (1 − λn)

2
√

λnn

)
= 1 − t2(1 − λn)

2

4n
+ Rf

(
t (1 − λn)i√

λnn

)
,

ϕ
1−λn

G1

(
− t

√
λn

2
√

n

)
= 1 − t2λn(1 − λn)

4n
+ Rg

(−t
√

λni√
n

)
,

ϕZ1

(
t
√

λn√
n

)
= 1 − σ 2

1 λnt
2

2n
+ R

(
t
√

λn√
n

)
,

where, by Lemma 4.3, |R(t)| ≤ ρ1|t |3
6 . Besides, for the particular choices of z above, Lemma 4.4

yields that, for every t ∈ R with |t | ≤ min{14,15},
∣∣∣∣Rf

(
t (1 − λn)i√

λnn

)∣∣∣∣ ≤ Cλn
|t |3(1 − λn)

3

k
3/2
n (1 − |t | 1−λn√

kn
)

≤ C1|t |3

k
3/2
n

and
∣∣∣∣Rg

(−t
√

λni√
n

)∣∣∣∣ ≤ C1−λn
|t |3λ3

n

n3/2(1 − |t |
√

λn√
n

)
≤ C1|t |3

n3/2 ,
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with C1 = max{C,1} and where we used that λn,1 − λn ∈ [0,1] for any n ∈ N. Taking into
account (11) we obtain

ϕZ1

(
t
√

λn√
n

)
ϕ

λn

G1

(
t (1 − λn)

2
√

λnn

)
ϕ

1−λn

G1

(
− t

√
λn

2
√

n

)
− 1 + σ 2t2

2n

= t2

4n
(λn − λ)

(
1 − 2σ 2

1
)
+ Rf

(
t (1 − λn)i√

λnn

)
+ Rg

(−t
√

λni√
n

)

+ R

(
t
√

λn√
n

)
+ 9p(t, n), (14)

where 9p(t, n) is the sum the 20 remaining terms that arise from the multiplication. Using the
triangle inequality and the previous estimates for Rf , Rg and R, the absolute value of the above
difference (14) is bounded above by

t2

4n
|λn − λ|

(
1 + 2σ 2

1
)
+ 2C1|t |3

k
3/2
n

+ ρ1|t |3
6n3/2 +

∣∣9p(t, n)
∣∣,

where again we used that λn ∈ [0,1] and that kn ≤ n for any n ∈ N.
Let * be the distribution function of a centered Gaussian random variable with variance

σ 2(p,λ). Then, by the smoothing inequality (Lemma 2.1) we have that, for any t ∈ R,

∣∣F
Y

(1)
n

(t) − *(t)
∣∣ ≤ 1

π

∫ 1

−1

|ϕ
Y

(1)
n

(t) − e− σ2 t2
2 |

|t | dt + 24

π
√

2πσ 21
.

Notice that, by the previous estimates, the integrand is bounded by

e−cp
t2(n−1)

2n

(
σ 4|t |3

8n
+ |t |

4
|λn − λ|

(
1 + 2σ 2

1
)
+ 2C1t

2

λn

√
kn

+ ρ1t
2

6
√

n
+ n

|t |
∣∣9p(t, n)

∣∣
)

.

Therefore, bounding the integral from above by the integral over all of R, we obtain the following
bound for the integral:

Cp

(
1
n

+ |λn − λ| + 1
λn

√
kn

+ 1√
n

+
∫ 1

−1

n

|t |e
−cp

t2(n−1)
2n

∣∣9p(t, n)
∣∣dt

)

≤ C̃p

(
|λn − λ| + 1

λn

√
kn

+
∫ 1

−1

n

|t |e
−cp

t2(n−1)
2n

∣∣9p(t, n)
∣∣dt

)
,

where Cp, C̃p ∈ (0,∞) are constants only depending on p. The last integral is handled in the
same way using triangle inequality on |9p(t, n)| and gives terms of smaller order.

Observing that 1 ≥ c0(p)
√

kn by (12), we obtain the desired upper bound for the expression
|F

Y
(1)
n

(t) − *(t)|. !
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4.2. Part B – Estimate for Y (3)
n

In the following lemma, we estimate the third term involving Y
(3)
n . We will use the following

well-known estimate. Namely, if N is a standard Gaussian random variable we have that, for any
t > 0,

P(N ≥ t) ≤ 1√
2π t

e− t2
2 . (15)

Lemma 4.6. Let Y
(3)
n be defined as before. There are absolute constants α1,α2,C ∈ (0,∞) such

that if α1 log kn√
kn

≤ εn ≤ α2
√

kn, then

P
(∣∣Y (3)

n

∣∣ ≥ εn

)
≤ C√

kn logkn
+ Cp3−6/p

√
kn

+ 2P
(

|W | >
√

n log kn

λn

)
.

