
Trabajo Fin de Grado

An early approach to hardwareless DJing

Autor

Pablo Mart́ınez Blasco

Directores

Georg Umlauf

Dennis Grißer

Ponente

Javier Fabra Caro

ESCUELA DE INGENIERÍA Y ARQUITECTURA
2019

HochschuleKonstanz
Fakultät Informatik
Institut für Optische Systeme

Bachelor Thesis
An early approach to Hardwareless
DJing

Eingereicht von
Pablo Martínez Blasco
Matrikelnummer 297853

pablomzblasco@gmail.com

Konstanz, 31st July 2019

Bachelor Thesis
An early approach to
Hardwareless DJing

for obtaining the academic degree

Bachelor of Science (B. Sc.)

at the

Hochschule Konstanz
Technik, Wirtschaft und Gestaltung

Fakultät Informatik
Studiengang Angewandte Informatik

Bachelor candidate: Pablo Martínez Blasco
Hindenburgstraße 5 WG 09
78467 Konstanz

1st Supervisor: Prof. Dr. Georg Umlauf
2nd Supervisor: Dennis Grißer, M.Sc.

Proposal date: 01.05.2019
Submission date: 31.07.2019

Abstract

Title: An early approach to Hardwareless DJing

Author: Pablo Martínez Blasco

Supervisor: Hochschule für Technik, Wirtschaft und Gestaltung
HTWG Konstanz, Institute for Optical Systems
Prof. Dr. Georg Umlauf
Dennis Grißer, M.Sc.

Submission date: 31.07.2019

Keywords: Computer Vision, Arduino, MIDI

This bachelor thesis provides a first step towards Hardware-less DJing, simulating a
controller by mapping it to image coordinates obtained from a camera feed. Coloured
gloves are used to perform image analysis, as it is far easier to accomplish a good
result with bright colours as opposed to skin, by using a HSV filter and morphological
operations. Subsequently, contours and regions are later recognized for the fingers. As
the real-time component of the system is important, gesture recognition is performed
electrically by the use of an Arduino UNO board, therefore skipping the need to train
a visual model to recognize certain gestures. A MIDI loopback and MIDI messages
are used to connect the application to the DJing software. The main goal is to provide
the same interactions a DJ is already used to, as to not require changing the muscle
memory they have acquired by using normal controllers.

iii

Ehrenwörtliche Erklärung

Hiermit erkläre ich Pablo Martínez Blasco, geboren am 25.07.1997 in Zaragoza, Spain,
dass ich

(1) meine Bachelorarbeit mit dem Titel

An early approach to Hardwareless DJing

bei der Hochschule für Technik, Wirtschaft und Gestaltung HTWG Kon-
stanz, Institute for Optical Systems unter Anleitung von Prof. Dr. Georg
Umlauf selbständig und ohne fremde Hilfe angefertigt und keine an-
deren als die angeführten Hilfen benutzt habe;

(2) die Übernahme wörtlicher Zitate, von Tabellen, Zeichnungen, Bildern
und Programmen aus der Literatur oder anderen Quellen (Inter-
net) sowie die Verwendung der Gedanken anderer Autoren an den
entsprechenden Stellen innerhalb der Arbeit gekennzeichnet habe.

(3) dass die eingereichten Abgabe-Exemplare in Papierform und im PDF-
Format vollständig übereinstimmen.

Ich bin mir bewusst, dass eine falsche Erklärung rechtliche Folgen haben wird.

Konstanz, 31.07.2019

(Unterschrift)

v

Statutory Declaration

I, Pablo Martínez Blasco, born on the 25.07.1997 in Zaragoza, Spain, herewith declare
that

(1) I have composed the present thesis, with the title

An early approach to Hardwareless DJing

myself and without use of any other than the cited sources and aids.
This document was written at the Hochschule für Technik, Wirtschaft
und Gestaltung HTWG Konstanz, Institute for Optical Systems under
the supervision of Prof. Dr. Georg Umlaufand Dennis Grißer, M.Sc.

(2) sentences or parts of sentences quoted literally are marked as such;
other references, tables, images and programs with regard to the state-
ment and scope are indicated by full details of the publications con-
cerned.

(3) I declare that the submitted written (bound) copies of the present the-
sis and the version submitted as pdf are consistent with each other in
contents.

