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Resumen

La calibración de una cámara consiste en la caracterización de cómo la realidad 3D

se proyecta en el plano imagen 2D, siendo de gran importancia para sistemas de

reconstrucción 3D. El procedimiento habitual de calibración consiste en la captura

de varias imágenes de un patrón de geometŕıa conocida, desde distintos puntos de

vista. La precisión de la calibración está muy relacionada con dichas vistas; y sin

embargo, la literatura acerca de la relación entre ambas es escasa y los pocos métodos

existentes son secuenciales: A partir de una calibración predicen cuál es la siguiente

vista a tomar para minimizar el error. En la literatura no existen resultados teóricos

ni análisis acerca del problema general, no secuencial, de cuáles son las mejores vistas

para calibrar una cámara.

El objetivo de este TFG es establecer, mediante análisis teórico y con simulación,

una forma general de ubicar los patrones de calibración sin conocimiento previo de

otras imágenes. Dicho de otra forma, encontrar unas posiciones y orientaciones de

cámara que aseguren un error de calibración bajo. Además, se desarrollará una

herramienta interactiva para ayudar a la colocación relativa entre patrón y cámara

que asegura dicho error bajo.

Para ello se estudia la relación entre la posición y la orientación de la cámara que

capturó las imágenes del patrón con el error o incertidumbre en la estimación de los

parámetros del modelo. Nuestros resultados experimentales han mostrado mejoras

con respecto al estado del arte en simulación e imágenes reales. En concreto, nuestro

método tiene errores de calibración menores o comparables al estado del arte, con

un coste significativamente menor.
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Caṕıtulo 1

INTRODUCCIÓN

Este TFG se sitúa dentro del campo de la visión por computador, espećıficamen-

te, en el proceso de calibración de una cámara. La calibración de una cámara consiste

en la obtención de los parámetros intŕınsecos que definen la proyección de una esce-

na 3D, para lo cual también se deben obtener los parámetros extŕınsicos (rotación

y traslación) que la permiten situar en un sistema de coordenadas determinado.

Conocer la calibración de una cámara es imprescindible en todas aquellas apli-

caciones en las que se necesite extraer información métrica de imágenes (altura,

profundidad, distancias o parámetros geométrico en general). Algunos ejemplos de

aplicación a destacar los encontramos dentro del SLAM (acrónimo proveniente del

inglés Simultaneous Localization And Mapping), elemento clave en usos como la

conducción autónoma, la robótica y la reconstrucción 3D de una escena.

Las capacidades del SLAM llevadas a la vida cotidiana han permitido desarro-

llar varios productos comerciales relevantes. Entre ellos, aplicaciones de realidad

aumentada (por ejemplo la desarrollada por IKEA1, mostrada en la Figura 1.1b, y

que sirve para visualizar cómo quedaŕıa un mueble que queramos adquirir en el sitio

que elijamos), gafas de realidad virtual (como por ejemplo el modelo Oculus Rift

S 2 mostrado en la Figura 1.1c) y sistemas de navegación autónoma que permiten,

por nombrar un caso concreto, a un dron seguir a una persona evitando los obstácu-

los del entorno3 (ver Figura 1.1a). En todas estas aplicaciones es necesario conocer

1http://highlights.ikea.com/2017/ikea-place/
2https://www.oculus.com/rift-s/
3https://www.youtube.com/watch?v=gsfkGlSajHQ
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(a) (b)

(c)

Figura 1.1: Ejemplos de productos comerciales que usan cámaras calibradas. a: Dron

Skydio R1, desarrollado por la empresa Skydio Inc., permite la detección y el se-

guimiento de personas. b: Aplicación de realidad aumentada de IKEA. c: Gafas de

realidad virtual Oculus Ritft S, producidas por Oculus VR.

la calibración de la cámara para estimar su movimiento y la reconstrucción de la

escena.

El procedimiento de calibración consiste habitualmente en la captura de varias

imágenes de un patrón de geometŕıa conocida, realizadas desde distintos puntos de

vista como los de la Figura 1.2, siendo muy estrecha la relación entre estas vistas y

el error en la estimación de los parámetros de calibración.

En general, las diferentes técnicas de calibración existentes, se pueden agrupar

atendiendo a la manera en la que los parámetros son estimados de la siguiente forma

[17, 20, 16]:

Técnicas lineales: Se caracterizan por su sencillez y rapidez. Proporcionan

una solución cerrada (sin iteraciones) pero no son capaces de tener en cuenta

la distorsión (no lineal) producida por la curvatura de las lentes utilizadas,
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Figura 1.2: Diferentes vistas de un patrón de calibración.

resultando en calibraciones que pueden ser poco precisas. El trabajo realizado

por Y. Abdel-Aziz [1] es uno de los ejemplos más conocidos de esta técnica.

Técnicas no lineales: En ellas śı se tiene en cuenta la distorsión gracias a un

procedimiento iterativo, lo que permite aumentar la precisión en la estimación

de los parámetros. Sin embargo, el algoritmo iterativo necesita una semilla

cercana a la solución real para converger. El trabajo realizado por D. C. Brown

[7] es un buen ejemplo de esta técnica.

Técnicas de doble paso: Fueron las últimas en desarrollarse, y son una com-

binación de las anteriores. En un primer paso obtienen una solución cerrada

de los parámetros a estimar mediante una aproximación, para posteriormente

realizar una optimización no lineal iterativa. Gracias al primer paso, la con-

vergencia es generalmente mejor que en las técnicas no lineales ya que entre

otras ventajas, lo habitual es que se necesiten un menor número de iteracio-

nes. Ejemplos de esta técnica comúnmente utilizados los encontramos en los

trabajos de Z. Zhang [27], J. Heikkilä [11] o R. Tsai [26].

Debido a las ventajas mencionadas para la última técnica, es la que más comúnmen-

te se utiliza en aplicaciones de visión por computador [17] y en la que nos centraremos

en este TFG.

1.1. Motivación

El trabajo de Z. Zhang [27], facilitó enormemente la calibración de cámaras al

necesitar únicamente una superficie plana con un patrón similar al de un tablero de
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(a) (b)

Figura 1.3: Tipos de ayuda en la colocación de los patrones. a: Automatizada, por

medio de un brazo robótico que controla la posición de la cámara [3]. b: Visual, a

través de la proyección del tablero en las imágenes capturadas por la cámara [18].

ajedrez, denominada rejilla o patrón de calibración (el que ya se ha mostrado en la

Figura 1.2).

La razón por la que la orientación y posición del patrón influyen en la precisión

de la calibración, es porque éstas determinan las ubicaciones en la imagen de las es-

quinas de los cuadrados blancos y negros que lo conforman, siendo éstas las entradas

del sistema.

Gracias a este método se pueden obtener resultados precisos sin llevar a cabo

grandes inversiones como las necesarias en otras técnicas, como en la ya citada [26]

en la que es necesario conocer la traslación de la cámara a calibrar, lo que encarece

el equipo necesario. Es por estas razones por las que el trabajo de Z. Zhang [27] es

uno de los métodos de calibración más comúnmente utilizados en la actualidad.

En los últimos años, varios trabajos de investigación han realizado mejoras sobre

esta técnica básica de calibración, centrándose en cómo optimizar la colocación del

patrón/cámara para minimizar la varianza en la estimación de los parámetros.

Algunos de los trabajos que siguen esta tendencia son [18, 15, 3, 19], en los que se

establecen criterios que permiten calcular qué posición y orientación del patrón de

calibración es la mejor a partir de las capturas realizadas previamente. En la Figura

1.3 se muestra cómo es la implementación de dos de estas técnicas.
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Sin embargo, es escasa la literatura acerca de cómo, desde un inicio, sin entradas

correspondientes a algunas posiciones y orientaciones, se debeŕıa colocar la cámara

o el patrón de calibración. En otras palabras, no se ha trabajado sobre un criterio

general que permita establecer desde un inicio cuáles son las posiciones óptimas de

la cámara/patrón y es en esta ĺınea donde queremos contribuir con este TFG.

1.2. Objetivos

El objetivo que pretendemos alcanzar con este TFG es desarrollar un método

nuevo para la calibración de una cámara, aśı como mostrar su desempeño con res-

pecto al estado del arte. Para ello, más concretamente, se realizarán las siguientes

tareas:

Analizar la influencia de distintas orientaciones y posiciones del patrón de

calibración en la precisión del proceso; atendiendo para ello a distintos criterios

como la distancia con respecto a la cámara.

En base al análisis anterior, desarrollar un nuevo procedimiento de calibración

que mejore al estado del arte en precisión y tiempo de ejecución en datos

simulados.

Elaborar una herramienta interactiva que permita la implementación del méto-

do desarrollado en el punto anterior.

Con esta última herramienta, llevar a cabo un análisis experimental con imáge-

nes reales para verificar las conclusiones de simulación y realizar estudios adi-

cionales si fuera necesario.

1.3. Herramientas utilizadas

El lenguaje de programación utilizado en este trabajo ha sido MATLAB [13],

además se ha hecho uso de la toolbox desarrollada por el investigador J.Yves Bouguet

de calibración de una cámara [4].
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1.4. Estructura del trabajo

De aqúı en adelante, el TFG está organizado de la siguiente forma.

Caṕıtulo 2. Formación de la imagen: En este caṕıtulo se tratan los aspectos

fundamentales sobre el proceso que permite a una cámara formar una imagen. Se

tratará brevemente cómo es la convergencia de la luz a través de una lente, y se

explicará con detalle el modelo matemático detrás de esta formación y que recibe el

nombre de modelo pin-hole.

Caṕıtulo 3. Proceso de calibración: En esta parte se explicará con detalle

los aspectos más importantes del proceso de calibración, el cual se divide en la

obtención de una solución cerrada y en la optimización de esta primera solución

inicial. Este caṕıtulo junto con el anterior, sirven para entender y dar contexto al

resto del trabajo.

Caṕıtulo 4. Simulación: Se muestran los análisis realizados acerca de la rela-

ción entre la distancia y la orientación del patrón de calibración relativo a la cámara,

con la precisión de la calibración. Además en este caṕıtulo se presenta una propuesta

base de cómo colocar los patrones aśı como su comparación con el estado del arte.

Caṕıtulo 5. Implementación con imágenes reales: Aqúı se pone a prueba

el modelo desarrollado en el caṕıtulo anterior, y se ve si en la realidad rinde de la

misma manera que en la simulación. Tras ello estudiamos las posibles limitaciones

y tras análisis adicionales definimos el método para situar de manera adecuada los

patrones de calibración.

Caṕıtulo 6. Conclusiones: En este caṕıtulo se realiza un resumen y análisis

cŕıtico sobre el método desarrollado, y se proponen posibles ĺıneas futuras en relación

a este trabajo.



Caṕıtulo 2

FORMACIÓN DE LA IMAGEN

En este caṕıtulo se explicarán los aspectos geométricos relacionados con el pro-

ceso de formación de una imagen en una cámara y su modelo matemático. Esto será

de utilidad para entender y desarrollar el resto del trabajo.

Se comenzará con una breve explicación acerca de cuál es la función que desem-

peñan las lentes, para luego definir la transformación que se produce al capturar

una imagen del mundo 3D, aśı como los parámetros que la definen y que son los que

deberemos estimar en la calibración.

2.1. Modelo de las lentes

La formación de una imagen en el caso de una cámara digital, se consigue por

medio de una lente o conjunto de ellas, a través de las cuales los rayos de luz,

provenientes del exterior, son proyectados sobre un chip compuesto por elementos

fotosensibles denominados fotositos, que codifican de manera digital la cantidad de

luz recibida de dichos rayos [23, 6].

En la Figura 2.1a se muestra este proceso de formación para el caso de una lente

delgada. En ella se observa cómo tres posibles rayos (en amarillo) provenientes del

objeto, al atravesar la lente se proyectan en el plano imagen o chip fotosensible,

lo que permite la formación de una imagen invertida del objeto. En esta Figura

también se muestra el eje óptico, el cual se obtiene uniendo los centros de curvatura

17
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(a) (b)

Figura 2.1: Proyección de la luz según el modelo de lente fina. a: Objeto enfocado

idealmente al converger los rayos en el mismo punto en el que está el sensor. b:

Objeto con un cierto desenfoque al no ocurrir lo anterior.

de las dos caras de la lente.

Este comportamiento viene determinado por la ley de las lentes:

1

zo
+

1

zi
=

1

f

Donde f es la distancia focal, la cual nos da una indicación de cómo es de fuerte la

convergencia de los rayos que atraviesan la lente, zo representa la distancia entre el

objeto y la lente y zi la distancia entre la lente y la imagen enfocada 1.

A partir de esto, podemos deducir que si los rayos de luz provenientes de un

objeto al ser proyectados sobre el chip o plano imagen, presentan una distancia zi

diferente a la distancia a la que se sitúa el plano imagen, esto provocará que el

objeto aparezca con un cierto desenfoque, cuya magnitud vendrá dada en función

de la profundidad de campo del conjunto de lentes utilizado [6] (ver Figura 2.1b).

En la realidad, lo habitual es que una cámara esté compuesta por un conjunto más

sofisticado de lentes que permitan disminuir efectos no deseables como la aberración

esférica y cromática, producidas por la geometŕıa de la lente y por las diferencias en

la convergencia de rayos de luz de diferente color respectivamente, y que provocan

que la distancia focal vaŕıe en función de éstas. Para más información acerca de esto,

1Con imagen enfocada, nos referimos a que, considerando un objeto 2D como el de la Figura

2.1a, éste aparecerá perfectamente enfocado si el cruce de los rayos provenientes de todos sus puntos

tras travesar la lente, se producen en el chip fotosensible. Para objetos 3D el razonamiento es igual.
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se recomiendan los trabajos [23, 12]. Un ejemplo de conjunto de lentes de este tipo

es el denominado como lentes de diseño Double-Gauss mostrado en la Figura 2.2.

Figura 2.2: Diseño de lentes Double-Gauss. Figura extráıda de [12].

Por otro lado, en visión por computador es muy común aproximar este compor-

tamiento real de las lentes mediante el modelo pin-hole [23, 6, 27], explicado en la

siguiente sección, y que por tanto es el que se utilizará para el desarrollo de este

trabajo. Para más información acerca de los distintos modelos de cámara, se pueden

consultar las siguiente fuentes [10, 22].

2.2. Modelo pin-hole

En el modelo pin-hole, se presenta un modelo de cámara simplificado, en el cual

solo se permite el paso de los rayos a través de una pequeña apertura o agujero (ver

Figura 2.3), en vez de a través de una lente o conjunto de ellas como se ha explicado

anteriormente. Al proyectarse estos rayos en el plano imagen, al igual que en el caso

anterior, forman una imagen invertida en el lado opuesto de la cámara del objeto

del que provienen dichos rayos.

Esta simplificación trae consigo varias consecuencias. El hecho de que todos los

rayos de luz provenientes de un punto en el espacio tengan que pasar por esta

pequeña apertura, que podemos considerar como un punto [6, 23], significa que que

todos los rayos proyectados en el plano imagen de dicho punto espacial, provienen

de una misma dirección. Esto provoca que aspectos comentados anteriormente como

el desenfoque, no aparezcan en este modelo.

Además, desde un punto de vista geométrico, es equivalente tratar a la imagen

formada del entorno en un plano imagen “virtual” situado delante del plano imagen

y a la misma distancia que el plano imagen en el lado opuesto de la cámara. Esto
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Figura 2.3: Modelo pin-hole de formación de la imagen.