Proof. We consider the function

F : R5 → R, x (→
(1 + x1

Mp(2) )
1/2

(1 + x2 + x5)1/p

(1 + x3)
1/2

(1 + x4)1/2

and denote by ,p the Lagrange remainder of the first-order Taylor expansion of F at zero. That
is,

,p(x) = 1
2

5∑

i1,i2=1

∂2F

∂xi∂xj
(y)xi1xi2

for x = (x1, x2, x3, x4, x5) and where y ∈ R5 is such that ∥y∥2 ≤ ∥x∥2.
Next, we notice that for all p ≥ 1, Mp(2) ≥ 1/3 =: c1. Besides, notice that since all the second

partial derivatives are continuous on a Euclidean ball of radius c1 centered at the origin, there
exists a positive absolute constant C1 > 0 such that if ∥x∥2 ≤ c1

2 , then, for every 1 ≤ i1, i2 ≤ 5,

we have that | ∂2F
∂xi∂xj

(y)| ≤ C1 and consequently

∣∣,p(x)
∣∣ ≤ C1

5∑

i1,i2=1

|xi1 ||xi2 |

= C1

( 5∑

i=1

|xi |
)2

= C1∥x∥2
1.

Let us recall the definition of the random variable Y
(3)
n :

Y (3)
n =

√
kn,p

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)
.
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Therefore, by the previous remarks,

P
(∣∣Y (3)

n

∣∣ ≥ εn

)
= P

(√
kn

∣∣∣∣,p

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)∣∣∣∣ ≥ εn

)

= P
(∥∥∥∥

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)∥∥∥∥
2

1

∣∣∣∣,p

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)∣∣∣∣

≥ εn√
knC1

C1

∥∥∥∥

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)∥∥∥∥
2

1

)

≤ P
(∥∥∥∥

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)∥∥∥∥
2

1
≥ εn√

knC1

)

+ P
(∣∣∣∣,p

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)∣∣∣∣

≥ C1

∥∥∥∥

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)∥∥∥∥
2

1

)

≤ P
( |ξ (1)

n |√
n

+ |ξ (2)
n |√
n

+ |ξ (3)
n |√
kn

+ |ξ (4)
n |√
n

+ |W |
n

≥
√

εn

k
1/4
n

√
C1

)

+ P
(∥∥∥∥

(
ξ

(1)
n√
n

,
ξ

(2)
n√
n

,
ξ

(3)
n√
kn

,
ξ

(4)
n√
n

,
W

n

)∥∥∥∥
2
>

c1

2

)

≤ P
(∣∣ξ (1)

n

∣∣ >
c1

√
n√

20

)
+ P

(∣∣ξ (2)
n

∣∣ >
c1

√
n√

20

)
+ P

(∣∣ξ (3)
n

∣∣ >
c1

√
kn√

20

)

+ P
(∣∣ξ (4)

n

∣∣ >
c1

√
n√

20

)
+ P

(
|W | > c1n√

20

)

+ P
(∣∣ξ (1)

n

∣∣ >

√
εnn

5
√

C1k
1/4
n

)
+ P

(∣∣ξ (2)
n

∣∣ >

√
εnn

5
√

C1k
1/4
n

)

+ P
(∣∣ξ (3)

n

∣∣ >

√
εnk

1/4
n

5
√

C1

)

+ P
(∣∣ξ (4)

n

∣∣ >

√
εnn

5
√

C1k
1/4
n

)
+ P

(
|W | >

√
εnn

5
√

C1k
1/4
n

)
.

Besides, using the definition of Mp(q), we obtain that

Var |Z1|2 = 2p4/p

p2 , Var |Z1|p = p and Var |g1|2 = 2.
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Thus, by the classical Berry–Esseen bound (Lemma 2.4), if N ∼ N (0,1) is a standard Gaussian
random variable, we obtain from the Gaussian tail estimate (15) that

P
(∣∣ξ (1)

n

∣∣ >
c1

√
n√

20

)
≤ P

(
|N | > c1

√
n

√
20 Var |Z1|2

)
+ 2E||Z1|2 − Mp(2)|3

(Var |Z1|2)3/2√n

≤
√

2
√

20p2/pe
− p2c2

1n

80p4/p

pc1
√

2πn
+ 2E||Z1|2 − Mp(2)|3

(Var |Z1|2)3/2√n
.