I acknowledge that this declaration is true and correct, and I make it with the under-
standing and belief that a person who makes a false declaration is liable to the penalties
of perjury.

vii

viii Statutory Declaration

Konstanz, 31.07.2019

(Unterschrift)

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2

2 Basics 3
2.1 DJ Tools . 3
2.2 MIDI . 5

2.2.1 MIDI Notes . 5
2.2.2 MIDI Controllers . 5

2.3 Color Models . 6
2.3.1 RGB Color Model . 6
2.3.2 HSV Color Model . 7

2.4 Morphological operations. 8
2.4.1 Erosion . 8
2.4.2 Dilation . 8
2.4.3 Opening . 9
2.4.4 Closing . 10

3 Implementation 11
3.1 loopMIDI . 11
3.2 RtMidi . 11
3.3 Employed Gloves . 11
3.4 OpenCV. 13
3.5 Binary image using a HSV filter . 13
3.6 Morphological operations in a binary image (post-processing) 14
3.7 Contour detection . 15
3.8 Arduino . 16

3.8.1 Floating pin . 17
3.9 Data Structure . 18
3.10 MIDI functions . 20
3.11 Application execution . 21

3.11.1 Image thread . 23
3.11.2 Arduino thread. 24

ix

x Contents

3.11.3 Gesture thread . 25

4 Discussion and Outlook 27
4.1 Future work . 27

4.1.1 Data gloves . 28

References 29

1
Introduction

1.1. Motivation

Electronic music has been uprising since 2010, with more and more music festivals
appearing and becoming famous, a lot of people have picked an interest in making and
mixing such genres. Let us draw a line differentiating both, music producing uses a
DAW (Digital Audio Workstation), to synthesize sounds, and organize them in such a
way to create a musical piece. On the contrary, mixing, or DJing, as it will be addressed
in this document, focuses on the conjunction of different already created musical pieces;
this is achieved through the use of a DJ software, which is historically connected to a
hardware controller that maps the available action on the software to the buttons/sliders
of the controller through MIDI.

This project is born from this controller necessity, as they are not always available
for the people that want to start learning as a hobby. Therefore, it aims to provide a
computer vision approach to DJing by using coloured gloves, that is cheap and does
not rely in obtaining a hardware controller, thus creating a mapping of the software to
the camera view and consequently adding individual customization of element position.

The use of gloves as MIDI controllers has already have some iterations, such as
the MiMu Gloves [5], which focus on music production and are designed for a DAW
mapping; or the Tornado Gloves A1 [15], which focus on mapping certain actions from
the DJ software to gestures, which are then obviously limited.

1

2 1. Introduction

On the other hand, this project attempts to provide a new approach, the idea of a
1:1 map of real space to the DJ software, thus allowing experienced controller users to
use the same motions/actions they were previously doing in one but without the need
of such hardware device, hence simulating the controller in real space and accessing it
virtually by the use of the camera (see future work).

1.2. Objective

This project aims to provide a program that can map most features of a DJ software to
the real space seen by the camera. Whenever a hand performs a “gesture” inside of the
visual field of the camera, said gesture is to be identified and its position coordinates
obtained. There are two gestures defined, one performed by touching the thumb and
the index finger and the other performed by the index finger touching with the middle
finger, each gesture enables certain aspects of the mapping to be enabled and the cor-
rect action is determined by the position of the fingers that perform the gesture. The
position of the hands is obtained from the used of colored gloves

Since the DJing will be performed real-time, there is a high emphasis placed on the
efficiency and computational complexity of the program. The program must process
the camera feed without delay and identify a gesture as soon as it occurs. To achieve
this, the program assumes gestures as a boolean state and performs the correspond-
ing action through the whole gesture, thus giving the impression of continuous analysis
when it is just processed at a human real-time speed (100ms). This allows for a signifi-
cant reduction in the number of frames to be computed since millimetric precision is not
needed.

2
Basics

This chapter provides the necessary fundamentals for the presented approach to hardware-
less DJing. Among other things, DJ software/hardware, MIDI messages and Arduino
essentials will be discussed.

2.1. DJ Tools

While there are multiple DJing programs (Virtual DJ, Serato, etc.), this project will be us-
ing Traktor Pro 2. Each software connects to the DJ controller via MIDI channel so the
program could be virtually used with any software as long as the setup is done correctly.

For a DJ controller example we are going to use the Traktor Kontrol 2 as an example,
since it has a similar layout to the Traktor Pro software and all types of inputs are clearly
visible (Figure 2.1). In the depicted image we can observe four types of inputs: buttons,
sliders, knobs and rotary encoders. The controller is divided in two equal sides, each
one corresponding to a deck (A and B from left to right). The section in the middle is
mirrored and shares access to both decks, it is called the mixer and controls the vol-
umes of each deck as well as the global one.