(a) (b)

Figura 2.4: Modelo pin-hole presentado de manera esquemática. a: Vista general. b:

punto p visto de perfil (imagen superior) y desde arriba (imagen inferior).

posibilita trabajar con una imagen no invertida en el modelo. Este plano imagen

“virtual”, que por comodidad de aqúı en adelante nos referiremos a él como plano

imagen, se puede observar en las Figuras 2.3 y 2.4a.

A su vez en este modelo, el punto que representa la apertura que se ha comentado,

se corresponde con el origen del sistema de coordenadas que define la posición y

orientación de la cámara y que, por convención [6, 23, 27], tal y como se aprecia en

la Figura 2.4a, el eje ZC , también denominado como eje óptico, es perpendicular al

plano sensor o imagen y con un sentido que “apunta” hacia el entorno, y los ejes XC

e YC son paralelos al borde horizontal y vertical del plano sensor respectivamente.
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En la misma Figura, 2.4a, también aparecen dos de los parámetros que definen

este modelo y que, saber lo que son, nos servirá para poder continuar este desarrollo:

Punto principal (cc): representa el punto de corte del eje óptico (eje ZC) con

el plano sensor.

Distancia focal (fc): representa la distancia que hay entre el punto principal

y el origen de la referencia cámara, medida, por tanto, sobre el eje ZC .

Ahora, observando ambas figuras de 2.4 y considerando los puntos generales que

aparecen en ellas: P = (X, Y, Z) en el entorno y p = (x, y, z) en plano sensor, ambos,

vistos desde la referencia cámara, se puede concluir que:

x = f
X

Z
y = f

Y

Z
(2.1)

Por otro lado, como la localización de los puntos en una imagen viene dada

en coordenadas medidas en ṕıxeles, debemos transformar las unidades si queremos

relacionar los puntos del espacio con los de una imagen. Para ello, tenemos que

recordar que el plano imagen de una cámara digital está formado por fotositos,

dispuestos en una rejilla de tamaño W × H, correspondiéndose cada uno de ellos

con un ṕıxel de la imagen formada [6].

En la Figura 2.5a se muestra una representación del plano imagen con los ṕıxeles

o fotositos discretizados, aśı como su correspondiente sistema de coordenadas (u, v).

Igualmente, por convención es habitual tomar el origen de este sistema de coordena-

das tipo ṕıxel en el centro del ṕıxel situado en el borde izquierdo superior del plano

imagen [6, 23, 10].

De esta forma, en coordenadas ṕıxel, el punto principal lo podemos expresar

como: cc = (uo, vo); de igual forma, la ecuación 2.1 también la podemos expresar

en coordenadas ṕıxel desde el sistema de referencia (u, v) tal como se muestra a

continuación en 2.2:

u =
x

ρw
+ uo v =

y

ρh
+ vo (2.2)

Donde ρw representa el ancho de los ṕıxeles y ρh representa la altura de los

mismos.
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(a) (b)

Figura 2.5: Modelo pin-hole con el sistema de coordenadas ṕıxel (u, v). a: Vista

general. b: posible falta de perpendicularidad de un ṕıxel.

El desarrollo hasta este momento, se puede expresar matricialmente de la forma

mostrada en la Ecuación 2.3; en ella, tanto el punto en coordenadas ṕıxel (p̃) como

el punto en coordenadas desde la referencia cámara (P̃ ) aparecen representados en

coordenadas homogéneas2, debido a esto, para obtener los puntos en las coordenadas

no homogéneas es necesario dividir por su último componente, tal y como se muestra

en la Ecuación 2.4.

p̃ =


fc
ρw

0 uo 0

0 fc
ρh

vo 0

0 0 1 0

 P̃ (2.3)

p̃ =


u

v

w

→ p =

 u
w

v
w

 P̃ =


X

Y

Z

W

→ P =


X
W

Y
W

Z
W

 (2.4)

La Ecuación 2.3 representa una transformación perspectiva, puesto que, para

proyectar en el plano imagen los puntos vistos desde la referencia cámara, estamos

2Para distinguir vectores en coordenadas homogéneas y eucĺıdeas utilizaremos una notación

con/sin gorro. P̃ se refiere al punto en coordenadas homogéneas, y P al punto en coordenadas

eucĺıdeas.
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Figura 2.6: Ejemplo de cómo ĺıneas paralelas en 3D se cortan en un punto de fuga

(vanishing point) tras una transformación perspectiva.

dividiendo las componentes x e y por su componente z [23, 6, 10], algo que también

se puede observar en la ecuación 2.1.

Cuando se realiza este tipo de transformación, una de las pocas propiedades

que se conserva de los objetos, es la de mantener rectas las ĺıneas que lo son; sin

embargo, la orientación, las longitudes, los ángulos y el paralelismo que pueden

presentar ciertos objetos, no tienen por qué mantenerse [6, 23].

Un efecto interesante resultado de esto, es el hecho de que ĺıneas que en la realidad

son paralelas, al hacerles una foto, si éstas no son paralelas al plano imagen, se

cortarán en el punto denominado como punto de fuga o vanishing point, tal y como

se muestra en la Figura 2.6. En relación a esto, una utilidad de las coordenadas

homogéneas es que podemos representar este punto, que en la realidad estaŕıa situado

en el infinito, colocando un cero como último elemento del vector.

Por último en cuanto al modelo pin-hole, se puede incluir un parámetro que

tenga en cuenta la falta de perpendicularidad entre los bordes de los ṕıxeles que

conforman el plano sensor, tal y como se muestra en la Figura 2.5b. Para incluirlo

en el modelo, bastaŕıa con completar la Ecuación 2.1 realizando lo mostrado en la

Ecuación 2.5 o equivalentemente completando la Ecuación 2.3 como se presenta en
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la Ecuación 2.6.

x = f
X

Z
+ f

Y

Z
tan(α) (2.5)

p̃ =


fc
ρw

fc
ρw

tan(α) uo 0

0 fc
ρh

vo 0

0 0 1 0

 P̃ (2.6)

Sin embargo, esta inclinación es despreciada normalmente, debido a que las técni-

cas habituales de fabricación de sensores permiten que este parámetro sea insignifi-

cante [6, 23].

2.3. Modelo de distorsión

Debido a las simplificaciones llevadas a cabo en el modelo pin-hole, un aspecto

importante como la distorsión debido a la geometŕıa de las lentes usadas en una

cámara y que provocan el desplazamiento de los puntos en el plano imagen con

respecto a la ubicación calculada, no está incluido.

Este tipo de distorsión se define por dos componentes, la primera es la distorsión

radial, cuya magnitud de desplazamiento está relacionada con la distancia del punto

en la imagen al punto principal; y la segunda es la tangencial, cuya magnitud se

relaciona con el producto de la coordenada vertical y horizontal de un punto en el

plano imagen.

De estas dos componentes, la distorsión radial es generalmente la dominante [6,

28], y se tiende a no considerar a la distorsión tangencial [27, 23]. En este trabajo solo

presentaremos los aspectos más importantes relacionados con la distorsión radial,

Para más información se recomienda la lectura de [2].

Como hemos introducido antes, la distorsión radial es la causa de que los puntos

en la imagen sean desplazados según una dirección radial con centro en el punto

principal (cc) de la cámara (ver Figura 2.7), por lo que se puede aproximar con

precisión con un polinomio como el de la Ecuación 2.7 [4, 23].

δr = k1r
2 + k2r

4 + k3r
6 + ... (2.7)
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Figura 2.7: Imágenes reales (arriba) y simuladas (debajo) con un modelo de cámara

con coeficientes de distorsión k1 = −0,146 y k2 = −0,015 (izquierda) y sin dis-

torsión (derecha). En ellas se observan como, al tener distorsión radial, las ĺıneas se

curvan cada vez más conforme nos acercamos a los bordes de la imagen.

Donde δr representa el desplazamiento que sufre el punto en la imagen con respecto

a la ubicación calculada por el modelo pin-hole, r representa la distancia radial del

punto en la imagen al punto principal y ki los coeficientes a estimar y que definen

la magnitud de este tipo de distorsión en la imagen.

Cuanto mayor sea el grado de este polinomio, mayor será la distorsión radial que

se puede modelar. Lo habitual es usar los dos primeros coeficientes [27, 23].

Para introducir la distorsión radial en el modelo que hemos desarrollado, modi-

ficamos la Ecuación 2.3 de la siguiente forma:

p̃ =


fc
ρw

0 uo

0 fc
ρh

vo

0 0 1

 x̃d → x̃d =


X
Z

(1 + k1r
2 + k2r

4)

Y
Z

(1 + k1r
2 + k2r

4)

1

 (2.8)

Donde r2 = (X
Z

)2 +(Y
Z

)2, lo que representa la distancia radial (al cuadrado) desde

el origen de la referencia (x, y) situado en el centro del plano sensor de la Figura 2.5a
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de manera normalizada; es decir, considerando una distancia focal fc = 1 unidad

(con la que se esté trabajando, por ejemplo mm).

De esta forma, frente a posibles variaciones en la distancia focal de la cámara,

la estimación de los coeficientes de distorsión teóricamente no se ven afectados y es

aśı como está configurado el modelo de cámara en [4], la herramienta principal que

se utilizará para la elaboración de este trabajo.

2.4. Transformación mundo ↔ cámara

Hasta ahora, el modelo que hemos explicado nos permite obtener las coordenadas

en ṕıxeles de cualquier punto situado en el entorno que esté referenciado al sistema

de coordenadas que define a la cámara.

Sin embargo, en la práctica conocer los puntos del entorno desde la referencia

cámara no es siempre posible. Por lo tanto, lo último necesario para completar el

modelo es introducir la transformación necesaria de una referencia desde la que śı

conozcamos la ubicación de estos puntos (referencia mundo), a la referencia de la

cámara.

Esta transformación, compuesta por una rotación y una traslación que se efectúan

sobre la referencia mundo para pasar a la referencia cámara, se puede expresar de

la siguiente manera:

P =
(
R t

)
M̃ (2.9)

Donde R (3x3) es la matriz de rotación, t (3x1) es el vector de traslación, M̃ son las

coordenadas (conocidas) de las esquinas del patrón de calibración desde la referencia

mundo y P por tanto, son las coordenadas de las esquinas del patrón desde la

referencia cámara. De una forma más visual, esto aparece en la Figura 2.8.

Además tal y como se puede apreciar en esta figura, en el proceso de calibración

de una cámara, la referencia o sistema de coordenadas mundo, está ubicada en el

patrón de calibración. De esta forma, se pueden conocer de antemano la ubicación

de todas las esquinas del patrón, ya que la geometŕıa de éste es conocida.

Con esto se termina el caṕıtulo acerca del proceso de formación de una imagen
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Figura 2.8: Vista 3D del patrón de calibración y la cámara (simplificada en azul con

su ángulo de visión)

y cómo se puede modelar matemáticamente. Esta base nos servirá para entender

y llevar a cabo el desarrollo del siguiente caṕıtulo que trata los aspectos teóricos

acerca del proceso de calibración de la cámara.
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Caṕıtulo 3

CALIBRACIÓN DE UNA

CÁMARA CON PATRÓN

CONOCIDO

En este caṕıtulo se van a presentar los conceptos teóricos necesarios para en-

tender el proceso de calibración de una cámara. Como ya se ha comentado en la

introducción, este es el proceso que permite obtener los parámetros intŕınsecos que

definen a una cámara y que han sido presentados en el caṕıtulo anterior.

El método explicado en este TFG es el desarrollado por el investigador Z. Zhang

en [27, 28], en el que se requiere capturar varias imágenes de un patrón de calibración

como los que hemos enseñado en los caṕıtulos anteriores (ver Figura 1.2 por ejemplo),

localizando, mediante un algoritmo de detección como el de [9], las esquinas en la

imagen del patrón (ver el ejemplo de la Figura 3.1).

Con estas localizaciones detectadas, se calculan los parámetros del modelo pin-

hole, con distorsión incluida, aśı como su orientación y posición, que mejor estiman la

ubicación de las esquinas en la imagen, en base a su ubicación 3D desde la referencia

mundo ubicada en el patrón (tal y como se observa en la Figura 2.8), las cuales al

conocer la geometŕıa del patrón (número de cuadrados y longitud de éstos), también

son conocidas.

Este proceso se divide fundamentalmente en dos fases, la primera de ellas es la

29
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(a) (b)

Figura 3.1: Ejemplo de detección de esquinas mediante el algoritmo de detección

implementado en [4], el cual está basado en [9]. a: Perspectiva de la cámara. b:

Zoom de a con la detección (cruces rojas) aumentada por motivos de visualización.

obtención de una primera estimación de los parámetros mediante una solución ce-

rrada; y la segunda es la optimización no lineal de esta primera estimación mediante

un procedimiento iterativo.

Dedicaremos una primera parte para expresar la notación que se utilizará en el

cálculo de la solución cerrada, sirviéndonos de lo elaborado en el caṕıtulo anterior.

En una segunda parte se explicará cómo obtener esta solución cerrada, basándonos

principalmente en los trabajos [27, 28]. Por último se explicará el procedimiento de

optimización no lineal.

3.1. Notación

En este caṕıtulo, una esquina del tablero en 3D será representada por M =

(X, Y, Z)T mientras que su proyección 2D en el plano imagen será representada por:

m = (u, v)T . Para expresar estos puntos en coordenadas homogéneas se utilizará la

misma notación con gorro que hemos usado hasta ahora; es decir, M̃ = (X, Y, Z, 1)T

y m̃ = (u, v, 1)T . De acuerdo a esto y recuperando la Ecuación 2.9 tenemos:

sm̃ = A
(
R t

)
M̃ (3.1)
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Donde s es el factor de escala que se utiliza para conseguir un 1 como último elemento

del vector m̃ y aśı tener directamente las coordenadas no homogéneas en sus dos

primeros elementos.

Por otro lado, A es la matriz que contiene los parámetros intŕınsecos que permiten

la proyección de un punto desde el sistema de coordenadas cámara al sistema de

coordenadas (u, v) del plano imagen y que ya hab́ıa sido introducida en la Ecuación

2.3:

A =


fc1 0 uo

0 fc2 vo

0 0 1

 (3.2)

Con el objetivo de facilitar la lectura, de aqúı en adelante nos referiremos a fc
ρw

como fc1 y a fc
ρh

como fc2, representando por tanto ambos parámetros la distancia

focal medida en ṕıxeles, al igual que uo y vo (coordenadas del punto principal) que

también se miden en ṕıxeles.

3.2. Obtención de la solución cerrada

El objetivo de esta solución cerrada es de servir como “semilla” para el método

de optimización iterativo posterior y aśı favorecer su convergencia. Por ello, esta

solución cerrada no es más que una aproximación de la solución real, que surge de

no considerar la distorsión radial que más tarde es introducida en el proceso de

optimización.

Para favorecer la comprensión de esta sección aśı como su organización, se va a

dividir en las tres partes diferenciadas: cálculo de la matriz de homograf́ıa, restric-

ciones en los parámetros intŕınsecos y solución final.

3.2.1. Cálculo de la matriz de homograf́ıa

Como la referencia mundo está ubicada en una de las esquinas del patrón de

calibración con los ejes Xmundo e Ymundo paralelos a los bordes de dicho patrón

(Figura 2.8), la coordenada Z de las esquinas desde esta referencia es nula. Sabiendo
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esto e introduciéndolo en la Ecuación 3.1, nos queda:

s


u

v

1

 = A
(
r1 r2 r3 t

)

X

Y

0

1

 = A
(
r1 r2 t

)
X

Y

1


Donde se ha representado a la matriz de rotación R por sus columnas ri. Por otro

lado, como Z = 0 se cumple siempre, podemos seguir llamando a M̃ de la forma

M̃ = (X, Y, 1)T .