Similarly, we have the following bounds:

P
(∣∣ξ (2)

n

∣∣ >
c1

√
n√

20

)
≤

√
p
√

20e
− c2

1n

40p

c1
√

2πn
+ 2E||Z1|p − 1|3

(Var |Zp|p)3/2√n
,

P
(∣∣ξ (3)

n

∣∣ >
c1

√
kn√

20

)
≤

√
2
√

20e− c2
1kn

80

c1
√

2πkn

+ 2E||g1|2 − 1|3
23/2

√
kn

,

P
(∣∣ξ (4)

n

∣∣ >
c1

√
n√

20

)
≤

√
2
√

20e− c2
1n

80

c1
√

2πn
+ 2E||g1|2 − 1|3

23/2√n

as well as

P
(∣∣ξ (1)

n

∣∣ >

√
εnn

5
√

C1k
1/4
n

)
≤ 5

√
2p2/p

√
C1k

1/4
n e

− p2εnn

100p4/pC1
√

kn

p
√

2πεnn

+ 2E||Z1|2 − Mp(2)|3
(Var |Z1|2)3/2√n

,

P
(∣∣ξ (2)

n

∣∣ >

√
εnn

5
√

C1k
1/4
n

)
≤ 5

√
p
√

C1k
1/4
n e

− εnn
50pC1

√
kn

√
2πεnn

+ 2E||Z1|p − Mp(p)|3
(Var |Z1|p)3/2√n

,

P
(∣∣ξ (3)

n

∣∣ >

√
εnk

1/4
n

5
√

C1

)
≤ 5

√
2
√

C1e
− εn

√
kn

100C1

√
2πεnk

1/4
n

+ 2E||g1|2 − 1|3
23/2

√
kn

,

P
(∣∣ξ (4)

n

∣∣ >

√
εnn

5
√

C1k
1/4
n

)
≤ 5

√
2
√

C1k
1/4
n e

− εnn
100C1

√
kn

√
2πεnn

+ 2E||g1|2 − 1|3
23/2√n

.

Using once more the definition of Mp(q), we obtain that there exists an absolute constant c3 ∈
(0,∞) such that

E
∣∣|Z1|2 − Mp(2)

∣∣3 ≤ Mp(6) + 3Mp(4)Mp(2) + 4Mp(2)3 ≤ c3,
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E
∣∣|Z1|p − 1

∣∣3 ≤ Mp(3p) + 3Mp(2p) + 4 ≤ c3p
2,

E
∣∣|g1|2 − 1

∣∣3 ≤ M2(6) + 3M2(4) + 4 ≤ c3.

Therefore, if εn ≤ 25C1c
2
1
√

kn

20 we have that there exists an absolute constant C2 ∈ (0,∞) such that

P
(∣∣Y (3)

n

∣∣ ≥ εn

)
≤ 40

√
2
√

C1e
− εn

√
kn

100C1

√
2πεnk

1/4
n

+ C2p
3−6/p

√
kn

+ 2P
(

|W | >
√

εnn

5
√

C1k
1/4
n

)
.

If we now take εn ≥ 50C1 log kn√
kn

, then we obtain that this quantity is bounded above by

40
√

2√
100πkn logkn

+ C2p
3−6/p

√
kn

+ 2P
(

|W | >
√

n logkn

λn

)
.

This completes the proof. !

4.3. Proof of the Berry–Esseen bound

We can now tie up all the loose ends developed so far and give a proof of our Berry–Esseen
bound.