3

4 2. Basics

Figure 2.1: Traktor Kontrol S2. Source: [16]

Now to compare with the utilized software (Figure 2.2). The software is divided in
two areas vertically, the top one corresponding to the controller and the bottom to the
library from where the music files are loaded. In the top section, we can observe (as
in the controller) both decks, one on each side, with the mixer in the middle. The mixer
usually maps 1:1 to the one in the controller, same with the deck jogwheel (rotary en-
coder), while the buttons map to different actions (usually samples/loops).

Figure 2.2: Traktor Pro 2

2.2. MIDI 5

2.2. MIDI

MIDI messages are composed by a sequence of bytes (8 bits). The first byte is a status
byte and the ones that follow it are data bytes. The status byte indicates the type of
MIDI message sent in its first 4 bits, and determines the number of bytes that follow
it depending on its type. The second 4 bits of the status byte indicate the channel in
which the information is sent (out of 16 available).
MIDI running status references the ability of sending multiple same type elements one
after the other while omitting the status byte, as it is assumed to be equal to the previ-
ous. This is useful when the message traffic is really high and not needed in this project.
For more information regarding MIDI messages see [8] or [9].

2.2.1. MIDI Notes

This message type subdivides into Note ON and Note OFF messages. A note stays
active in the MIDI channel until a Note OFF message is received. The structure for both
of this messages is found next.

NOTE ON: 1001 CCCC | 0PPP PPPP | 0VVV VVVV
NOTE OFF: 1000 CCCC | 0PPP PPPP | 0VVV VVVV

• CCCC is the MIDI channel

• PPP PPPP is the pitch value

• VVV VVVV is the velocity value

• | represent the byte separation

2.2.2. MIDI Controllers

MIDI controllers define a specific value (like a variable would) for a certain parameter.
There are 128 MIDI controllers defined and the message is similar to that of notes, but
they do not need to be set off as every new message updates the value. The structure
for controller messages is: 1011 CCCC | 0NNN NNNN | 0VVV VVVV. C and V repre-
sent the same values as previously, and NNN NNNN specifies the corresponding MIDI
controller number.

6 2. Basics

2.3. Color Models

2.3.1. RGB Color Model

The RGB model combines the hue of colors red, green and blue. Each base color can
have an intensity between 0 and a maximum. The maximum is the same for all three
values, and is often 1.0 (when rendered as a floating-point number) or 255 (when a byte
is used for each base color). If all three values are 0, a black color is obtained, when
all three values are maximal, white is obtained. The RGB color model is thus additive,
since colors are added starting from black until the desired color is reached.

(a) RGB cube (b) Additive color mixing

Figure 2.3: RGB model as a cube representation and additive color mixing. Source [17] [11]

The color space spanned by the RGB model can be represented as a cube (see
2.3a) with the base colors at the corners. One corner of the dice represents the origin
of a three-dimensional coordinate system in which each of the three primary colors sit
at one of the corners, defining the axes. This origin of the coordinate system is black
as it is an additive system.
Similar to the RGB is the CMYK color space, in which, starting from a white background,
the three colors: cyan, magenta and yellow (CMY) are applied to obtain the desired hue.
No color applied gives white, and black is obtained when all three colors are applied at
their maximum value. This is a subtractive color model since it starts with white and
addition gives black, and is mainly used in printers. Since all three colors are required
for black, printers often have an extra tank for black ink. This variant is called CMYK.
Since this is an opposite of RGB, the base colors for this space can be seen in each of
the opposite corners of the bases for the RGB model.

2.3. Color Models 7

2.3.2. HSV Color Model

HSV stands for Hue, Saturation and Value. It is an alternative to the RGB color model
that attempts to more closely represent how humans perceive color, perceiving the hue
apart from the brightness. If any of the individual values of a HSV tuple change, in the
RGB color model. however, all values need to be adjusted to correctly represent it.

HSV provides an advantage in image editing. If a program has to mark all pixels of
the same color to recognize an object, a slight change in illumination affects all three
values of an RGB model, while in the HSV model, a simple change to the hue or satu-
ration may suffice. The brightness (value) usually stays constant given the image and
can usually be ignored. The HSV model also allows for the use of ranges in any of its
three components, as a slight change in hue can be easily detected.

The HSV model can be represented as a cylinder (see 2.4). Value (brightness) takes
the vertical axis, being black at the bottom and white in the center of the top. Saturation
is increased the further we stray from the center of the cylinder. Hue is radial an starts
at 0◦, corresponding to the color red (also 360◦), every 60◦, each of the primary colors
can be found.

