000084749 001__ 84749
000084749 005__ 20200716101545.0
000084749 0247_ $$2doi$$a10.3390/photonics6030088
000084749 0248_ $$2sideral$$a114099
000084749 037__ $$aART-2019-114099
000084749 041__ $$aeng
000084749 100__ $$aRichards, Dwight
000084749 245__ $$aOvercoming challenges in large-core SI-POF-based system-level modeling and simulation
000084749 260__ $$c2019
000084749 5060_ $$aAccess copy available to the general public$$fUnrestricted
000084749 5203_ $$aThe application areas for plastic optical fibers such as in-building or aircraft networks usually have tight power budgets and require multiple passive components. In addition, advanced modulation formats are being considered for transmission over plastic optical fibers (POFs) to increase spectral efficiency. In this scenario, there is a clear need for a flexible and dynamic system-level simulation framework for POFs that includes models of light propagation in POFs and the components that are needed to evaluate the entire system performance. Until recently, commercial simulation software either was designed specifically for single-mode glass fibers or modeled individual guided modes in multimode fibers with considerable detail, which is not adequate for large-core POFs where there are millions of propagation modes, strong mode coupling and high variability. These are some of the many challenges involved in the modeling and simulation of POF-based systems. Here, we describe how we are addressing these challenges with models based on an intensity-vs-angle representation of the multimode signal rather than one that attempts to model all the modes in the fiber. Furthermore, we present model approaches for the individual components that comprise the POF-based system and how the models have been incorporated into system-level simulations, including the commercial software packages SimulinkTM and ModeSYSTM.
000084749 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T20-17R$$9info:eu-repo/grantAgreement/ES/MICINN/RTI2018-094669-B-C33
000084749 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000084749 590__ $$a2.14$$b2019
000084749 591__ $$aOPTICS$$b48 / 97 = 0.495$$c2019$$dQ2$$eT2
000084749 592__ $$a0.646$$b2019
000084749 593__ $$aInstrumentation$$c2019$$dQ1
000084749 593__ $$aRadiology, Nuclear Medicine and Imaging$$c2019$$dQ2
000084749 593__ $$aAtomic and Molecular Physics, and Optics$$c2019$$dQ2
000084749 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000084749 700__ $$0(orcid)0000-0002-5622-9993$$aLópez, Alicia$$uUniversidad de Zaragoza
000084749 700__ $$0(orcid)0000-0003-1542-3236$$aLosada, M. Ángeles$$uUniversidad de Zaragoza
000084749 700__ $$aMena, P.V.
000084749 700__ $$aGhillino, Enrico
000084749 700__ $$0(orcid)0000-0002-4443-0614$$aMateo, Javier$$uUniversidad de Zaragoza
000084749 700__ $$aAntoniades, N.
000084749 700__ $$aJiang, Xin
000084749 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000084749 773__ $$g6, 3  (2019), 88 [23 pp.]$$tPhotonics$$x2304-6732
000084749 8564_ $$s3151161$$uhttps://zaguan.unizar.es/record/84749/files/texto_completo.pdf$$yVersión publicada
000084749 8564_ $$s107664$$uhttps://zaguan.unizar.es/record/84749/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000084749 909CO $$ooai:zaguan.unizar.es:84749$$particulos$$pdriver
000084749 951__ $$a2020-07-16-09:42:35
000084749 980__ $$aARTICLE