Proof of Theorem 1.2. Let 1 ≤ p < ∞ be fixed and let N be a Gaussian random variable with
variance σ 2(p,λ) given by the expression in Theorem 1.1. We apply Lemma 4.1 to Y

(1)
n , Y

(2)
n

and Y
(3)
n to conclude that

∣∣P
(
Y (1)

n + Y (2)
n + Y (3)

n ≥ t
)
− P(N ≥ t)

∣∣

≤ sup
x∈R

∣∣P
(
Y (1)

n ≥ x
)
− P(N ≥ x)

∣∣

+ P
(∣∣Y (2)

n

∣∣ >
ε

2

)
+ P

(∣∣Y (3)
n

∣∣ >
ε

2

)
+ ε√

2πσ 2
. (16)

From Lemma 4.5, we have that

sup
x∈R

∣∣P
(
Y (1)

n ≥ x
)
− P(N ≥ x)

∣∣ ≤ C(p)max
{

1
λn

√
kn

, |λn − λ|
}

= C(p)max
{

n

k
3/2
n

,

∣∣∣∣
kn

n
− λ

∣∣∣∣

}
(17)

with a constant C(p) ∈ (0,∞) only depending on p. Next, we choose

ε = εn = 2α logkn√
kn
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for some absolute constant α ∈ (0,1) such that 2α ≥ α1 with α1 being the constant from
Lemma 4.6. Then, by definition of Y

(2)
n ,

P
(∣∣Y (2)

n

∣∣ >
εn

2

)
= P

(
|W | > αpn logkn√

kn

)
. (18)

Moreover, Lemma 4.6 yields

P
(∣∣Y (3)

n

∣∣ >
ε

2

)
≤ C√

kn logkn
+ Cp3−6/p

√
kn

+ 2P
(

|W | >
√

n logkn

λn

)

= C√
kn logkn

+ Cp3−6/p

√
kn

+ 2P
(

|W | >
√

n2 logkn

kn

)
(19)

with an absolute constant C ∈ (0,∞). Finally,

εn√
2πσ 2

= 2α logkn√
2πσ 2kn

≤ C̃(p)
logkn√

kn

(20)

with another constant C̃(p) ∈ (0,∞) only depending on p. Putting together (16) with the
estimates (17)–(20) and defining Cp := 4 max{C(p), C̃(p),C,Cp3−6/p} yields the desired
bound. !

Remark 4.7. It is evident from the proof that the argument in fact applies for any sequence
(kn)n∈N which satisfies kn → ∞, as n → ∞. However, the resulting bound is non-trivial if and
only if in addition kn/n2/3 → ∞. This was our motivation to include this restriction already in
the formulation of Theorem 1.2.

Remark 4.8. An inspection of the above proof shows that the constant Cp in Theorem 1.2
satisfies

lim
p→0

Cp = lim
p→∞Cp = ∞.

In particular, as p → ∞, the constants Cp explode. On the other hand, we still have a non-trivial
Berry–Esseen bound with a finite absolute constant also in the case p = ∞, see Theorem 1.3.
However, a separate proof for this case is needed.

4.4. Handling the case p = ∞

The proof for the case p = ∞ is a line-by-line adaptation of the proof for p < ∞ and for this
reason we decided to skip the details. In particular, working with uniformly distributed random
variables on [−1,1] instead of p-generalized Gaussian ones shows that the constant C∞ in The-
orem 1.3(b) is finite. In view of Remark 4.8 this also shows that the constant C∞ cannot appear
as the limit of the constants Cp above, as p → ∞.
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5. A large deviation principle

As discussed in the Introduction, a large deviation principle (LDP) for the Euclidean norms
∥PEnXn∥2 was derived in [1]. Here, (En)n∈N is a sequence of kn-dimensional random subspaces
of Rn, 1 ≤ kn ≤ n, and (Xn)n∈N is a sequence of uniformly distributed random points on Bn

p that
are independent of the subspaces En. The purpose of this section is to present an extension of
this LDP to the more general distributions Pn,p,W if p < ∞ and to complement our central limit
theorem (Theorem 1.1). For that purpose, we first recall what it means that a sequence of random
variables satisfies a large deviation principle. For further background material on large deviation
theory, we refer to [5,6] or [13].

Definition 5.1. Let (Yn)n∈N be a sequence of random variables. Further, let s : N → [0,∞] and
I : R → [0,∞] be a lower semi-continuous function with compact level sets {x ∈ R : I(x) ≤ α},
α ∈ R. We say that (Yn)n∈N satisfies a (full) large deviation principle (LDP) with speed s(n) and
(good) rate function I if

− inf
x∈A◦ I(x) ≤ lim inf

n→∞
1

s(n)
logP(Yn ∈ A)

≤ lim sup
n→∞

1
s(n)

logP(Yn ∈ A) ≤ − inf
x∈A

I(x)

for all (Lebesgue-) measurable subsets A ⊆ R, where A◦ and A stand for the interior and the
closure of A, respectively.