De esta forma, la matriz que relaciona las coordenadas de las esquinas 3D con

sus respectivas coordenadas ṕıxel y que es propia de cada imagen capturada del

patrón de calibración, denominada como matriz de homograf́ıa (H), viene dada por

la Ecuación 3.3.

H3x3 =


hf1

hf2

hf3

 = A
(
r1 r2 t

)
(3.3)

Donde se ha representado por sus filas hfi. Debido a esto, el primer paso para ob-

tener los parámetros intŕınsecos, es el de estimar los elementos de esta matriz de

homograf́ıa. Para ello, podemos plantear un sistema de ecuaciones donde las incógni-

tas sean los propios elementos de la matriz. Esto se puede conseguir relacionando

las componentes de m con las de M̃ :

m =

u
v

 =
1

hf3M̃

hf1M̃

hf2M̃


A partir de la ecuación anterior:

M̃T 01×3 −uM̃T

01×3 M̃T −uM̃T



hTf1

hTf2

hTf3

 = Lx = 02n×1 (3.4)

En cuanto al número de incógnitas, la matriz de homograf́ıa está formada por 9

elementos, pero como está definida según un factor de escala tal y como se observa

en la Ecuación 3.1, el número de soluciones que podŕıan cumplir el sistema 3.4 es

infinito. Para solventar esto, se puede adoptar H(3, 3) = 1 o lo que es lo mismo

x(9) = 1 (esto se realiza aśı por ejemplo en [4]).
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De esta forma, el número de esquinas que han de tenerse en cuenta debe ser ≥ 4

puesto que cada una aporta 2 ecuaciones a 3.4. Es decir, si se aportan n esquinas,

las dimensiones de L serán de 2n× 9.

La solución a este sistema se corresponde con el vector propio asociado al valor

propio más pequeño de la matriz LTL de la Ecuación 3.4. Este cálculo se puede

realizar eficientemente mediante la descomposición de LTL en valores singulares

(SVD) y es de esta forma como se realiza en [4]. La demostración a esto se puede

encontrar en [8].

Por último en relación a la obtención de la matriz de homograf́ıa, decir que

debido al ruido que puede estar presente en una imagen por causas como pequeñas

diferencias en la ganancia o en el offset de los fotositos [6], la Ecuación 3.1 no siempre

se cumple. Es por esto por lo que si n > 4 se puede realizar una optimización por

mı́nimos cuadrados minimizando la siguiente suma de errores cuadráticos:

n∑
i=1

(mi − m̂i)
T (mi − m̂i)

Donde m̂i son las coordenadas de las esquinas calculadas mediante la Ecuación 3.1

y mi son las coordenadas detectadas de las esquinas. Un procedimiento similar de

optimización será explicado con más detalle posteriormente.

3.2.2. Restricciones en los parámetros intŕınsecos

Teniendo ya calculada la matriz de homograf́ıa y expresándola por columnas

como H = (h1, h2, h3), si la aplicamos en las ecuaciones 2.1 y 3.3 tenemos:(
h1 h2 h3

)
= λA

(
r1 r2 t

)
Donde λ al igual que la constante de la Ecuación 3.1 representa un factor de escala.

Además, de esta ecuación se desprende que hi = λAri con i = 1, 2 y sabiendo que

en una matriz de rotación las columnas deben ser ortogonales y por tanto rT1 r2 = 0:

hT1 (A−1)TA−1h2 = 0 (3.5)

Ahora, atendiendo a la condición de normalidad que también deben tener tanto r1

como r2, podemos igualar sus módulos:

hT1 (A−1)TA−1h1 = hT2 (A−1)TA−1h2 (3.6)
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Estas dos condiciones, que sirven para relacionar la matriz de parámetros intŕınsecos

A con las columnas ya calculadas de la homograf́ıa, son las que nos permitirán

calcular los parámetros intŕınsecos tal y como se explicará en la siguiente sub-sección.

Algo importante a señalar sobre esto ahora es la existencia de rotaciones, de-

nominadas como degeneradas, que provocan que las ecuaciones aportadas por dos

imágenes o matrices de homograf́ıa de dos patrones de calibración con una única

rotación sobre su eje Z de diferencia sean combinaciones lineales unas de otras, por

lo que en vez de poder extraer 4 ecuaciones (2 por cada imagen) solo podŕıamos

extraer 2.

Por último señalar que, debido a que debemos estimar también los parámetros

extŕınsicos relacionados con la rotación y la traslación del patrón de calibración (6

grados de libertad), al tener la matriz de homograf́ıa 8 grados de libertad (recordemos

que el noveno se correspond́ıa con la escala), solo podremos estimar dos parámetros

intŕınsecos con una única homograf́ıa, o lo que es lo mismo, con una única imagen

del patrón de calibración, por lo que para estimar correctamente los parámetros

intŕınsecos será necesario tomar varias imágenes de éste.

3.2.3. Solución cerrada final

Como hemos comentado antes, la ecuaciones 3.5 y 3.6, son las que nos permi-

tirán obtener los parámetros intŕınsecos. Para facilitar esto nos podemos definir la

siguiente matriz:

B = (A−1)TA−1 =

=


B11 B12 B13

B12 B22 B23

B13 B23 B33

 =


1
fc21

0 − uofc2
fc21fc2

0 1
fc22

− vo
fc22

− uofc2
fc21fc2

− vo
fc22

(uofc2)2

fc21fc
2
2

+ v2
o

fc22
+ 1

 (3.7)

Como se puede ver, esta matriz es simétrica y el término B12 es nulo debido a la

consideración que ya ha sido argumentada de que α = 0 en la ecuación 2.6. Ahora,

si reorganizamos los términos de la matriz B de la forma:

b = [B11, B22, B13, B23, B33]T
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Y los de hi (columnas de la matriz de homograf́ıa H) de la forma:

hi = [hi1, hi2, hi3]T

Entonces, generalizando las ecuaciones 3.5 y 3.6 para dos columnas hi, hj (con i,j =

1 ó 2), podemos reorganizarlas de la siguiente manera:

hTi Bhj = vTijb (3.8)

Donde

vij =



hi1hj1

hi2hj2

hi3hj1 + hi1hj3

hi3hj2 + hi2hj3

hi3hj3


Con lo que, finalmente y de manera compacta, podemos agrupar las ecuaciones 3.5

y 3.6 en el siguiente sistema: vT12

(v12 − v22)T

b = 02n×1 → Vb = 02n×1 (3.9)

Donde V es una matriz 2n × 5. Esto significa que tendremos una solución única

del sistema si el número de imágenes capturadas del patrón de calibración es n ≥ 2

dado que hay que establecer un factor de escala para b.

Al igual que en el sistema de ecuaciones 3.4 anterior, la solución a este sistema se

corresponde con el vector propio asociado al valor propio más pequeño de la matriz

V TV .

Con esto, ya tenemos determinados los elementos de la matriz B de la Ecuación

3.7 y solo faltaŕıa despejar de ésta los parámetros intŕınsecos para poder obtener

la solución cerrada de la matriz A (ecuación 3.2) (despejarlos no aporta mucha

información a este TFG por lo que si el lector está interesado puede dirigirse a [27]).

Por último, lo que queda una vez ya hemos calculado los elementos de la matriz

A, es calcular los parámetros extŕınsicos a partir de ésta. Para ello, a partir de la

Ecuación 3.3, se deduce que:

t = λA−1h3

r1 = λA−1h1
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r2 = λA−1h2

Con λ = 1/
∥∥A−1h1

∥∥ = 1/
∥∥A−1h2

∥∥ debido a la normalidad de las columnas de una

matriz de rotación. Además, debido a que las columnas de la matriz de rotación son

ortogonales:

r3 = r1 × r2

Tras esto, ya hemos completado la estimación de la solución cerrada de los paráme-

tros de la cámara. Como ya hemos dicho en el principio, este desarrollo se correspon-

de con los trabajos de [27, 28] del investigador Z. Zhang de los que hemos presentado

los aspectos fundamentales para dar contexto y entender el resto del trabajo. Para

tener más información acerca del proceso se recomienda visitar los art́ıculos citados.

A continuación damos paso al proceso de optimización con el que se mejorará

la estimación de esta solución cerrada, teniendo en cuenta aspectos que no han sido

tratados en esta sección como la distorsión radial.

3.3. Refinamiento de la solución cerrada

Como hemos dicho anteriormente, la solución cerrada es una aproximación de

la solución real al no haberse tenido en cuenta los efectos de la distorsión radial,

los cuales aportan un comportamiento no lineal al depender cuadráticamente de la

posición en el plano imagen (ver Ecuación 2.8).

Es debido a esto, por lo que para estimar correctamente los parámetros, no

basta con recurrir a técnicas algebraicas lineales de resolución como las de la sección

anterior; sino que hay que recurrir a técnicas de optimización no lineales como la

que se lleva a cabo en [4] y es la que se va a explicar en esta sección.

El método de estimación al cual nos referimos se denomina como “mı́nimos

cuadrados no lineales de Gauss-Newton” (variante del método de optimización de

Newton), con el que se minimiza la suma de los errores cuadráticos ponderados (f)

entre las coordenadas ṕıxel calculadas (m̂i) y las coordenadas ṕıxel detectadas (mi),

el cual se denomina como error de reproyección:

f(x) =
1

2

n∑
i

∆mi(x)TWi∆mi(x) → ∆mi(x) = mi − m̂i(x) (3.10)
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Figura 3.2: Ejemplo de esquinas detectadas con cierto error (cruz roja, aumentada

por motivos de visualización). Se puede observar cómo intuitivamente el ṕıxel don-

de debeŕıa situarse la esquina detectada (sobre las ĺıneas amarillas que cruzan la

diagonal de los cuadrados) no coincide con la detección.

Donde i representa la imagen i-ésima del patrón de calibración, por lo que el resto

de variables de la ecuación están referidas a dicha imagen; x representa el vector

que contiene todos los parámetros a estimar y que por tanto lo podemos representar

como x = (fci, uo, vo, ki, Ri, ti) y ∆mi(x) es el error de reproyección.

Algo importante a señalar en este punto, es que la detección de las esquinas

del patrón de calibración no es perfecta (ver Figura 3.2). Es por esto que mi es

una estimación de la ubicación de las esquinas sujeta a un determinado error en la

detección. Este error es común considerarlo como un error Gaussiano de media nula

y desviación t́ıpica σ (N (0, σ2)) [27, 6, 25].

Por otro lado, Wi se corresponde con la matriz de pesos, la cual es una matriz

semi-definida positiva que permite dar más importancia a determinados errores de

reproyección. En la práctica, esta matriz suele considerarse como diagonal y con

todos los elementos iguales, representando aśı que los errores en la detección son

iguales e independientes para todas las esquinas [27, 25, 18].

Además, con el objetivo de que tenga un significado estad́ıstico útil, esta matriz

se suele elegir como aquella que aproxime a la inversa de la matriz de covarianza
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asociada a la detección de las esquinas (mi). De esta forma, la Ecuación 3.10 se

corresponde con el negativo del logaritmo de la estimación de máxima verosimilitud1.

Sabiendo todo esto, para representar la ecuación 3.10 de manera más compacta,

podemos formar un único vector en el que aparezcan todas las coordenadas ṕıxel

asociadas a cada esquina de todas las imágenes que hemos utilizado del patrón. De

esta forma definimos m = (mT
1 , ...,m

T
n )T . En cuanto a las matrices de pesos de cada

imagen Wi, las podemos agrupar en una matriz diagonal por bloques de la forma

W = diag(W1, ...,Wn) resultando en la siguiente ecuación equivalente:

f(x) =
1

2
∆m(x)TW∆m(x) → ∆m(x) = m− m̂(x) (3.11)

Antes de empezar con las operaciones algebraicas que hay que llevar a cabo en

este método, es importante destacar la importancia de la solución cerrada. Ya que

este método al igual que otros de optimización no lineal como Levenberg-Marquardt

o Newton, necesitan una estimación inicial de los parámetros a estimar, estando la

convergencia de estos métodos fuertemente relacionada con lo buena o mala que es

dicha estimación previa [25].

Para visualizar esto, se recomienda ver la Figura 3.3, en la que se representa una

hipotética función f(x) como la de 3.10 en su eje Z, que viene dada en función de 2

variables X e Y (para poder visualizar en 3D utilizamos solo 2), en la que se observa

cómo para dos soluciones cerradas con una diferencia próxima en en la estimación

de sus 2 variables, podemos llegar a acabar en un mı́nimo local en vez de uno global

de f(x) tras la optimización o proceso iterativo.

Tal y como hemos dicho antes y en relación a la Ecuación 3.11, x recoge a

todos los parámetros de los que depende la función f(x) a minimizar, y son los que

queremos estimar. Además, como ya hemos introducido antes, los valores que pueden

tener este conjunto de parámetros están asociados con un espacio multi-variable no

lineal que da como resultado a las coordenadas pixel m̂.

Sin embargo, para realizar la optimización, tenemos que asumir que localmente

es posible linealizar este espacio; es decir, ante pequeños cambios en el vector x,

1La estimación de máxima verosimilitud de una variable distribuida normalmente establece la

media y la varianza más verośımiles dada una muestra de dicha variable. Dicha media y varianza

se corresponden con aquellas que consiguen minimizar la expresión (particularizada a nuestro

problema) 3.10, siempre y cuando Wi sea la inversa de la matriz de covarianza [25].
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Figura 3.3: Muestra de cómo diferencias en la estimación inicial, pueden llevar a

acabar en un mı́nimo local de f(x) en vez de en uno global.

denominados como δx, la transformación producida en m será localmente lineal. De

esta forma, asociándolo a la Ecuación 3.11, donde f(x) es una función cuadrática con

m, significa que podremos aproximar f(x+ δx) con una serie de Taylor de segundo

orden2:

f(x+ δx) ≈ f(x) +
df

dx
δx+

1

2
δxT

d2f

dx2
δx (3.12)

Donde x representa el valor actual de los parámetros en cada iteración. De esta forma

si conseguimos minimizar este modelo local cuadrático, conseguiremos minimizar la

Ecuación 3.11 [25].

Además en esta ecuación, aparecen los conceptos de gradiente (g) y matriz hes-

siana (H) de f(x), muy importantes en este desarrollo ya que, como veremos a

continuación, nos permitirán calcular la variación de los parámetros necesaria en

cada iteración o δx, con el objetivo de acercar f(x) a su convergencia (alcanzando

el mı́nimo global). Estos términos son:

g =
df

dx
(x) H =

d2f

dx2
(x)

2Recordemos que, una función f(x) aproximada por una serie de Taylor de segundo orden y en el

entorno de un punto xactual viene dada por f(x) = f(xactual)+ df
dx (x−xactual)+ 1

2
d2f
dx2 (x−xactual)2.

Para escribirlo en su forma incremental, basta con sustituir en esta ecuación el valor x = xactual+δx

quedándonos finalmente la ecuación 3.12
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Ahora, recordando que f(x) = 1
2
∆m(x)TW∆m(x), donde ∆m(x) = m−m̂(x), y

sabiendo por tanto que d∆m
dx

= dm̂
dx

= J , matriz jacobiana de las esquinas calculadas;

podemos expresar el gradiente y la matriz hessiana igualmente de esta forma:

g =
df

dx
(x) = ∆mTW J H =

d2f

dx2
(x) ≈ JTW J

Donde se ha considerado la componente de la matriz hessiana d2m
dx2 ≈ 0 al ser una

aproximación propia del método de optimización de Gauss-Newton, algo que es

muy común en la optimización por mı́nimos cuadrados, dado que con las asunciones

realizadas m(x) es localmente aproximadamente lineal [25].