Figure 2.4: HSV model hue wheel and cylinder representation. Source [3] [4]

8 2. Basics

2.4. Morphological operations

All of the morphological operations are very well explained in [6]. This section is only
the basic understanding of them as to show what each of them accomplishes and why
it is important.

2.4.1. Erosion

Erosion is one of the basic operators in mathematical morphology. It erodes away the
boundaries of regions of foreground pixels, thus shrinking these areas and increasing
the size of holes in them. A structuring element (like a sphere, a square) is needed in
order to perform erosion, the role of such element is to be superimposed to each pixel
in the image in order to detect if all the components in the superimposed structuring
element also are labeled as foreground, in which case the pixel does not change its
value; if not all values are foreground, the pixel gets labeled as background.

Figure 2.5: Erosion example. Source: OpenCV [10]

2.4.2. Dilation

Dilation is the other basic operator together with erosion. The result of dilating an image
is the enlargement of the region boundaries, therefore areas become bigger and holes
in them get smaller. Dilation also makes use of a structuring element like erosion, and
makes used of it in the inverse way, labeling a pixel as foreground when any of its
“neighbors” (defined by the structuring element) is labeled as foreground as well.

2.4. Morphological operations 9

Figure 2.6: Dilation example. Source: OpenCV [10]

2.4.3. Opening

Opening, as well as closing, is derived from erosion and dilation. Opening attempts to
obtain an effect similar to erosion, removing the noise and some of the region border
pixels, but aims to be less destructive. It is composed of an erosion followed by a dila-
tion, both applied with the same structuring element. Like the previous operations, and
by being derived from them, opening also depends on a structuring element, and tries
to preserve foreground regions with a similar shape to the indicated element, or that
fully contain it, while removing the rest. If noise is smaller than the specified element, it
gets easily removed.
This effect can be comfortably compared with computer drawing, imagining the struc-
turing element as the brush shape, and trying to recreate a given image with it.

Figure 2.7: Opening example. Source: OpenCV [10]

10 2. Basics

2.4.4. Closing

Closing is the dual operator of opening, and also consists of erosion and dilation, but
applied in inverse order, where the dilation is employed first, followed by an erosion,
both using the same structuring element as specified with opening. The effect of this
operator is to preserve background regions that contain or have a similar shape to that
of the structuring element, so that it can be applied to any background point and made
to cover the pixel without taking contact with a foreground region. Consecutive closings
with the same structuring element will have no effect on the image. The closing operator
fills instantly any holes smaller than the structuring element, and makes those bigger
than it smaller.

Figure 2.8: Closing example. Source: OpenCV [10]

3
Implementation

3.1. loopMIDI

loopMIDI [7] is a software developed by Tobias Erichsen. It creates a virtual MIDI loop-
back which is used to interconnect the application with the DJing software by opening
hardware-MIDI ports, using them to send the corresponding MIDI messages.

3.2. RtMidi

RtMidi is a library that provides an API for realtime MIDI input/output ([13]). The version
used in this project is 3.0.0. This library is used to send MIDI messages from the
application to the virtual MIDI loopback, which in itself connects to the DJing software.

3.3. Employed Gloves

Cotton gloves from Hama and green silk paint from Marabu were used (see 3.1), as
they had been already been used in another project. It is recommended that the wrist
part of the gloves be turned in and, if possible, fastened, as the gloves cover only the
hand and not even parts of the arms. Pink latex gloves were used on top to cover the
majority of the green glove but the desired fingers, and therefore were cut to achieve

11

12 3. Implementation

so.

(a) Gloves (b) Paint colors.

(c) Painted gloves. (d) Latex overlay gloves.

(e) Finished glove result.

Figure 3.1: Glove elements until finished version (e).

3.4. OpenCV 13

3.4. OpenCV

All of the image recognition in this project is done by OpenCV, specifically version 4.0.0.
OpenCV stands for “Open Source Computer Vision” and is a open source computer
vision and machine learning software library. It has C++, Python, Java and MATLAB
interfaces, but I will be using the C++ one as this project is developed in C++. The library
focuses on a optimized implementation of classic and state-of-the-art computer vision
algorithms. OpenCV was built to provide a common infrastructure for computer vision
applications and to accelerate the use of machine perception. Possible applications for
OpenCV are, for example, in automated inspection in industry, in medical imaging, in
the evaluation of surveillance images, in human computer interfaces, in stereo vision or
in robotics [2].