To present the LDP for the Euclidean norms ∥PEnXn∥2, we restrict to the case that 1 ≤ p < ∞,
since the uniform distribution on Bn

∞ has already been treated in [1]. For p ≥ 2, we introduce the
function

Jp(y) := inf
x1,x2>0

x
1/2
1 x

−1/p
2 =y

I∗
p(x1, x2), y ∈ R,

where I∗
p(x1, x2) is the Legendre–Fenchel transform of

Ip(t1, t2) := log
(∫

R
et1x

2+t2|x|pfp(x)dx

)
,

(t1, t2) ∈ R × (−∞, 1
p ), with fp being the density of a p-generalized Gaussian random variable

as in Proposition 2.6.

Theorem 5.2. Let W be a probability distribution on [0,∞). Further, let (kn)n∈N be a sequence
in N such that 1 ≤ kn ≤ n for each n ∈ N, let (Xn)n∈N be a sequence of random vectors Xn

distributed in Bn
p according to Pn,p,W and let (En)n∈N be a sequence of kn-dimensional random

subspaces En of Rn that are distributed according to νn,kn . Assume that for each n ∈ N, Xn is
independent of En. Let W be a random variable with distribution W, which is independent of
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(Xn)n∈N and (En)n∈N, and suppose that the sequence (W/n)n∈N satisfies an LDP with speed n

and rate function IW.

(a) Let p ∈ [2,∞] and assume that the limit λ := limn→∞ kn
n exists in [0,1]. Then the se-

quence (n
1
p − 1

2 ∥PEnXn∥2)n∈N satisfies an LDP with speed n and a rate function I1(y) that can
be expressed in terms of λ, IW and the function Jp .

(b) Let p ∈ [1,2) and assume that the limit λ := limn→∞ kn
n exists in (0,1]. Assume that there

is an open set O ⊂ R with 1 ∈ O such that IW(y) ≠ 0 for all y ∈ O \ {1}. Then the sequence

(n
1
p − 1

2 ∥PEnXn∥2)n∈N satisfies an LDP with speed np/2 and rate function

I2(y) :=

⎧
⎪⎨

⎪⎩

1
p

(
y2

λ
− m

) p
2

: y ≥
√

λm

+∞ : otherwise,

where m = mp := pp/2

3
%(1+ 3

p )

%(1+ 1
p )

.

Sketch of the proof of Theorem 5.2, part (a). As the proof of Theorem 1.1 in [1], the argument
is based on a repeated application of Cramér’s theorem and the contraction principle. A glance
at the probabilistic representation in Proposition 2.6 shows that the only essential difference to
the set-up in [1] is the new factor (

∑n
i=1 |Zi |p + W)1/p . What remains to observe is that the

random variables ( 1
n

∑∞
n=1 |Zi |p + W

n )1/p satisfy an LDP with speed n and some rate function
I3. In fact, this follows from Cramér’s theorem, the contraction principle, the assumption that
the random variables W/n satisfy such an LDP and since W and the random variables Zi , i ∈ N,
are independent. !

Sketch of the proof of Theorem 5.2, part (b). Again, the proof follows along the lines of the
proof of Theorem 1.2 in [1] and we only indicate what needs to be adapted. In a first step, one

shows that the sequence (

√
kn
n

∑n
i=1 Z2

i )n∈N satisfies an LDP with speed np/2 and rate func-

tion I2. The rest of the proof consists of showing that the sequences (n
1
p − 1

2 ∥PEnXn∥2)n∈N and

(

√
kn
n

∑n
i=1 Z2

i )n∈N are exponentially equivalent and thus satisfy the same LDP. This is done in
a way similar to that in [1]. In fact, our assumption that the sequence (W/n)n∈N satisfies an LDP
with speed n and a rate function IW with IW(y) ≠ 0 for all y ∈ O \ {1} guarantees that the same
arguments apply. !

Let us briefly check the assumption on W in Theorem 5.2 for the distributions (i)–(iii) in-
troduced before Theorem 1.1. If W is the exponential distribution with mean 1 or the gamma
distribution with shape parameter α > 0 and rate 1, one has that W/n satisfies an LDP with
speed n and a linear rate function IW(y) = y if y ≥ 0 and +∞ otherwise. These variables corre-
spond to the uniform distribution as well as to a beta-type probability measure on Bn

p . Finally, if
W is the Dirac measure at 0, W/n satisfies an LDP with speed n and rate function IW(y) ≡ +∞.
As a consequence, the LDP in Theorem 5.2 applies to these situations.
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