Con estas herramientas, ya es posible formular el δx a realizar para alcanzar el

mı́nimo de la función localmente cuadrática f(x + δx), consiguiéndolo mediante la

diferenciación de 3.12 con respecto a x e igualándola a un vector de ceros:

df

dx
(x+ δx) ≈ g +Hδx = 0 →

→ δx = −H−1g → δx = −(JTWJ)−1 JTW∆m

(3.13)

Algo a destacar de esta expresión es que el δx al venir dado por −H−1g, y

el gradiente de la función a minimizar, g(x), representar la dirección en la que

se produce la variación más rápida de f(x), significa que si H, evaluada en x, es

definida positiva3 entonces al aplicar el δx calculado estaremos reduciendo f(x)

hasta alcanzar el mı́nimo global.

Sabiendo esto, podemos reafirmar de nuevo la importancia de la solución cerrada,

dado que la condición de que H sea definida positiva se cumplirá si está solución

cerrada nos da un valor de x que se encuentra dentro del espacio de f(x) en el que la

aproximación de segundo orden en series de Taylor 3.12 es aproximadamente válida

[25].

Dicho desde un punto de vista geométrico, si H es definida positiva en en el

entorno del espacio en el que la aproximación 3.12 es válida, f(x) localmente vendrá

dada por una función cuadrática con un único mı́nimo [25] como la de la Figura 3.4.

3Si H evaluada en un cierto valor de los parámetros (x) es definida positiva, significa que para

cualquier vector g, gTH−1g > 0, lo que implica que H−1g no transforma la dirección de g un

ángulo superior a 90°, siendo por tanto δx una variación de los parámetros que reduce a f(x).
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Figura 3.4: Ejemplo de función cuadrática (Z = X2 + Y 2) que cumple la aproxima-

ción 3.12.

3.3.1. Interpretación probabilista de la matriz hessiana

Un aspecto que será de gran utilidad en la evaluación de las simulaciones reali-

zadas en el siguiente caṕıtulo, será la incertidumbre asociada a ellas.

En nuestro problema, al estar utilizando el método de optimización de Gauss-

Newton, la incertidumbre podrá ser calculada a partir de la matriz hessiana de

f(x), que recordemos que viene dada por H = d2f
dx2 ≈ JTW J , donde J es la matriz

jacobiana asociada al cálculo de las esquinas y que será presentada con más detalle

en el siguiente caṕıtulo.

Como hemos introducido ya antes, al considerar un ruido gaussiano en la de-

tección de las esquinas, la expresión 3.11 representa el negativo del logaritmo de la

estimación de máxima verosimilitud (`(x)):

f(x) = −`(x) = −
n∑
i

log(g(mi|x))

Donde se ha utilizado una notación similar a la de [14], en la que g representa la

función que nos permite obtener las coordenadas de las esquinas que vienen dadas

por las ecs. 2.8 y 2.9.

Con esto, es posible definir la matriz de información de Fisher observada (I(x))
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[14] como:

I(x) = − d2

dx2
`(x) = H(x)

Que, como vemos coincide con la matriz hessiana. Ahora, sabiendo que la inversa de

la matriz de información de Fisher, se corresponde con la matriz de covarianza de la

estimación de los parámetros (x) [14], y que esta matriz converge asintóticamente a

I(x) [25], podemos aproximar la varianza en la estimación de los parámetros por:

V ar(x) = diag(H−1) ≈ diag((JTWJ)−1)

A partir de esto, es posible definir la incertidumbre en la estimación de los

parámetros como ± 3V ar(x)
1
2 = ± 3σi, por tanto, esta incertidumbre añadida a la

estimación de cada parámetro xi representa una región en la que el verdadero valor

se situará el 99, 7% de las veces.

De esta forma es tal y como está implementada la obtención de las incertidumbres

asociadas a los parámetros en [4], cuyos resultados serán utilizados de cara a la

simulación y que gracias a este contexto podemos saber de dónde viene dicho cálculo.

Como conclusión, iterar el δx de 3.13, es lo que se conoce como el método de

Gauss-Newton, del que hemos presentado sus aspectos fundamentales en esta sección

y damos por terminado su desarrollo. Gracias a él, como ya hemos dicho, es posible

mejorar la solución cerrada obtenida previamente, algo que es lógico ya que es aqúı

cuando el modelo de distorsión radial ha sido introducido.

De esta forma, damos por terminada la explicación de los aspectos fundamentales

detrás de uno de los procesos de calibración más utilizados actualmente; [18, 3, 19, 15]

son solo algunos de los ejemplos de investigaciones recientes que utilizan las mismas

bases de este método.



Caṕıtulo 4

SIMULACION

En este caṕıtulo se van a mostrar las simulaciones realizadas con el objetivo

de alcanzar el objetivo propuesto, es decir, encontrar un procedimiento general de

selección de posiciones y orientaciones del patrón de calibración de tal forma que

podamos superar la precisión de una calibración estándar aśı como la de los métodos

ya establecidos en el estado del arte.

En una primera parte introduciremos el entorno de trabajo desarrollado, el cual

nos permitirá obtener resultados de manera visual y anaĺıtica. En una segunda parte

se analizarán los resultados. Finalmente, se comparará el método desarrollado con

los del estado del arte.

4.1. Entorno de trabajo desarrollado

El software utilizado para la creación del entorno de trabajo ha sido MATLAB

[13], junto a la toolbox 1 de calibración de una cámara desarrollada por el investigador

Jean-Yves Bouguet [4], en la cual se implementan las ecuaciones desarrolladas en los

caṕıtulos 2 y 3. Dicha toolbox contiene los algoritmos para una calibración estándar

de la cámara. En este TFG hemos realizado numerosas modificaciones sobre dicha

toolbox para alcanzar nuestros objetivos.

1Toolbox es la palabra utilizada para referirse a los algoritmos destinados a un campo o rama

cient́ıfica en concreto, los cuales se ponen a disposición de terceros ya sea gratuitamente o mediante

su compra.

43
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Con el entorno de trabajo que hemos desarrollado somos capaces de crear de ma-

nera automática patrones de calibración sintéticos o virtuales (creando hipotéticas

coordenadas de esquinas), hasta más de 1 millón de ellos, y llevar a cabo más de

1000 calibraciones con un tiempo de computación razonable.

La generación de los patrones siguen el procedimiento mostrado en el Algoritmo

1. Como se puede observar en él, se generan múltiples traslaciones para una rota-

ción dada del patrón, siempre que se cumpla la condición de que es visible en la

cámara. Para observar distintos parámetros que se han definido en él visualmente,

se recomienda ver la Figura 4.1.

Algoritmo 1: Generación de patrones de calibración

1: patrongeom {geometŕıa del patrón de calibración}
2: cam {parámetros intŕınsecos de la cámara a simular}
3: distxy {distancia entre 2 tableros contiguos con mismo alejamiento}
4: distz {diferencia de alejamiento entre tableros}
5: ∆ang {incremento de giro angular en un eje (grados sexagesimales)}
6: for girox = 0 to 359 con paso = ∆ang do

7: for giroy = −89 to 90 con paso = ∆ang do

8: for giroz = 0 to 359 con paso = ∆ang do

9: Rpatron = Rotx(girox)Roty(giroy)Rotz(giroz)

10: Patron visible = Test visibilidad(cam, patrongeom, Rpatron)

11: if Patron visible then

12: Tpatron = Crear traslacion(cam, patrongeom, Rpatron, distxy, distz)

13: end if

14: end for

15: end for

16: end for

En cuanto al test de visibilidad, se impuso en primer lugar que la normal del

patrón expresada desde la referencia cámara, deb́ıa tener una componente negativa

en el eje Zc; de esta forma, se consiguen eliminar situaciones como las de la Figura

4.2.

Para completar está condición y evitar casos como los de la Figura 4.3 que surgen

debido a la transformación perspectiva realizada por la cámara, se impuso también
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(a) (b)

Figura 4.1: Vista 3D del proceso de generación de patrones para una única rota-

ción. a: si consideramos que cambia la posición de los tableros. b: equivalencia a si

consideramos un cambio de posición en la cámara.

(a) (b)

Figura 4.2: Ejemplo de patrón no visible debido a que su normal tiene componente

positiva en el eje Zc de la cámara. a: vista 3D. b: Imagen que capturaŕıa la cámara.
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(a) (b)

Figura 4.3: Ejemplo de patrón no visible debido a que su normal forma un ángulo

inferior a 90◦ con la dirección que marcan los rayos de luz entrantes de mayor

inclinación en plano XZ de la cámara. a: vista 3D. b: Imagen que capturaŕıa la

cámara.

la siguiente condición: Si la normal del patrón teńıa proyección sobre los planos XcZc

e YcZc, dicha proyección debe formar un ángulo mayor a 90◦ con la dirección de los

rayos que entran con una mayor inclinación por dichos planos y que coinciden con

los ĺımites del ángulo de visión de la cámara. Si no se cumple esta condición, no

se crean traslaciones que ubiquen a la proyección del patrón en la mitad del plano

XcZc o YcZc asociado al rayo de luz comentado.

En cuanto al criterio de creación de las rotaciones del Algoritmo 1, se diseñó

para que se pudiesen crear todas las rotaciones posibles con el mı́nimo coste compu-

tacional; es decir, evitando repetir rotaciones equivalentes que se pueden producir

por diferentes combinaciones de giros en los ejes.

En nuestro caso, al utilizar la secuencia de rotaciones Rotx(α)Roty(β)Rotz(γ), no

solo existe el conjunto de rotaciones equivalentes que son fruto de sumar al ángulo

de giro un múltiplo entero de 360° y que viene dado por Rotx(α + 360k)Roty(β +

360k)Rotz(γ+ 360k), sino que también existe el conjunto de rotaciones equivalentes

Rotx(α+180)Roty(180−β)Rotz(γ+180). Sabiendo que la equivalencia de un ángulo
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Figura 4.4: Ćırculo que muestra la

zona, sombreada, en la que se en-

cuentran los ángulos equivalentes a un

ángulo β ε (−90°, 90°]

Figura 4.5: Tablero utilizado en la ma-

yoŕıa de los análisis

β ε (−90°, 90°] asociado a Roty se encuentra en la zona sombreada del ćırculo de la

Figura 4.4, podemos establecer un giro cualquiera en los otros dos ejes y obtener una

matriz de rotación única, siempre y cuando β no pertenezca a dicha zona sombreada.

Por último, para la función asociada a la creación de las traslaciones, se adoptó el

criterio de calcular el alejamiento mı́nimo para que el patrón sea totalmente visible

en la cámara, y partir de esta localización ir aumentando el alejamiento según distz

a la vez que se sitúan los patrones que pudiesen entrar en dicho ángulo de visión en

base a distxy.

Este cálculo se realizó en base a la geometŕıa del patrón y las caracteŕısticas de

la cámara, centrándose principalmente en los ĺımites establecidos por el campo de

visión. Debido a su extensión y mayor complejidad, si el lector está interesado en

la función, puede dirigirse al anexo A donde se encuentra el código con comentarios

detallados.
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Parámetros Unidades

Resolución
Horiz. (nx) 640

Ṕıxeles
Vert. (ny) 480

Distancia focal
fc1 660

Ṕıxeles
fc2 660

Punto principal
cc1 (uo) 319.5

Ṕıxeles
cc2 (vo) 239.5

Coef. de distorsión
kc1 -0.26 mm−2

kc2 0.13 mm−4

Tabla 4.1: Modelo de cámara utilizado en la mayoŕıa de los análisis realizados

4.2. Importancia de la colocación del patrón

Para mostrar la importancia que tiene la colocación de un patrón en relación al

error de la calibración, se realizó un análisis consistente en 600 calibraciones formadas

por 30 imágenes cada una, con una elección aleatoria de los tableros creados mediante

el Algoritmo 1.

Inspirados por el modelo de cámara utilizado en la documentación de [4] y con

el objetivo de simular con un modelo de cámara real, se utilizaron unos parámetros

muy similares a los obtenidos por J. Yves-Bouguet en esa calibración de ejemplo,

los cuales aparecen recogidos en la tabla 4.1.

En cuanto al patrón de calibración se utilizó de nuevo el de la documentación de

J. Yves-Bouguet (ver Figura 4.5), es decir, un tablero de 11×12 cuadrados en los ejes

Xmundo e Ymundo respectivamente, y de un tamaño cada uno de dX = dY = 30mm.

El error en la detección de sus esquinas tal y como se ha introducido en la sección

3.3 se consideró gaussiano con media nula y con desviación estandar de 1 ṕıxel

(aceptable para la gran mayoŕıa de cámaras [27]).

Los resultados aparecen en la Figura 4.6, en la que se muestra el error en la

estimación de los parámetros de la cámara conforme se van añadiendo imágenes a la

calibración. Cada ĺınea representa una única calibración, por lo que al representar

todas en una misma gráfica, se puede observar entre que valores máximos y mı́nimos

puede estar el error aśı como su frecuencia.
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(a)

(b)

(c)

Figura 4.6: Error en la estimación de 600 calibraciones (cada una representa una

ĺınea). Nótese la gran variación del error, debida a las distintas posiciones de cámara

de las calibraciones. a: Distancia focal (fci). b: Punto principal (cci). c: Distorsión

(kci).
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Figura 4.7: Significado geométrico del error
∣∣∣ ccreal−ccestimfc

∣∣∣
Como conclusión, los errores de distintas calibraciones tienen un rango de va-

riación muy amplio. Esto justifica la intención de establecer un procedimiento de

orientación y traslación de los tableros que garantice errores bajos.

4.3. Sensibilidad con el número de imágenes

Este análisis se plantea como una extensión del anterior, en el que se muestra

el promedio de los errores relativos en la estimación de los parámetros de las 600

calibraciones anteriores en función del número de imágenes utilizado.

En todos los parámetros se ha utilizado la definición normal de error relativo:

errorrel =
∣∣∣paramreal−paramestimado

paramreal

∣∣∣ excepto en el caso del punto principal (cci) debido

a que, tal y como señalan los trabajos [27, 24], su error no tiene una importancia

significativa; mientras que si se opta por utilizar en el denominador la distancia

focal, esto le aporta un significado geométrico al representar la pendiente entre el

eje óptico calculado y el eje óptico real (ver Figura 4.7). Los resultados se presentan

en la Figura 4.8.

Al observar estos resultados, se concluye que conforme el número de imágenes
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(a)

(b)

(c)

Figura 4.8: Errores relativos promedio de los parámetros conforme se añaden imáge-

nes (izq.) y mejora en el error relativo por adición de una imagen (dcha.) a: Distancia

focal (fci). b: Punto principal (cci). c: Distorsión (kci).
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Parámetros a) b) Unidades

Resolución
Horiz. (nx) 3264 320

Ṕıxeles
Vert. (ny) 2448 240

Distancia focal
fc1 2244 300

Ṕıxeles
fc2 2444 300

Punto principal
cc1 (uo) 1631.5 159.5

Ṕıxeles
cc2 (vo) 1223.5 120.5

Coef. de distorsión
kc1 -0.146 -0.3 mm−2

kc2 -0.015 0.2 mm−4

Tabla 4.2: Modelos de cámara que se añaden al análisis de influencia de la distancia

aumenta, la precisión en la estimación de los parámetros también lo hace. Sin em-

bargo, hay que tener en cuenta que al añadir más imágenes, el proceso de calibración

se hace más largo y eso puede llegar a ser un inconveniente en aquellas situaciones

en las que se requiera calibrar un número considerable de cámaras o en las que no

se disponga de mucho tiempo. Por estas razones hay que intentar conseguir unos

resultados precisos con un número de imágenes aceptable.