3.5. Binary image using a HSV filter

A binary image is a black and white image where the recognized pixels take the white
color, and the background gets converted to black. Binary images can be stored as
bitmaps, which take significantly less space in memory than fully colored images. Op-
erations are significantly faster too as they can be interpreted as logical values instead
of integers and only have one color dimension versus the three that a color image has.

In order to obtain a binary image, we need to convert the RGB camera feed into a
HSV model (see 2.3), this is achieved using the OpenCV function cvtColor() with the
corresponding “COLOR_BGR2HSV” parameter. In order to apply the selected HSV
range settings (later explained in 3.11), the function inRange() is used on the HSV
image matrix in order to threshold it. This function separates each of the HSV chan-
nels, and then applies the corresponding threshold depending on the range, utilizing
the following function for each of them, where lowerb and upperb are the minimum and
maximum values of the corresponding range respectively, src being the image matrix:

dst(I) = lowerb(I)channel ≤ src(I)channel ≤ upperb(I)channel

The default range of the HSV values are provided to use lime green gloves, when
using the application, the hue will rarely need to be modified as what changes mainly
are the environment lighting conditions, which can be adjusting the saturation and value,
usually the saturation needs to be lowered to identify darker shades of green in the
shadows, and the value can be adjusted to remove some noise.

14 3. Implementation

3.6. Morphological operations in a binary image (post-processing)

The binary image is further processed in order to make the later contour identification
more reliable. For this, morphological operations are used (see 2.4) in order to reduce
the amount of noise in the image.

This also infers a faster contour detection, as there are less regions to detect and thus
to analyze. Therefore, an “opening” is performed (see 2.4.3), which is conformed of a
erosion followed by a dilation, preserves foreground regions while removing background
ones. After the opening a “closing” (see 2.4.4) is performed, which purpose is to close
inner gaps in the finger regions.

For the following images the same HSV ranges and the same environment will be used.

(a) After HSV-filter

3.7. Contour detection 15

(b) Erosion

(c) Dilation

Figure 3.2: Morphological transformations of a binary image.

3.7. Contour detection

Contour detection is performed using OpenCV library. This function retrieves contours
from an image utilizing the algorithm in [1]. As the contour detection is performed

16 3. Implementation

on the binary image, the result is a vector of points of the boundary of every region
existing in the binary image. This contours can be later reduced by analyzing their area
and thresholding it, providing a way to remove the noise that was still left over from
executing both opening and closing operator functions 3.6.

3.8. Arduino

An Arduino Uno board is used to perform gesture recognition via hardware instead of
needing to do image analysis for it. The library SerialPort [14] is used to utilize the serial
connection to the Arduino board, which allows the reading of the data stream sent by
the Arduino.
Since this is a real-time system, it needs to compute the desired action as fast as pos-
sible; thus, by acquiring the gesture signal from a electric signal, it only needs to reach
the application via the serial connection. Both considered gestures work really well
with this idea, since they need physical contact between two from three different fingers
(thumb and index, or index and middle fingers).

For the connection between the fingers (gesture detection), a cable is connected to
each finger, contacting a aluminum ring which shares the current from one finger to an-
other. Both thumb and middle finger have input pins connected to them, and the index
finger has 0V (ground) of current connected so that when it touches one of the other
fingers, 0V are registered in the corresponding input thus activating the gesture (see
3.8.1).

(a) Cardboard rings with aluminum (b) Arduino pin configuration

3.8. Arduino 17

(c) Connection of the Arduino pins to the rings in the hand.

Figure 3.3: Setup of the Arduino connection for detecting gestures.

3.8.1. Floating pin

Since the index finger is shared between both gestures, we want the other two fingers
to carry the input signal (to the Arduino). Because of this, we run into the floating pin
problem, where we do not know what an open switch will return as value (LOW or HIGH)
as the value depends on the conductivity of the environment and is therefore variable.
To solve this issue, either a pull-up resistor or a pull-down resistor is needed, which have
a value of HIGH and LOW respectively when the switch is open. We would preferably
use a pull-down resistor, like digital circuits that require a positive one-shot trigger when
a switch is momentarily closed to cause a state change. However, Arduino boards only
possess a pull-up resistor, so the switch performance is inverted (takes a value of LOW
when active). Thus, the current passed to the index finger to give a value of LOW is 0,
or ground, so that it activates the value when it enters in contact to one of the fingers
that carry an input to the Arduino.
Of the available pins in the Arduino board, it is highly not recommended to use pin 13
as a pull-up pin, as it contains the LED and its own resistor, which make the current
have a value of 1.7V instead of 5V since the mentioned elements pull the voltage level
down.

18 3. Implementation

Figure 3.4: Pull-up and pull-down resistors. Source: [12]

3.9. Data Structure

As emphasized previously, the real-time component of the system is of utmost impor-
tance. Consequently, we want to obtain the corresponding MIDI function given a gesture
location with the least computational cost. For this purpose, a region Quadtree is used
to create a mapping of image coordinates to the analogous MIDI function to be called
when certain gesture is received from them. Since there are two possible gestures,
there needs to be two different configurations of the Quadtree. Two options were then
considered, making two different trees, one for each gesture, or combining them into
one; the latter was implemented, making the difference of Fader and Button gestures.
Each node of the Quadtree contains a pointer to each fader and button function to be
executed in that coordinate section, as well as the four children nodes in case it is fur-
ther subdivided due to a function conflict.

A sketch of what the mapping is considered to look like in a real hardware controller
which is used as reference for this project can be observed next (see 3.5). The spheres
are dashed since they overlap faders but still exist in the mapping as they use different
gestures as previously mentioned. An example of an early Quadtree over this sketch
can also be found (3.6), showing the level of subdivision inside the tree until a unique
function is reached in the available rectangle.

3.9. Data Structure 19

Figure 3.5: Sketch of what the software element distribution looks like.

Figure 3.6: Early iteration of the Quadtree subdivision.

20 3. Implementation

3.10. MIDI functions

Tables with the corresponding MIDI channels and controllers for each individual action
can be found next, divided by the gesture that enables it. The value of the message
goes from 0-127 for the faders indicating position, and 127 or 0 for buttons. For each
individual action, there is a C++ function stored in the tree that always takes the deck
as parameter, and the value in case it is a fader. Each of this functions can be called
directly from the tree node with the correct parameters.

Fader Channels

Function
Deck A Deck B

Channel Controller Channel Controller

Volume 176 0 177 0

Highs 176 1 177 1

Mids 176 2 177 2

Lows 176 3 177 3

Tempo 176 4 177 4

Gain 176 5 177 5

Global faders

Channel Controller

Crossfader 178 0

Global Volume 178 1

Table 3.1: Fader MIDI channels

3.11. Application execution 21

Button Channels

Function
Deck A Deck B

Channel Controller Channel Controller

Play/Pause 144 0 145 0

CUE 144 1 145 1

CUE1 144 2 145 2

CUE2 144 3 145 3

CUE3 144 4 145 4

CUE4 144 5 145 5

Headphone bus 144 5 145 5

Table 3.2: Button MIDI channels

3.11. Application execution

Before running the application, the MIDI loopback has to be initialized using loopMIDI
[7]. When running the application, first two camera feeds appear, one being just the
recorded camera feed and the other a binary image. This is shown so the user can
configure the HSV values each run, since the environment may be different in each
execution and this values may need to be adjusted.

22 3. Implementation

(a) Normal camera feed. (b) Binary segmentation with current HSV values.

(c) HSV value configuration (minimum and maximum for each).

Figure 3.7: Initial camera configuration with HSV values.

After the setup is done correctly, all the necessary connections are established.
MIDI connection is set via the rtMidi package and all of the MIDI note channels are
cleared, as they can have a leftover note from previous executions that was not deacti-
vated, this port cleaning is achieved by sending a “NOTE OFF” message to each of the
note channels (see 2.2). The Arduino serial port connection is also initialized, both of
these connections are established by pointers.
After the connection initialization, three threads are created, one for an image loopback,
one for the Arduino inputs, and one gesture loop for the calls to the corresponding func-
tions given a position and gesture.

3.11. Application execution 23

3.11.1. Image thread

This thread executes an infinite loop that analyzes each image of the camera stream,
and converts it to HSV (see 3.5) to perform a opening operation followed by a closing
one (see 3.6). Then it extracts the corresponding contours and stores the position of
the average coordinates for each region bigger than a certain area threshold (corre-
sponding to the area needed to recognize a thumb, since it is the smallest finger that
need to be tracked).
When two fingers touch (gesture is activated, even if captured hardware-wise with the
Arduino), the region of both touching fingers combine, and its average position is really
close to the point of actual contact (refer to 3.8); that little displacement can be over-
looked in this application since millimetric precision is not needed, as the regions are
comfortably big as to provide better usability.