Por otro lado, tal y como se observa en las gráficas, en general a partir de haber

utilizado 20 imágenes, las mejoras en el error se aproximan a un valor nulo. Es por

esto por lo que en los siguientes análisis se consideró la utilización de 20 imágenes

por calibración.

4.4. Sensibilidad con la distancia

En este análisis se estudia cual es la influencia del alejamiento del patrón de

calibración de la cámara; es decir, cómo la ubicación del patrón con respecto al eje

Zc de la cámara afecta a los resultados. En él, además de utilizar el mismo modelo

que en los análisis anteriores y con el objetivo de reafirmar las conclusiones extráıdas,

se evaluaron otros dos modelos de cámara que aparecen en la tabla 4.2.

El análisis consistió en establecer 3 rangos de alejamientos en los que se realizaron

100 calibraciones de 20 imágenes cada una. De esta forma se llevaron a cabo un total

de 900 calibraciones teniendo en cuenta los 3 modelos de cámara evaluados.
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Figura 4.9: Punto de vista geométrico del análisis. Las esferas representan los tramos

de alejamiento en los que se puede situar la cámara, cuyos radios aparecen en la

imagen. En este caso, 10 cámaras aparecen ubicadas en el tramo 3.

Los tres rangos de alejamiento fueron los siguientes:

Tramo 1 : es el más próximo a la cámara, comprendido entre el mı́nimo aleja-

miento posible para que un patrón pudiese entrar en el ángulo de visión de la

cámara y 1/3 del alejamiento máximo, que consideraremos como 1,5m.

Tramo 2 : comprendido entre 1/3 y 2/3 del alejamiento máximo analizado.

Tramo 3 : comprendido entre 2/3 y el alejamiento máximo.

Desde un punto de vista geométrico, si se considera que la cámara cambia de

ubicación y no el patrón, esto equivale a situarla entre 2 esferas cuyos radios vienen

determinados por los tramos de alejamiento como muestra la Figura 4.9.

Un primer resultado del análisis, para el modelo de cámara de la tabla 4.1, se

puede observar en la Figura 4.10, en la que se muestra el error obtenido en todos los

parámetros para las 100 calibraciones realizadas (cada una representa una ĺınea) en

cada rango de alejamiento. Se puede observar que los mejores resultados se obtienen

para los menores valores de la coordenada Zc del patrón, que corresponden a las dos

columnas más a la izquierda en la figura.

Los valores promedio del error para estas calibraciones se muestran en la Figura

4.11. Esta es otra forma de verificar que conforme la distancia o alejamiento en Zc

disminuye, los resultados en la calibración mejoran al presentar un menor error.
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(a)

(b)

(c)

Figura 4.10: Error en cada una de las 100 calibraciones realizadas en cada tramo.

Los tramos aparecen en el t́ıtulo de cada figura, incrementando el alejamiento de

izquierda a derecha. a: Distancia focal (fci). b: Punto principal (cci). c: (kci).

Esta tendencia también se obtuvo en las otras dos cámaras evaluadas, como

muestra de ello se adjuntan en la Figura 4.12 los valores promedio del error de la

distancia focal fci para ambos modelos.

Otra forma de evaluar la precisión de una calibración es en base a la incerti-

dumbre asociada a la estimación de los parámetros y que ya ha sido introducida

en la sección 3.3.1. Por ello, durante este análisis también se recogieron los datos

asociados a la incertidumbre de los parámetros.

Los datos de incertidumbre que mostraremos de aqúı en adelante, representan

la mitad de todo del rango de incertidumbre. Es decir, si el valor estimado de la

primera componente de la distancia focal es fc1 = ˆfc1 ± k ṕıxeles, nosotros haremos

referencia a ese valor de k en vez de a 2k.
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(a)

(b)

(c)

Figura 4.11: Valores promedio del error en los 3 tramos de alejamiento evaluados

para el modelo de cámara de la tabla 4.1. a: Distancia focal (fci). b: Punto principal

(cci). c: Distorsión (kci).
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(a) (b)

Figura 4.12: Valores promedio del error en la estimación de fci en los 3 tramos de

alejamiento para los modelos de cámara de la tabla 4.2. a: modelo a). b: modelo b).

En la gráfica 4.13 se muestra la suma de las incertidumbres asociadas a la dis-

tancia focal (fci) y al punto principal (cci) (ambas en ṕıxeles) de los tres modelos de

cámara. De nuevo se observa que en el tramo más cercano a la cámara se obtienen

unos mejores resultados al ser inferiores los niveles de incertidumbre.

4.4.1. Justificación teórica

Para justificar teóricamente estos resultados, podemos obtener anaĺıticamente los

elementos de la traza de la matriz hessiana, introducida en la sección 3.3 y tratada

con más detalle en la sub-sección 3.3.1. Esta matriz viene dada por H = JTWJ ,

donde J = dm̂
dx

es la matriz jacobiana de las coordenadas estimadas de las esquinas

del patrón de calibración.

Para su cálculo consideraremos un modelo sin distorsión radial, ya que esto faci-

litará el entendimiento de los resultados. Esta simplificación no afectará significati-

vamente al análisis, dado que los coeficientes de distorsión se utilizan para corregir

puntos en el plano imagen. Dicha corrección únicamente se basa en información del

plano imagen y no en información del entorno (influencia con la distancia a la cáma-

ra), mientras que la distancia focal es la que ubica los puntos del entorno en el plano

imagen en función de su ubicación relativa a la cámara en 3D.

De esta forma, definiendo una matriz de rotación genérica del patrón de cali-

bración R = Rotx(θ)Roty(β)Rotz(α), y representando las operaciones seno y coseno
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(a) (b)

(c)

Figura 4.13: Valores promedio de la suma de incertidumbres asociadas a fci y cci

en los 3 tramos de alejamiento. Modelos de cámara: a: tabla 4.1, b y c: tabla 4.2

modelos a) y b) respectivamente.

por S y C respectivamente, tenemos:

R =


C(α)C(β) −C(β)S(α) S(β)

S(α)C(θ) + C(α)S(β)S(θ) C(α)C(θ)− S(α)S(β)S(θ) −C(β)S(θ)

S(α)S(θ)− C(α)S(β)C(θ) C(α)S(θ) + S(α)S(β)C(θ) C(β)C(θ)



Ahora, definiendo una traslación del patrón de calibración genérica t = (Xc, Yc, Zc)
T

y unas coordenadas genéricas de una esquina desde la referencia mundo ubicada en el

patrón M̃ = (X, Y, 0, 1)T , las coordenadas normalizadas (considerando la distancia

focal de 1 unidad), y que hab́ıamos denominado como x̃d, vienen dadas por:

x̃d =
(
R t

)
M̃ → xd =

1

x̃d(3)

x̃d(1)

x̃d(2)





58 CAPÍTULO 4. SIMULACION

Por lo que las coordenadas en ṕıxeles m̂ son:

m̂ =

u
v

 =

xd(1)fc1 + cc1

xd(2)fc2 + cc2



Recordemos que la matriz jacobiana viene dada por J = dm̂
dx

, siendo x los paráme-

tros a estimar, por lo que si definimos las siguientes sub-matrices asociadas a una

esquina i de la imagen del patrón j:

Ai,j =


∂u

∂fc1

∂u

∂fc2

∂u

∂cc1

∂u

∂cc2

∂v

∂fc1

∂v

∂fc2

∂v

∂cc1

∂v

∂cc2

 Bi,j =


∂u

∂θ

∂u

∂β

∂u

∂α

∂u

∂Xc

∂u

∂Yc

∂u

∂Zc

∂v

∂θ

∂v

∂β

∂v

∂α

∂v

∂Xc

∂v

∂Yc

∂v

∂Zc


podemos expresar la matriz jacobiana asociada al cálculo de las coordenadas de esta

esquina de la siguiente forma:

Ji,j =
(
Ai,j Bi,j

)
Aplicando esto para todas las esquinas ne del patrón de calibración que aparece en

la imagen j tenemos:

Jj =
(
Aj Bj

)
=


A1,j B1,j

A2,j B2,j

...

Ane,j Bne,j


Finalmente, generalizando para un número de imágenes ni, la matriz jacobiana del

sistema nos queda de la siguiente forma:

J =


A1 B1 0 . . . 0

A2 0 B2 . . . 0
...

...
...

. . .
...

Ani 0 0 . . . Bni



A partir de esto, ya es posible obtener la expresión anaĺıtica de la matriz hessia-
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na2:

I(x) = H(x) = JTJ =



∑ni
j=1 A

T
j Aj AT1B1 AT2B2 . . . ATniBni

BT
1 A1 BT

1 B1 0 . . . 0

BT
2 A2 0 BT

2 B2 . . . 0
...

...
...

. . .
...

BT
niAni 0 0 . . . BT

niBni



Donde I(x) es la matriz de información de Fisher observada (ver sección 3.3.1).

Como nos estamos centrando en la incertidumbre de los parámetros intŕınsecos

(fc, cc), consideraremos que las componentes relativas a la información aportada

por las distintas imágenes del patrón de calibración en cuanto a estos parámetros,

quedan recogidas en el bloque matricial
∑ni

i=1A
T
i Ai, más concretamente en la traza

de dicha matriz.

Esto se aprecia mejor si mostramos la traza en forma de derivadas parciales y

particularizada para una imagen j:

diag(ATj Aj) =



(
∂m̂1(1)

∂fc1

)2

+

(
∂m̂1(2)

∂fc1

)2

+ . . .+

(
∂m̂ne(1)

∂fc1

)2

+

(
∂m̂ne(2)

∂fc1

)2

(
∂m̂1(1)

∂fc2

)2

+

(
∂m̂1(2)

∂fc2

)2

+ . . .+

(
∂m̂ne(1)

∂fc2

)2

+

(
∂m̂ne(2)

∂fc2

)2

(
∂m̂1(1)

∂cc1

)2

+

(
∂m̂1(2)

∂cc1

)2

+ . . .+

(
∂m̂ne(1)

∂cc1

)2

+

(
∂m̂ne(2)

∂cc1

)2

(
∂m̂1(1)

∂cc2

)2

+

(
∂m̂1(2)

∂cc2

)2

+ . . .+

(
∂m̂ne(1)

∂cc2

)2

+

(
∂m̂ne(2)

∂cc2

)2



Se puede observa que cada fila está formada por las segundas derivadas de las

coordenadas de las esquinas calculadas con respecto a fc1, fc2, cc1 y cc2 respectiva-

mente. Calculando cada fila por separado y asociándolo a su respectivo parámetro

intŕınseco, se obtiene:

2En este desarrollo se está considerando a la matriz de pesos W como una matriz identidad, de

esta forma estamos considerando un error en la detección de las esquinas caracterizado por una

σ = 1 ṕıxel. Para generalizarlo a cualquier σ bastaŕıa con multiplicar todos los elementos de la

matriz hessiana por el inverso de dicho valor.
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fc1 →
∑ne

i=1

(
Xc+ M̂i(1)C(α)C(β)− M̂i(2)C(β)S(α)

Zc+ M̂i(1)(S(α)S(θ)− C(α)S(β)C(θ)) + M̂i(2)(C(α)S(θ) + S(α)S(β)C(θ))

)2

fc2 →
∑ne

i=1

(
Y c+ M̂i(1)(S(α)C(θ) + C(α)S(β)S(θ)) + M̂i(2)(C(α)C(θ)− S(α)S(β)S(θ))

Zc+ M̂i(1)(S(α)S(θ)− C(α)S(β)C(θ)) + M̂i(2)(C(α)S(θ) + S(α)S(β)C(θ))

)2

cc1 →
ne∑
i=1

1 = ne cc2 →
ne∑
i=1

1 = ne

Obsérvese que en los términos asociados a fc1 y fc2, el parámetro que define el

alejamiento Zc aparece únicamente en el denominador. Además, Zc domina al resto

de términos al aumentar, al ser éstos últimos proporcionales a productos de senos y

cosenos.

Por lo tanto podemos concluir que conforme el alejamiento en Zc relativo a la

cámara aumenta, la información añadida por las coordenadas de las esquinas dis-

minuye. Esto se puede relacionar con la cuantificación de la incertidumbre asociada

al cálculo de dichos parámetros, ya que tal y como se explicó en la sección 3.3.1, la

inversa de la matriz hessiana representa la matriz de covarianza de la estimación de

los parámetros.

Es posible dar una intuición a este comportamiento: Si el patrón se aleja indefi-

nidamente de la cámara, todas las coordenadas de las esquinas tenderán a aparecer

en un único punto en la imagen. La información que se podŕıa extraer del patrón en

este caso seŕıa nula.

Tras estas observaciones extráıdas mediante simulación y verificadas de manera

teórica, se concluyó que para mejorar la precisión de la calibración hab́ıa que situar

lo más cerca posible el patrón de la cámara, para aśı reducir al máximo el valor de Zc.

Para demostrar esto de la manera más formal y correcta posible, se debeŕıa calcular

anaĺıticamente la inversa de la matriz hessiana, pero debido al coste computacional

y al tiempo que requeriŕıa, no se planteó dentro de los objetivos de este TFG.

4.5. Sensibilidad con la orientación

Tras haber extráıdo la conclusión anterior, se creó otro conjunto de aproximada-

mente 4500 patrones de calibración con el Algoritmo 1 incluyendo la condición de
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Figura 4.14: Ejemplo de 2 patrones situados lo más cerca posible de la cámara.

que todos ellos deb́ıan estar lo más cerca posible de la cámara. En la Figura 4.14 se

muestra un ejemplo de esto.

Para analizar la influencia de la orientación del patrón, se decidió estudiar cómo

inflúıa el ángulo que formaban en 3D la normal del patrón de calibración y el eje

óptico de la cámara.

Debido a las condiciones de visibilidad impuestas, este ángulo pod́ıa situarse

únicamente en un rango ∈ (90°, 180°); aunque, para una mayor facilidad de entendi-

miento el ángulo calculado fue el existente entre el eje óptico y la normal del plano

en sentido contrario; de esta forma el nuevo rango se sitúa entre los (0°, 90°). De

aqúı en adelante nos referiremos a dicho ángulo como θ.

Un total de 1000 calibraciones de 15 imágenes cada una fueron llevadas a cabo

(aunque también se realizaron calibraciones cuando el número de imágenes era ≥ 2,

de esta forma el total llevado a cabo es de 1000x14). A partir de ellas, se observó

que pod́ıa existir una relación entre θ y la precisión de la calibración debido a 2
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Figura 4.15: Valores promedio de la suma de la incertidumbre en la estimación de

fc y cc. Cada barra representa el valor promedio de esta incertidumbre de todas

aquellas calibraciones en las que en el número de imágenes indicado se ha utilizado

al menos un patrón con un valor de θ igual o superior en 10° al asociado.

observaciones:

Peores resultados cuando se calibraba con 2 imágenes si hab́ıa presencia de

patrones de calibración con un θ ≤ 10°. Esto se puede observar en la Figura

4.15.

Peor precisión si se supera un promedio de θ = 70° conforme aumenta el

número de imágenes, tal y como se muestra en la Figura 4.16.

Tras estas observaciones se analizó el problema desde la perspectiva de encontrar

el valor del ángulo θ para el que se obteńıan menores errores. Dicho de otra forma, se

decidió analizar la precisión de la calibración fijando un θ y distribuyendo el patrón

de calibración por todo el plano imagen gracias a un giro realizado en torno al eje

óptico (aśı θ no vaŕıa).

Este método como veremos más adelante, obtuvo unos resultados positivos. Una

ventaja es que se evitan las rotaciones degeneradas introducidas en la sección 3.2.2
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Figura 4.16: Análisis sobre las 100 peores y mejores calibraciones (en cuanto a in-

certidumbre) que muestra cuántas de ellas y en que % con respecto al total (ĺınea

negra) cumplen que θ̄ ≥ 70°.

debido a que en este caso la rotación (R) del patrón con respecto a la cámara viene

dada por:

Ro = Rotx(180°)Rotz(−90°) → R = Rotz(α)RoRotx(θ)

Donde Ro es una rotación que sirve para situar el patrón de calibración frente a la

cámara y Rotz(α) es la rotación realizada sobre el eje óptico que permite distribuir

el patrón por la imagen. De esta forma si θ 6= 0, hay una diferencia de Rotx(θ) entre

2 rotaciones consecutivas y nunca una Rotz, evitando aśı las rotaciones degeneradas.

Para obtener el valor óptimo de θ, se consideró a aquel que minimizase la suma

de las incertidumbres asociadas a los parámetros fc y cc. Se excluyó de esta suma

a la incertidumbre de los coeficientes kc al venir dados en unas unidades distintas

a los ṕıxeles; sin embargo, esta consideración no se pensó como negativa ya que

al minimizar la incertidumbre del resto de parámetros, se contribuye a una mejora

global de la calibración.

Analizar el ángulo θ óptimo para un único modelo de cámara tal y como he-

mos hecho hasta ahora seŕıa un análisis incompleto. Por ello ejecutamos el método

del Algoritmo 2 para evaluar aproximadamente 200 modelos diferentes de cámara
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Figura 4.17: Definición gráfica de las 2 componentes del ángulo de visión.

variando el ángulo de visión (AOV) horizontal y vertical:

AOVH = 2 arctan

(
0,5nx

fc1

)
AOVV = 2 arctan

(
0,5ny

fc2

)
Donde recordemos que nx y ny son la resolución en ṕıxeles horizontal y vertical.

Estas dos componentes representan el ángulo medido desde el eje óptico que la

cámara es capaz de capturar. Gráficamente se puede ver en la Figura 4.17.

Tal y como se puede ver en el algoritmo, únicamente se vaŕıa la distancia fo-

cal para cambiar el valor del ángulo de visión. Otro análisis muy relevante es la

comparación con otros modelos de cámara en los que también haya variación de la

resolución.

El ruido en la detección de las esquinas se consideró igual para todos los valores

de θ y de un valor de 0,1 ṕıxeles. Esta consideración será mejorada tal y como se

verá en el caṕıtulo correspondiente a la implementación con imágenes reales.

Los resultados a este análisis se muestran en la Figura 4.18a, a partir de la cual

se puede extraer una relación aproximadamente cuadrática entre el ángulo de visión

y el ángulo θ que proporcionaba una menor incertidumbre y que viene dada por:

θoptim = 0, 00923AOV 2 − 1, 09AOV + 79 (4.1)

Tal y como se muestra en la figura, esta relación en realidad está asociada al ángulo

de visión horizontal; sin embargo, se adoptó también para la componente vertical al
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Algoritmo 2: Análisis para encontrar el ángulo θ óptimo

1: [AOVo, AOVf ] = [18°, 102°] {Ángulo de visión inicial y final}
2: [nx, ny] = [640, 480] {Resolución horizontal y vertical}
3: cc = [0, 5nx 0, 5ny] {Consideramos el punto principal en el centro de la

imagen}
4: patrongeom {Geometŕıa del patrón de calibración}
5: σdeteccion {Desviación t́ıpica del error en la detección de las esquinas}
6: for cam = 1 to 200 do

7: AOVH =
AOVf−AOVo

200
cam+ AOVo

8: [fc1 fc2] = f(AOVH , nx) {Aplicamos la ec. del AOV considerando

fc1 = fc2}
9: for θ = 1° to 90° con paso = 1° do

10: for α = 0° to 359° con paso = 24° do

11: Rpatron = Rotz(α)RoRotx(θ)

12: Tpatron = Crear traslacion(fc, cc, nx, ny, patrongeom, Rpatron)

13: esquinas = Crear esquinas(cam,Rpatron, Tpatron, θ, σdeteccion)

14: end for

15: cali=Realizar calibración(cam, θ,Rpatron, Tpatron, esquinas)

16: all cal=Guardar calibración(all cal, cali)

17: end for

18: cal min incert=Selecc θ con mı́n incert(all cal)

19: end for

ser similares y al haber barrido un mayor rango de la componente horizontal y por

lo tanto ser más preciso.

Para probar si esta relación se pod́ıa considerar como válida se evaluaron dife-

rentes modelos de cámara, a los que se les sometió un análisis similar al presentado

en el algoritmo 2. De esta forma se pudo comparar el θ óptimo en cuanto a incerti-

dumbre en los parámetros fc y cc y el calculado por la expresión 4.1. Los modelos

de cámara evaluados se recogen en la tabla 4.3 y los resultados de esto se muestran

en la Figura 4.18b.

Algo a destacar de la Figura 4.18b es el hecho de que los valores de θ calculados

mediante la expresión 4.1 (puntos verdes) difieren ligeramente de los valores óptimos
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(a) Valor de θ con menor incertidumbre asociada a cc y fc en función del ángulo de visión.

La curva azul es el ajuste cuadrático teniendo en cuenta todos los puntos y la roja es el

resultado de excluir aquellos puntos que se desv́ıan más de una desviación t́ıpica del ajuste

azul. La expresión 4.1 se corresponde con la curva roja.

(b) Incertidumbre en función del valor de θ con el que se lleva a cabo la calibración para

las cámaras de la tabla 4.3. El valor de θ asociado a un menor valor de incertidumbre

aparece marcado en rojo, mientras que el θ calculado mediante la expresión 4.1 aparece

marcado en verde.

Figura 4.18
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Parámetros 1) 2) 3) 4) 5) 6) 7) 8) Unidades

Resolución
Horiz. (nx) 1600 2100 1400 2000 800 1000 1400 2500

Ṕıxeles
Vert. (ny) 1200 1900 1300 1600 700 1000 1400 2000

Distancia focal
fc1 700 1200 2500 660 400 1200 660 2000

Ṕıxeles
fc2 700 1200 2500 660 400 1200 660 2000

Punto principal
cc1 (uo) 799,5 1049,5 699,5 999,5 399,5 499,5 699,5 1249,5

Ṕıxeles
cc2 (vo) 599,5 949,5 649,5 799,5 349,5 499,5 699,5 999,5

Coef. de distorsión
kc1 -0,26 -0,35 -0,1 -0,3 -0,1 -0,3 -0,26 -0,2 mm−2

kc2 0,13 0,2 0 0,1 0,15 0,13 0,13 0,1 mm−4

Áng. de visión AOVH 97 82 31 113 90 45 93 64 (°)

Tabla 4.3: Modelos de cámara usados para validar la expresión 4.1.

reales (puntos rojos), y además esta diferencia se puede explicar por la existencia

de una zona de estabilidad de la incertidumbre que en general se mantiene entre los

40° y 70°.

Como conclusión ante estas observaciones, se pensó en establecer un método que

consistiese en situar el patrón lo más cerca posible con las orientaciones determinadas

por el θ óptimo calculado. Para probar su validez, se comparó con el estado del arte

aśı como con una colocación aleatoria de los patrones de calibración.

4.6. Comparación con el estado del arte

El método desarrollado se comparó con el trabajo llevado a cabo por A. Ri-

chardson [18], conocido como AprilCal, con el trabajo de S. Peng y P. Sturm [15],

conocido como Calibration Wizard y con el método implementado por R. Boada en

su Trabajo Fin de Máster [3].

Todos estos métodos tienen en común que son incrementales; es decir, se parte

de un pequeño número de imágenes (generalmente 2 ó 3) con las que se realiza una

calibración inicial para tener una primera estimación de los parámetros.

A partir de esta estimación inicial, se calcula qué ubicación del patrón es la mejor

en base a distintos criterios y una vez determinada, se realiza otra foto al patrón

y se calibra de nuevo la cámara hasta alcanzar un cierto grado de precisión. Los

fundamentos del criterio que sigue cada método se explican a continuación:
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1. AprilCal: en él, se selecciona qué ubicación es la mejor de en torno a 60 ubi-

caciones posibles del patrón, las cuales están distribuidas por todo el plano

imagen. La selección de la ubicación óptima es aquella que presenta una me-

nor incertidumbre en los parámetros intŕınsecos.

2. Calibration Wizard: la metodoloǵıa es similar al anterior; es decir, se seleccio-

na la ubicación del patrón que minimiza la incertidumbre de los parámetros

intŕınsecos. Sin embargo, en vez de considerar un conjunto de 60 posibles ubi-

caciones, se realiza una optimización global que tiene en cuenta todo el espacio

de trabajo 3D.

3. TFM de R. Boada: este método presenta una variación al de AprilCal. La

ubicación seleccionada es la que maximiza el parámetro denominado como

MaxERE ; es decir, aquella con la que se maximiza el error entre las coordena-

das de las esquinas detectadas en la imagen y las calculadas con la estimación

actual de los parámetros intŕınsecos.

Como se puede apreciar, estos métodos presentan un coste computacional mayor

que el método que estamos proponiendo, ya que todos ellos tienen que realizar

sucesivas calibraciones por cada imagen a la vez que los cálculos asociados al cómputo

de la siguiente mejor ubicación del patrón de calibración.

Con el método que se está proponiendo, únicamente se necesitaŕıa una calibración

inicial con 1 ó 2 imágenes para tener una estimación de la distancia focal (fci)

y poder estimar aśı el ángulo de visión de la cámara. De esta forma se evitaŕıa

la necesidad de realizar una calibración por cada imagen y además los cálculos

asociados a determinar la mejor ubicación del patrón se realizaŕıan nada más conocer

el ángulo de visión.

Para comparar con todos los métodos, en vez de considerar 60 patrones única-

mente como en 1) y 3), se consideraron en torno a 1.400 patrones creados mediante

el algoritmo 1 con un ∆ang = 40°, siendo aśı más exhaustivos en la comparación

con estos dos métodos. Sin embargo, en cuanto al método 2) esto supone una apro-

ximación, ya que no se están utilizando todas las posibles ubicaciones 3D.

De esta forma, al utilizar un mismo número de patrones de calibración en la

evaluación de los 3 métodos, se juntó a los métodos 1) y 2) en uno sólo al ser esa la
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principal diferencia entre ellos.

Una última consideración realizada, fue el hecho de considerar que en la detección

de las esquinas todos los métodos con sus respectivas colocaciones de patrones de

calibración elegidas presentaban una misma desviación t́ıpica de σ = 0, 1 ṕıxeles.

Los modelos de cámara evaluados fueron los de la tabla 4.3, la cual se consideró

como una buena muestra debido a la gran variación de los parámetros. Los resul-

tados de la comparación en cuanto a error e incertidumbre en la estimación de los

parámetros se muestran en la Figura 4.19 y de manera esquemática en la tabla 4.4.

(a) Incertidumbre en la estimación.

(b) Error absoluto en la estimación.

Figura 4.19: Comparación. De izquierda a derecha los parámetros son: fci, cci y kci.

El eje x representa el ¯AOV de cada cámara.
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Mejoras en los 8 modelos de cámara evaluados

Parámetros

Con respecto a los métodos:

Minim. Covarianza

(AprilCal y Calib. Wizard)

MaxEre

(TFM)

Elección

aleatoria

Incertidumbre Error Incertidumbre Error Incertidumbre Error

fc1 2/8 4/8 8/8 6/8 8/8 6/8

fc2 2/8 4/8 8/8 7/8 8/8 7/8

cc1 6/8 7/8 8/8 7/8 8/8 8/8

cc2 5/8 2/8 8/8 6/8 8/8 8/8

kc1 4/8 4/8 8/8 6/8 8/8 8/8

kc2 4/8 4/8 8/8 6/8 8/8 6/8

TOTAL 23/48 25/48 48/48 38/48 48/48 43/48

Tabla 4.4: Comparación con el estado del arte en la que se muestra la cantidad de

mejoras en la estimación con respecto al total de cámaras (8) y en la última fila con

respecto al total de evaluaciones (48).

A partir de estos resultados podemos observar que el método que se está propo-

niendo produce unos resultados similares a los métodos 1) y 2) denominados como

“Minim. Cov.” tanto en la gráfica 4.19 como en la tabla 4.4 ya que en torno al 50%

se consiguen ofrecer unos resultados mejores.

Por otro lado, en cuanto al método 3) y a la elección aleatoria de la ubicación de

los patrones de calibración, denominados como “MaxERE” y “Elecc. Aleatoria”, el

método que se está proponiendo consigue ofrecer unos resultados mejores el 100%

de las veces en cuanto a incertidumbre y el 79% y 89% de las veces en cuanto a error

absoluto respectivamente.

Teniendo en cuenta el mayor coste computacional asociado a los métodos 1) y 2),

se puede concluir que el método presentado tiene ventajas sobre el estado del arte.

Por ello, se decidió desarrollar en MATLAB una herramienta que permitiese validar

con imágenes reales estas conclusiones y que se presenta en el siguiente caṕıtulo.



Caṕıtulo 5

IMPLEMENTACIÓN EN

IMÁGENES REALES

Para llevar a la práctica el método propuesto, y que consiste en establecer el

patrón de calibración lo más cerca posible de la cámara a la vez que situarlo con

el ángulo θ calculado a partir del ángulo de visión de la cámara, se desarrolló en

MATLAB una herramienta que permite mostrar en la grabación en vivo la proyec-

ción del patrón de calibración con la posición adecuada.

En la Figura 5.1 se muestran varios ejemplos de esto. Nótese el hecho de que

el patrón de calibración real utilizado es de 9 × 13 cuadrados; sin embargo, por

costumbre, las calibraciones con ese patrón se realizaron como si fuese uno de 7×11;

es decir, sin considerar a los cuadrados de los bordes más extremos.

El modelo de cámara que se evalúo en este parte fue una webcam logitech C920,

a la que se le sometió una calibración con el método propuesto y una calibración

con imágenes “estándar”; es decir, intentando distribuir el patrón por todo el plano

imagen para tener un resultados honestos con los que comparar.

Como última consideración, la métrica que se utilizó en esta parte para comparar

los métodos fue la de la incertidumbre, dado que no se es conocedor de los verdaderos

valores de los parámetros de la cámara que calibramos. De esta forma, métricas como

las del error relativo o absoluto, que pudimos llevar a cabo en la simulación, no es

posible utilizarlas en esta fase.

71
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(a) Rectángulos proyectados sobre la grabación de la cámara en con el θ óptimo calculado.

(b) Muestra del patrón real colocado sobre la proyección de los rectángulos.

(c) Imágenes en blanco y negro con las esquinas del patrón de calibración detectadas.