This thread also creates an image loopback, in order to allow the user to see the posi-
tion of his own hands corresponding to the mapping. The stream image is cloned and
the position of the corresponding function areas for each gesture are shown, creating
two image loopbacks, each superimposed with a mapping of the regions that contain
actions in the Quadtree, each loopback displaying only the regions for one of the two
gestures as their mappings are different (see 3.9).

(a) Fader gesture average position (b) Button gesture average position

Figure 3.8: Average region points for both available gestures.

24 3. Implementation

(a) Mapping of button gesture. (b) Mapping of fader gesture.

Figure 3.9: Image loopback with gesture mappings.

3.11.2. Arduino thread

The Arduino thread is a basic infinite loop that analyzes the messages sent by the Ar-
duino board via the Serial Port. It compares the value received, and if it is feasible,
updates the value of a global variable (called state) with the received input (see 3.10).
An input of 0 means no gestures were activated, an input of 1 means the fader gesture
was identified, and a value of 2 indicates that the button gesture was performed. The
code for the Arduino board simply sets up two pins as input pins, respectively config-
ured as INPUT_PULLUP because of the floating pin issue (see 3.8.1). When either of
these fingers connect with the index finger, an input is received and the corresponding
gesture code is sent via the Serial Port (see 3.8 for cable/connection setup).
The global variable “state” never reaches race conditions (it can be accessed by the
gesture thread when its value is being changed, being its value not reliable) since the
correct value will be read upon next iteration and the delay between iterations is unno-
ticeable.

Figure 3.10: Automata of the state variable and its connection between threads.

3.11. Application execution 25

3.11.3. Gesture thread

The gesture thread constructs the Quadtree before entering a infinite loop where it
checks the “state” global variable every 100ms, this delay is dependent on what real-
time is considered, in this project, real-time takes a value of 100ms as the user cannot
perceive any changes that occur in that interval or a shorter one. This is best observed
when calling a fader function, which moves over time until the user “releases” the fader
gesture, since it updates in a discrete manner as opposed to a continuous one, but it is
imperceptible and thus indicates that the delay is appropriate. This delay is introduced
in this loop since it has to perform a search in the tree every time a gesture is recog-
nized, and then execute the corresponding function linked to it, which results in a MIDI
message being sent to the software application. Since we want to reduce computation
costs, and we do not want to send that MIDI messages since the user cannot observe
a difference between the real-time delay and no delay, the delay is applied to reduce
the number of tree searches as the quantity of MIDI messages.
When calling a tree function, the coordinates are obtained from a global variable called
actual, which is updated by the image thread with the average coordinates of the biggest
identified region. The position is always correct when a gesture is active, since the area
of two fingers touching is always bigger as that of the third finger.

4
Discussion and Outlook

4.1. Future work

The presented application does not provide a mapping for jogwheels or loading tracks
to the decks. The problem with these actions is that in a normal hardware controller,
they are implemented with the use of rotary encoders. The jogwheel encoder usually
takes a big area of the controller, so it can be implemented easier than the one for load-
ing tracks, as the rotation occurs with the fingers as the center.
For the jogwheel, a logic through time has to be implemented, or do the sequencing at
a adequate delay, so that it is impossible to have done a complete turn between two
gesture analysis. An alternative of a rotary encoder is to use a simple slider, arising the
issue of how to deal with looping and gesture start/stop signals. Also the MIDI mes-
sages that need to be send in order to correctly configure a jogwheel have not been
looked into in this project.
For the implementation of track loading, either a drag and drop using the fader gesture
can be used, but then a new gesture must be added in order to indicate the user is
hovering over the tracks and selecting one; or a up/down/select button system can be
implemented, since there is plenty of space left in both gestures mappings.

Also an interesting step would be to implement a UI to make mapping editing simpler
and more intuitive, since the Quadtree is generated at runtime, the user could config-
ure his desired distribution of elements for each of the gestures, allowing customization
and granting the user a more intuitive mapping as not all controllers have the same
distribution.

27

28 4. Discussion and Outlook

4.1.1. Data gloves

This thesis aims to provide a starting point on the possibilities of DJing without the
need a specific DJ controller. The next step would be the removal of the camera and
image analysis section, as the places where DJs perform are usually dark and have
very inconsistent lighting due to artificial lights that are used in clubs/festivals.
Data gloves would completely remove the need for a camera, since all the gestures and
hand position could be obtained from the data gloves themselves, as well as allowing
the possibility to make use of the z-axis, as the mapping in this thesis is only two-
dimensional. Along this z-axis different mappings could be stored in distinct levels,
for example having the lower level with the deck mappings as in this project, and in an
upper level have effect configuration. Correspondingly, another type of controller can be
mapped at a different height, allowing for the use of multiple controllers, each covering
different needs, on the same platform (i.e. Traktor S2 as lower level (analog to this
project), and a Native Instruments MASCHINE in an upper level for live performances
with samples).