Figura 5.1

Tal y como se puede ver en la tabla 5.1, los resultados de esta comparación

fueron negativos, al ofrecer nuestro método mayor incertidumbre en la estimación

de los parámetros. Tras ello, realizamos un análisis para explorar las causas de esta

aparente contradicción entre los resultados de simulación y las imágenes reales.

Gracias a un análisis exhaustivo, se observó que la causa que provocaba unos peo-

res resultados era el hecho de que nuestro método presentaba una mayor desviación

t́ıpica del error de reproyección (σ∆m), tal y como se ve en la tabla 5.1.

σ∆m se puede asociar a la desviación t́ıpica en la detección de las esquinas [5]

y es tal y como está implementado en [4]. De esta forma la expresión asociada al

cálculo de la matriz de covarianza, tratada en la sección 3.3.1, se puede expresar de

la siguiente forma:

Cov = H−1 ≈ (JTWJ)−1 = (WJTJ)−1 = W−1(JTJ)−1

Donde recordemos que W es la matriz de pesos semi-definida positiva y diagonal,

donde los elementos de su traza se corresponden con el inverso de la varianza asociada

a la detección de las esquinas y que se considera igual para todas. Es decir, los
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Parámetros
Nuestro método (15 imágenes) Calibración “estándar” (15 imágenes)

Incertidumbrei 3σi Incertidumbrei 3σi

fc1 0,982 ṕıx. 2,47 0,645 ṕıx. 4,38

fc2 1,01 ṕıx. 2,54 0,564 ṕıx. 3,84

cc1 2,06 ṕıx. 5,18 1,15 ṕıx. 7,82

cc2 1,99 ṕıx. 5,00 1,11 ṕıx. 7,55

kc1 0,00970 mm−2 0,0244 mm−2

pix
0,00740 mm−2 0,0503 mm−2

pix

kc2 0,0279 mm−4 0,0701 mm−4

pix
0,0407 mm−4 0,277 mm−4

pix

σ∆m 0,398 ṕıx. 0,147 ṕıx.

Tabla 5.1: Primera comparación con imágenes reales. Modelo: webcam logitech C920.

elementos de su traza vienen dados por diag(W ) =
(

1
σ∆m

)2

.

Si consideramos el parámetro con el elemento asociado (JTJ(i, i))−1/2 y lo de-

nominamos como σi, la incertidumbre asociada al parámetro es posible calcularla

como ± 3σiσ∆m. En la tabla 5.1 se observa como nuestro método en todos los casos

ofrece un menor valor de 3σi, lo que resulta algo positivo pero que se ve perjudicado

por la desviación en la detección en las esquinas σ∆m .

Por ello se pensó en analizar si exist́ıa una influencia entre el ángulo θ calculado

para nuestro método, con la precisión o desviación t́ıpica existente en la detección

de las esquinas. Trabajos como [21] han mostrado que la precisión en la detección

de esquinas de Harris [9], método que está implementado en [4], empeora cuando

aumenta el ángulo entre el eje óptico y la normal de la superficie en la que está la

esquina.

Para este análisis, se realizaron un total de 10 calibraciones de 15 imágenes reales

cada una, con distintos valores de θ y utilizando la misma webcam. Esto fue posible

mediante la herramienta visual desarrollada en el TFG (Figura 5.11).

En cada calibración se recogió el valor de σ∆m observándose la tendencia mos-

trada en la gráfica 5.2. Dicha tendencia se decidió aproximar por un valor constante

de σ∆m ≈ 0, 28 ṕıxeles entre los valores de θ ∈ [5°, 40°] y por una tendencia lineal

1Los valores de θ < 5° y θ > 65° no fueron tenidos en cuenta. En el primer caso la calibración

no converǵıa por aproximarse a rotaciones degeneradas (ocurren cuando θ = 0° como ya se ha

explicado). En el segundo caso el elevado escorzo con el que el patrón es observado dificultaba

considerablemente la detección de las esquinas.
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Figura 5.2: Desviación t́ıpica en la detección de las esquinas (σ∆m) en función de θ.

con θ > 40°. Lo que nos sirvió para confirmar que en efecto, el ruido en la detección

de las esquinas variaba con θ.

Sabiendo esto, lo siguiente que se hizo fue llevar a cabo de nuevo el algoritmo 2

incluyendo la relación que se acaba de mostrar. Es decir, se calculó de nuevo cual

era el valor de θ óptimo en función del ángulo de visión. Los resultados se pueden

ver en la Figura 5.3a y tal como se observa el valor de θ óptimo pasa a ser uno

prácticamente constante e igual a 40°.

De nuevo, para poder confirmar si está estimación es válida de acuerdo a las

suposiciones realizadas, se llevó a cabo una simulación con los modelos de cámara

de la tabla 4.3 para verificar aśı si la estimación de 40° se aproxima al valor de θ

que conlleva una menor incertidumbre. Los resultados aparecen en la Figura 5.3b.

De esta forma se ve que efectivamente la estimación se cumple aún variando, no

solo la distancia focal, sino todos los demás parámetros ya que como mucho el error

en la estimación del valor óptimo es de 1°.

Con los resultados de este análisis, se realizaron de nuevo los experimentos con

imágenes reales. Esto solo tendŕıa sentido si se utilizase una cámara distinta a la

que se usó para extraer los datos de ruido en la detección de las esquinas, ya que

sino se estaŕıa predisponiendo que los resultados saliesen óptimos para esa cámara.

Es por esto por lo que se utilizó la otra cámara que se dispońıa con adaptabilidad
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(a) Valor de θ con menor incertidumbre asociada a cc y fc en función del ángulo de visión.

Se observa que prácticamente es un valor constante.

(b) Incertidumbre en función del valor de θ con el que se lleva a cabo la calibración para

las cámaras de la tabla 4.3. El valor de θ asociado a un menor valor de incertidumbre

aparece marcado en rojo, mientras que el θ que ha sido considerado como óptimo, aparece

marcado en verde. Se observa una correcta estimación.

Figura 5.3
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Parámetros
Nuestro método

Con consideraciones

muy similares

Con consideraciones

similares

Sin consideraciones

similares

Incertidumbrei 3σi Incertidumbrei 3σi Incertidumbrei 3σi Incertidumbrei 3σi

fc1 1,60 ṕıx. 3,07 1,92 ṕıx. 6,48 1,909 ṕıx. 8,37 3,10 ṕıx. 14,83

fc2 1,82 ṕıx. 3,49 1,81 ṕıx. 6,10 2,03 ṕıx. 8,90 2,90 ṕıx. 13,88

cc1 2,96 ṕıx. 5,68 2,90 ṕıx. 9,78 3,33 ṕıx. 14,61 3,98 ṕıx. 19,04

cc2 2,51 ṕıx. 4,82 2,75 ṕıx. 9,27 2,62 ṕıx. 11,49 3,30 ṕıx. 15,79

kc1 0,00550 mm−2 0,0106 mm−2

pix
0,00870 mm−2 0,0294 mm−2

pix
0,00580 mm−2 0,0254 mm−2

pix
0,0066 mm−2 0,0316 mm−2

pix

kc2 0,00950 mm−4 0,0182 mm−4

pix
0,0390 mm−4 0,132 mm−4

pix
0,0192 mm−4 0,0842 mm−4

pix
0,0135 mm−4 0,0646 mm−4

pix

σ∆m 0,521 ṕıx. 0,296 ṕıx. 0,228 ṕıx. 0,209 ṕıx.

Tabla 5.2: Comparación con imágenes reales incluyendo la tendencia estimada de

ruido en la detección de esquinas. El modelo utilizado es la cámara integrada en el

portátil Toshiba Qosmio X870. Nuestro método de izquierda a derecha, es compa-

rado con una calibración en la que 1) se sitúan los patrones cerca de la cámara y

rotando el patrón por todo el plano imagen, 2) Los patrones se alejan ligeramente y

se sigue rotando por todo el plano imagen, 3) Los patrones se alejan más, el patrón

se distribuye por todo el plano imagen, pero la rotación sobre su normal es menor.

Todas las imágenes utilizadas se pueden ver en el anexo B.

a MATLAB y es el modelo integrado en el portátil de la marca Toshiba y modelo

Qosmio X870. Con ella se obtuvieron los resultados que se ven en la tabla 5.2,

donde se compara nuestro método con calibraciones llevadas a cabo con distintos

grupos de imágenes que cumplen condiciones diferentes, para un mismo número de

15 imágenes.

En ella se observa que nuestro método ofrece una menor incertidumbre en todos

los parámetros de todos los conjuntos de imágenes, exceptuando a los parámetros cc1

y fc2 del conjunto de imágenes más similar (situado en la tabla 5.2 entre las columnas

4-5) aunque está diferencia es muy pequeña (0,06 y 0,01 ṕıxeles respectivamente).

Además se observa que el término 3σi es inferior en nuestro método para todos

los parámetros de todos los conjuntos de imágenes, lo que nos da entender que si el

ruido en la detección de las esquinas fuese igual, nuestro método ofreceŕıa la mitad

de incertidumbre o incluso menos.

Como último análisis del TFG para evaluar la precisión ofrecida por nuestro

método, se decidió recoger los valores de incertidumbre de las calibraciones de la

tabla 5.2 tras cada vez que se añad́ıa una imagen. Como punto de partida se con-

sideraron 5 imágenes al ser una cantidad que permit́ıa obtener resultados estables

para todos los tipos de calibración de la tabla.



77

Los resultados se presentan en las Figuras 5.4 y 5.5. En la primera de ellas

aparece el valor de incertidumbre teniendo en cuenta la diferencia existente de error

en la detección de las esquinas (σ∆m) y en la segunda, se muestra el valor de 3σi

(recordemos que σi representa la ráız cuadrada de los elementos de la traza de

(JTJ)−1 y que cuanto más bajos sean, se contribuirá a una menor incertidumbre o

desviación t́ıpica en la estimación).

En cuanto a la primera figura, las conclusiones son similares a las de la tabla 5.2;

ya que que tras un cierto número de imágenes, el método que se está proponiendo

ofrece mejores resultados en los mismos parámetros. Igualmente es interesante co-

mentar que, salvo en los parámetros de distorsión, los 3 métodos que son mejores

en todas las imágenes son aquellos que tienen condiciones similares.

Por último en cuanto a la segunda figura, se observa que nuestro método ofrece

un menor valor en todos los parámetros, algo que es positivo y muestra que si no

fuese por el ruido existente en la detección de las esquinas, se ofreceŕıan unos mejores

resultados en general. Aqúı además se observa que en todos los parámetros, las 3

mejores calibraciones son aquellas que comparten condiciones similares al método

propuesto.
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Figura 5.4: Comparación de la incertidumbre ofrecida por nuestro método con la

ofrecida por calibraciones con consideraciones diferentes. En esta figura se incluye el

hecho de que nuestro método tiene un mayor error en la detección de las esquinas.
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Figura 5.5: Comparación del valor 3σi (elementos de la traza de (JTJ)−1/2), ofrecida

por nuestro método con la ofrecida por calibraciones con consideraciones diferentes.

Por tanto, aqúı no se incluye el hecho de que nuestro método tiene un mayor error

en la detección de las esquinas.
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Caṕıtulo 6

CONCLUSIONES

En este Trabajo de Fin de Grado, se ha planteado un método para la calibración

de una cámara con bajo error. La problemática se ha abordado desde una perspectiva

global, buscando las transformaciones (posición y orientación) de las cámaras que

reducen el error de calibración. Este trabajo se diferencia aśı del estado del arte,

que busca la siguiente mejor transformación a partir de una calibración dada. Como

consecuencia de abordar el problema de manera general nuestro análisis concluye

con las posiciones desde las cuales tomar las imágenes antes de la calibración y

reduce el coste computacional de manera significativa.

Para ello se han analizado cómo influyen aspectos como la distancia entre el

patrón de calibración y la cámara y su orientación con respecto a ésta. El análisis se

ha realizado desde un punto de vista teórico y mediante simulación; determinándose

finalmente la posibilidad de alcanzar una mejora en la precisión si se minimiza la

distancia y se utiliza un cierto ángulo entre el patrón y el eje óptico de la cámara.

El método propuesto se ha evaluado en simulación con respecto al estado del

arte, y se ha mostrado que ante unas mismas condiciones de ruido en la detección

de las esquinas, es capaz de ofrecer resultados mejores o similares al estado del arte

y con un coste computacional menor. Es decir, hemos encontrado configuraciones

geométricas que conducen a un error de calibración bajo.

Se ha evaluado también el método propuesto con imágenes reales, lo que ha per-

mitido observar un mayor error en la detección de las esquinas que en una calibración

81



82 CAPÍTULO 6. CONCLUSIONES

realizada sin éste método. El error en la detección de las esquinas se propaga a los

resultados de calibración, y ante errores variables el análisis anterior de las configu-

raciones geométricas no es totalmente válido.

Ante esto, se ha estudiado la relación entre el ruido y el ángulo entre el patrón y

la cámara, lo que ha permitido mejorar los resultados e incluso ofrecer una estima-

ción de la mayoŕıa de los parámetros con una menor incertidumbre que en el resto

de calibraciones analizadas, utilizando una cámara diferente a la utilizada para la

estimación de dicha relación.

Igualmente se ha observado que el método segúıa teniendo un mayor error en la

detección de las esquinas, por lo que una posible ĺınea futura a este trabajo seŕıa

probar distintos algoritmos de detección, o si fuese necesario intentar desarrollar uno

propio. Además, tal y como se ha mostrado, nuestra propuesta no siempre ofrece una

estimación con una menor incertidumbre. Por ello, una posible ĺınea futura podŕıa

ser profundizar en el análisis para buscar posibles configuraciones con errores todav́ıa

más bajos. Podŕıan analizarse aspectos como, por ejemplo, conjuntos de imágenes

tomados con distintos ángulos, o relajar la condición de que una de las esquinas del

patrón esté muy cercana al borde de la imagen.
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Anexo A

Creación de las traslaciones

A continuación se muestra la función desarrollada que permitió la colocación de

los patrones de calibración dentro del campo de visión de la cámara para cualquier

rotación.

Las entradas de este código son:

Rci : matriz de rotación asociada al patrón.

Poses vert : representa las coordenadas, desde la referencia ubicada en el patrón,

de los vértices del mismo.

Fov vertices : representa las coordendas de los ĺımites del ángulo de visión desde

la referencia cámara para un alejamiento unidad (en este caso 1 mm).

1

2 %Vé r t i c e s en l a r e f e r e n c i a c ámara ( s i n a p l i c a r t r a s l a c i ón ) :

3 p o s e s v e r t c = Rci∗ p o s e s v e r t ;

4

5 %Nos creamos a con t inuac i ón una v a r i a b l e con l o s v é r t i c e s

ordenados de menor a mayor z ( a l e j amiento de l a c ámara ) .

6 [ po se s ve r t cxyz , p vxyz ind ] = s o r t ( po s e s ve r t c , 2 ) ;

7

8 p o s e s v e r t c z = p o s e s v e r t c ( : , p vxyz ind ( 3 , : ) ) ; %organizamos

l o s v é r t i c e s seg ún Zc ( de menor a mayor )

9

89
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10 %A cont inuac i ón determinamos l a s d i f e r e n c i a s en Xc , Yc y Zc

ent re cada pare ja de v é r t i c e s de l t a b l e r o .

11 %Primero , creando l o s ı́ nd i c e s ( po s e s i nd ) que por f i l a s

i n d i c a l a pare ja de v é r t i c e s c o r r e sp ond i en t e s de l a que

se c a l c u l a su d i f e r e n c i a .