References

[1] Satoshi Suzuki et al. “Topological structural analysis of digitized binary images by
border following”. In: Computer Vision, Graphics, and Image Processing 30(1):32–46
(1985).

[2] Gary Bradski und Adrian Kaehler. Learning OpenCV: Computer Vision with the
OpenCV Library. O’Reilly, 2008.

[3] Wikimedia Commons. HSV Cylinder. https://commons.wikimedia.org/wiki/
File:HSV_color_solid_cylinder.png.

[4] Wikimedia Commons. HSV wheel. https://doc.qt.io/qt-5/images/qcolor-
hue.png.

[5] Imogen Heap. MiMu Gloves. https://mimugloves.com/.

[6] HIPR2. https://homepages.inf.ed.ac.uk/rbf/HIPR2/.

[7] loopMIDI. http://www.tobias-erichsen.de/software/loopmidi.html.

[8] MIDI Tutorial. http://www.music-software-development.com/midi-tutorial.
html.

[9] MIDI Wikipedia. https://en.wikipedia.org/wiki/MIDI.

[10] OpenCV. https://docs.opencv.org/.

[11] Pantone. RGB Wheel. https : / / www . lcipaper . com / kb / what - are - the -

differences-between-pantone-cmyk-rgb.html.

[12] Pull-up and pull-down resistors. https://circuitdigest.com/tutorial/pull-
up-and-pull-down-resistor.

[13] RtMidi. https://github.com/thestk/rtmidi.

[14] SerialPort. https : / / blog . manash . me / serial - communication - with - an -

arduino-using-c-on-windows-d08710186498.

[15] Tornado Gloves A1. http://en.global-dj.com/.

[16] Traktor Kontol S2. https://www.musicmatter.co.uk/native-instruments-
traktor-kontrol-s2-mk3.

[17] Stephen Westland. RGB Cube. https://www.researchgate.net/figure/The-
RGB-colour-cube_fig1_304240592.

29

https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png
https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png
https://doc.qt.io/qt-5/images/qcolor-hue.png
https://doc.qt.io/qt-5/images/qcolor-hue.png
https://mimugloves.com/
https://homepages.inf.ed.ac.uk/rbf/HIPR2/
http://www.tobias-erichsen.de/software/loopmidi.html
http://www.music-software-development.com/midi-tutorial.html
http://www.music-software-development.com/midi-tutorial.html
https://en.wikipedia.org/wiki/MIDI
https://docs.opencv.org/
https://www.lcipaper.com/kb/what-are-the-differences-between-pantone-cmyk-rgb.html
https://www.lcipaper.com/kb/what-are-the-differences-between-pantone-cmyk-rgb.html
https://circuitdigest.com/tutorial/pull-up-and-pull-down-resistor
https://circuitdigest.com/tutorial/pull-up-and-pull-down-resistor
https://github.com/thestk/rtmidi
https://blog.manash.me/serial-communication-with-an-arduino-using-c-on-windows-d08710186498
https://blog.manash.me/serial-communication-with-an-arduino-using-c-on-windows-d08710186498
http://en.global-dj.com/
https://www.musicmatter.co.uk/native-instruments-traktor-kontrol-s2-mk3
https://www.musicmatter.co.uk/native-instruments-traktor-kontrol-s2-mk3
https://www.researchgate.net/figure/The-RGB-colour-cube_fig1_304240592
https://www.researchgate.net/figure/The-RGB-colour-cube_fig1_304240592

	main.pdf
	report.pdf
	Introduction
	Motivation
	Objective

	Basics
	DJ Tools
	MIDI
	MIDI Notes
	MIDI Controllers

	Color Models
	RGB Color Model
	HSV Color Model

	Morphological operations
	Erosion
	Dilation
	Opening
	Closing

	Implementation
	loopMIDI
	RtMidi
	Employed Gloves
	OpenCV
	Binary image using a HSV filter
	Morphological operations in a binary image (post-processing)
	Contour detection
	Arduino
	Floating pin

	Data Structure
	MIDI functions
	Application execution
	Image thread
	Arduino thread
	Gesture thread

	Discussion and Outlook
	Future work
	Data gloves

	References