12 pose s ind = [ 1 2 ; 1 3 ; 1 4 ; 2 3 ; 2 4 ; 3 4 ] ; %Pare jas de v é

r t i c e s ana l i z ada s

13

14 p o s e s d i f f x = p o s e s v e r t c (1 , po s e s i nd ( : , 1 ) ) − p o s e s v e r t c

(1 , po s e s i nd ( : , 2 ) ) ;

15 p o s e s d i f f y = p o s e s v e r t c (2 , po s e s i nd ( : , 1 ) ) − p o s e s v e r t c

(2 , po s e s i nd ( : , 2 ) ) ;

16 p o s e s d i f f z = p o s e s v e r t c (3 , po s e s i nd ( : , 1 ) ) − p o s e s v e r t c

(3 , po s e s i nd ( : , 2 ) ) ;

17

18 % En base a qu é v é r t i c e se encuentra má s a l a i zda / a r r i b a se

determina un componente de l a e x p r e s i ón que má s ade lante

determinar á l a z min de l t a b l e r o con l a r o t a c i ón

co r r e spond i en t e :

19 poses multk x = 1/ f c (1 ) ∗ ( ( p o s e s d i f f x < 0) ∗ cc (1 ) + (

p o s e s d i f f x >= 0) ∗ ( ( nx−1)−cc (1 ) ) ) ;

20 poses multk y = 1/ f c (2 ) ∗ ( ( p o s e s d i f f y < 0) ∗ cc (2 ) + (

p o s e s d i f f y >= 0) ∗ ( ( ny−1)−cc (2 ) ) ) ;

21

22 % Calculamos l a menor z de cada par de v é r t i c e s de l t a b l e r o :

23 p o s e s z p a i r = [ p o s e s v e r t c (3 , po s e s i nd ( : , 1 ) ) ; p o s e s v e r t c (3 ,

po s e s i nd ( : , 2 ) ) ] ;

24 pose s min zpa i r = min ( p o s e s z p a i r ) ;

25

26 % Calculamos e l a l e j amiento mı́ nimo de l t a b l e r o para l a

r o t a c i ón dada :

27 % 1) Se c a l c u l a l a z minima para e l primero de l o s v é r t i c e s

de cada pare ja cons iderada , es dec i r , se e s t á t ratando a

cada par ind iv idua lmente :



91

28 z min x = f c (1 ) /(nx−1)∗( abs ( p o s e s d i f f x )−p o s e s d i f f z .∗

poses multk x ) ;

29

30 % 2) Como e l primer v é r t i c e ent r e cada par puede s e r e l má s

cercano o e l má s l e jano , r e f e r enc i amos todo a l v é r t i c e má

s cercano de cada par :

31 z min x = z min x + ( p o s e s d i f f z < 0) .∗ p o s e s d i f f z ;

32

33 % 3) Y a cont inuac i ón r e f e r enc i amos todas l a s d i s t a n c i a s a

un mismo vé r t i c e , e l v é r t i c e número 1 :

34 z min x2 = z min x − pose s min zpa i r + p o s e s v e r t c z (3 , 1 ) ;

35

36 % 4) Aquel v é r t i c e que n e c e s i t e un mayor a l e j amiento se

e l i g e :

37 [ z min x aux , z min x ind ] = max( z min x2 ) ;

38 z min x = z min x ( z min x ind ) ;

39 pose s zv x = pose s min zpa i r ( z min x ind ) ;

40

41 % Todo e s to ha s ido para l a s d i s t a n c i a s h o r i z o n t a l e s , a

con t inuac i ón se hacen para l a s v e r t i c a l e s :

42 z min y = f c (2 ) /(ny−1)∗( abs ( p o s e s d i f f y )−p o s e s d i f f z .∗

poses multk y ) ;

43 z min y = z min y + ( p o s e s d i f f z < 0) .∗ p o s e s d i f f z ;

44

45 z min y2 = z min y − pose s min zpa i r + p o s e s v e r t c z (3 , 1 ) ;

46 [ z min y aux , z min y ind ] = max( z min y2 ) ;

47

48 z min y = z min y ( z min y ind ) ;

49 pose s zv y = pose s min zpa i r ( z min y ind ) ;

50

51 %Ahora , e l máximo de z min x y z min y s e r á e l va l o r mı́ nimo

que se tendr á que a l e j a r e l t a b l e r o para e s t a r dentro

completamente de l campo de v i s i ón de l a c ámara :

52 z min poses = max ( [ z min x aux z min y aux ] ) ;
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53 i f ( z min poses == z min x aux )

54 pose s zv = pose s zv x ;

55 z min poses = z min x ;

56 e l s e

57 pose s zv = pose s zv y ;

58 z min poses = z min y ;

59 end

60

61 %Como c r i t e r i o para c o l o c a r e l o r i g en de l tab l e ro , l o

intentaremos c o l o c a r l o má s a r r i b a y a l a i z q u i e r d a

pos ib l e , por e l l o nos f a l t a determinar , cu á l de l o s

puntos e s t á má s a l e j a do de l campo de v i s i ón tanto por

a r r i b a como por l a i zqu i e rda , ya que e s t o s v é r t i c e s s e r án

l o s que determinar án e l desp lazamiento n e c e s a r i o de l

o r i g en tanto en Xc como en Yc .

62

63 %Caculamos primero para e l l o , l a s z de todos l o s v é r t i c e s :

64 p o s e s v e r t c z 2 = z min poses + p o s e s v e r t c ( 3 , : ) − pose s zv ;

65

66 %Dis tanc ia con r e spe c to a l l ı́ mite s u p e r i o r i z q u i e r d o de l

campo de v i s i ón :

67 p o s e s f o v l i m = pose s ve r t c z2 ’∗ [− cc (1 ) / f c (1 ) −cc (2 ) / f c (2 ) ] ;

%4x2 ( l i m i t e s de l fov tanto en x como en y para l a z de

cada v é r t i c e )

68 p o s e s f o v l i m d i s t = p o s e s v e r t c ( [ 1 2 ] , : ) ’ − p o s e s f o v l i m ;

69 [ d i s t v 1 r e l , d i s t v 1 i n d ] = min ( p o s e s f o v l i m d i s t ) ;

70

71 %Z ’ s de l v é r t i c e s de má s a l a i zda de l FOV ( z 1 ) , de má s

a r r i b a ( z 2 ) y l a z asoc iada a l o r i g en ( z 1 )

72 z 1 t p o s e = z min poses + p o s e s v e r t c (3 , d i s t v 1 i n d (1 ) ) −
pose s zv ;

73 z 2 t p o s e = z min poses + p o s e s v e r t c (3 , d i s t v 1 i n d (2 ) ) −
pose s zv ;

74 z 3 t p o s e = z min poses + p o s e s v e r t c (3 , 1 ) − pose s zv ;
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75

76 %Las d i s t a n c i a s que s e r á n e c e s a r i o de sp l a za r e l o r i g en para

que quepa todo dentro de l FOV:

77 d i s t v 1 x = p o s e s v e r t c (1 , 1 ) − p o s e s v e r t c (1 , d i s t v 1 i n d (1 ) ) ;

78 d i s t v 1 y = p o s e s v e r t c (2 , 1 ) − p o s e s v e r t c (2 , d i s t v 1 i n d (2 ) ) ;

79

80 % A cont inuac i ón , de f in imos l o s pares de v é r t i c e s ( sus Z)

que de f inen l a l ong i tud v e r t i c a l y h o r i z o n t a l de l FOV

n e c e s a r i a .

81 % Consideramos l a d i s t a n c i a asoc iada a l o s v é r t i c e s que

determinan e l a l e j amiento mı́ nimo nece sa r i o , ya que por l o

menos hasta un determinado a l e j amiento se mantendran

como l a s d i s t a n c i a s que má s ocupan dentro de l FOV de

todos l o s pares de v é r t i c e s p o s i b l e s .

82 p o s e s i n d p a i r x = pose s ind ( z min x ind , : ) ;

83 p o s e s i n d p a i r y = pose s ind ( z min y ind , : ) ;

84

85 t ab l ong x = abs ( p o s e s v e r t c (1 , p o s e s i n d p a i r x (1 ) ) −
p o s e s v e r t c (1 , p o s e s i n d p a i r x (2 ) ) ) ;

86 t ab l ong y = abs ( p o s e s v e r t c (2 , p o s e s i n d p a i r y (1 ) ) −
p o s e s v e r t c (2 , p o s e s i n d p a i r y (2 ) ) ) ;

87

88 % La z asoc iada a e s t o s v é r t i c e s l a ca lcu lamos a cont inuac i ó

n . En l a primera f i l a ponemos l o s v e r t i c e s a soc i ado s a l

FOVx y en l a segunda l o s a soc i ados a l FOVy:

89 p o s e s f o v v z = [ p o s e s v e r t c z 2 ( p o s e s i n d p a i r x (1 ) )

p o s e s v e r t c z 2 ( p o s e s i n d p a i r x (2 ) ) ;

90 p o s e s v e r t c z 2 ( p o s e s i n d p a i r y (1 ) )

p o s e s v e r t c z 2 ( p o s e s i n d p a i r y (2 ) ) ] ;

91

92 i f ( p o s e s d i f f x ( p o s e s i n d p a i r x ) < 0)

93 p o s e s c o e f x = [ cc (1 ) / f c (1 ) , ( ( nx−1)−cc (1 ) ) / f c (1 ) ] ;

94 e l s e

95 p o s e s c o e f x = [ ( ( nx−1)−cc (1 ) ) / f c (1 ) , cc (1 ) / f c (1 ) ] ;
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96 end

97

98 i f ( p o s e s d i f f y ( p o s e s i n d p a i r y ) < 0)

99 p o s e s c o e f y = [ cc (2 ) / f c (2 ) , ( ( ny−1)−cc (2 ) ) / f c (2 ) ] ;

100 e l s e

101 p o s e s c o e f y = [ ( ( ny−1)−cc (2 ) ) / f c (2 ) , cc (2 ) / f c (2 ) ] ;

102 end

103

104 %En f u n c i ón de l a s v a r i a b l e s [ k1 k2 k3 k4 ] c readas en l a

f u n c i ón s imu la c i ó n t e s t v i s i b i l i t y , creamos l a s

s i g u i e n t e s v a r i a b l e s que se u t i l z i a r án pos te r i o rmente

para cond i c i one s :

105 paux x = −t l i m (2) + t l i m (4) ; %Nota : p o s i b l e s v a l o r e s =

0 ,1 ,−1

106 paux y = t l i m (1) − t l i m (3) ;

107

108 % Con esto , ya podemos c a l c u l a r l a p o s i c i ón de todos l o s

t a b l e r o s :

109 z a c t u a l = p o s e s f o v v z ;

110 z 1 t p o s e a c t u a l = z 1 t p o s e ;

111 z 2 t p o s e a c t u a l = z 2 t p o s e ;

112 z 3 t p o s e a c t u a l = z 3 t p o s e ;

113

114 %Para l a s cond i c i one s

115 p d i f f v i s i b x = mean ( [ min ( p o s e s v e r t c ( 1 , : ) ) max( p o s e s v e r t c

( 1 , : ) ) ] ) − p o s e s v e r t c (1 , 1 ) ; %D i f e r e n c i a ent r e e l punto

medio y e l o r i g en en Xc

116 p d i f f v i s i b y = mean ( [ min ( p o s e s v e r t c ( 2 , : ) ) max( p o s e s v e r t c

( 2 , : ) ) ] ) − p o s e s v e r t c (2 , 1 ) ; %D i f e r e n c i a ent r e e l punto

medio y e l o r i g en en Yc

117

118 aux = 0 ;

119

120 %whi le ( z 3 t p o s e a c t u a l < a l e jam z l im ) && (˜ f l a g c p )
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121 whi le aux < 6

122

123 %aux = kk+1;

124 kkx = f l o o r (1/ d i f f t p o s e ∗( p o s e s c o e f x (1 ) ∗ z a c t u a l ( 1 , 1 )

+ p o s e s c o e f x (2 ) ∗ z a c t u a l ( 1 , 2 ) − t ab l ong x ) +

1 .001 ) ;

125 kky = f l o o r (1/ d i f f t p o s e ∗( p o s e s c o e f y (1 ) ∗ z a c t u a l ( 2 , 1 )

+ p o s e s c o e f y (2 ) ∗ z a c t u a l ( 2 , 2 ) − t ab l ong y ) +

1 .001 ) ;

126 %kk = kk + kkx∗kky ;

127

128 %Colocac i ón de l o s checkerboards en l o s p lanos

cons ide rados :

129

130 f o r aux2 = 1 : kky

131 f o r aux3 = 1 : kkx

132 comp1 = z 1 t p o s e a c t u a l ∗ f o v v e r t i c e s ( 1 , 1 )+

d i s t v 1 x +(aux3−1)∗ d i f f t p o s e ;

133 comp2 = z 2 t p o s e a c t u a l ∗ f o v v e r t i c e s ( 1 , 2 )+

d i s t v 1 y + ( aux2−1)∗ d i f f t p o s e ;

134

135 i f ( ( comp1 + p d i f f v i s i b x ) ∗ paux x >= 0) && ( (

comp2 + p d i f f v i s i b y ) ∗ paux y >= 0) %

Comprobaciones de v i s i b i l i d a d

136 aux = aux+1;

137 Tci = [ comp1 , comp2 , z 3 t p o s e a c t u a l ] ’ ;

138 kk = kk+1;

139 s imu lac i on obt ene r x ;

140 i f ( aux sa f e == 0)

141 eva l ( [ ’ cam ’ num2str ( n cam ) ’ . tab 1 . r o t

’ num2str ( rcont ) ’ . t r . t r ’ num2str (

aux ) ’ = Tci ; ’ ] )

142 e l s e

143 aux = aux−1;
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144 end

145 end

146 end

147 % i f f l a g c p

148 % break ;

149 % end

150 end

151

152 z a c t u a l = z a c t u a l + d i f f z t p o s e ;

153 z 1 t p o s e a c t u a l = z 1 t p o s e a c t u a l + d i f f z t p o s e ;

154 z 2 t p o s e a c t u a l = z 2 t p o s e a c t u a l + d i f f z t p o s e ;

155 z 3 t p o s e a c t u a l = z 3 t p o s e a c t u a l + d i f f z t p o s e ;

156

157 end

158

159 nRc creadas = kk ;



Anexo B

Imágenes utilizadas en la

evaluación experimental

A continuación, en las Figuras B.1, B.2, B.3 y B.4, y con motivo de ilustrar los

experimentos realizados, se presentan las fotos que se utilizaron en los 4 diferentes

métodos de llevar a cabo la calibración y que fueron usadas en la comparación final

del caṕıtulo 5. Estas fotos dieron como resultado a los datos de la tabla 5.2 y a las

Figuras 5.4 y 5.5.
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Figura B.1: Conjunto de imágenes realizadas con el método propuesto: situar lo más

cerca posible los patrones de calibración y con un ángulo entre normal y eje óptico

de θ = 40°.

Figura B.2: Conjunto de imágenes realizadas con condiciones muy similares en cuan-

to a cercańıa, distribución por el plano imagen del patrón y rotación sobre la normal

del mismo.
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Figura B.3: Conjunto de imágenes realizadas con condiciones similares en cuanto a

cercańıa, distribución por el plano imagen del patrón y rotación sobre la normal del

mismo.

Figura B.4: Conjunto de imágenes realizadas sin condiciones similares en cuanto a

cercańıa y rotación sobre la normal del mismo; aunque la condición de distribuir el

patrón por el plano imagen se mantiene.
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