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Resumen

La calibracién de una camara consiste en la caracterizacion de como la realidad 3D
se proyecta en el plano imagen 2D, siendo de gran importancia para sistemas de
reconstruccién 3D. El procedimiento habitual de calibracién consiste en la captura
de varias imagenes de un patrén de geometria conocida, desde distintos puntos de
vista. La precision de la calibracién estd muy relacionada con dichas vistas; y sin
embargo, la literatura acerca de la relacion entre ambas es escasa y los pocos métodos
existentes son secuenciales: A partir de una calibracién predicen cudl es la siguiente
vista a tomar para minimizar el error. En la literatura no existen resultados teéricos
ni analisis acerca del problema general, no secuencial, de cudles son las mejores vistas

para calibrar una camara.

El objetivo de este TF'G es establecer, mediante andlisis tedrico y con simulacion,
una forma general de ubicar los patrones de calibracién sin conocimiento previo de
otras imagenes. Dicho de otra forma, encontrar unas posiciones y orientaciones de
camara que aseguren un error de calibraciéon bajo. Ademas, se desarrollard una
herramienta interactiva para ayudar a la colocacion relativa entre patron y camara

que asegura dicho error bajo.

Para ello se estudia la relacion entre la posicién y la orientacion de la camara que
capturo las imagenes del patréon con el error o incertidumbre en la estimacién de los
parametros del modelo. Nuestros resultados experimentales han mostrado mejoras
con respecto al estado del arte en simulacion e imagenes reales. En concreto, nuestro
método tiene errores de calibraciéon menores o comparables al estado del arte, con

un coste significativamente menor.
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Capitulo 1

INTRODUCCION

Este TFG se sittia dentro del campo de la visién por computador, especificamen-
te, en el proceso de calibracion de una camara. La calibraciéon de una camara consiste
en la obtencion de los pardmetros intrinsecos que definen la proyeccién de una esce-
na 3D, para lo cual también se deben obtener los pardmetros extrinsicos (rotacién

y traslacién) que la permiten situar en un sistema de coordenadas determinado.

Conocer la calibracién de una cdmara es imprescindible en todas aquellas apli-
caciones en las que se necesite extraer informacién métrica de imdgenes (altura,
profundidad, distancias o pardmetros geométrico en general). Algunos ejemplos de
aplicacién a destacar los encontramos dentro del SLAM (acrénimo proveniente del
inglés Simultaneous Localization And Mapping), elemento clave en usos como la

conduccién auténoma, la robotica y la reconstruccién 3D de una escena.

Las capacidades del SLAM llevadas a la vida cotidiana han permitido desarro-
llar varios productos comerciales relevantes. Entre ellos, aplicaciones de realidad
aumentada (por ejemplo la desarrollada por IKEA[], mostrada en la Figura [1.1b] y
que sirve para visualizar como quedaria un mueble que queramos adquirir en el sitio
que elijamos), gafas de realidad virtual (como por ejemplo el modelo Oculus Rift
SE] mostrado en la Figura y sistemas de navegacion auténoma que permiten,
por nombrar un caso concreto, a un dron seguir a una persona evitando los obstacu-

los del entornd| (ver Figura [1.1a)). En todas estas aplicaciones es necesario conocer

"http://highlights.ikea.com/2017/ikea-place/
’https://www.oculus.com/rift-s/
3https://www.youtube.com/watch?v=gsfkG1SajHQ
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()

Figura 1.1: Ejemplos de productos comerciales que usan camaras calibradas. a: Dron
Skydio R1, desarrollado por la empresa Skydio Inc., permite la deteccién y el se-
guimiento de personas. b: Aplicacion de realidad aumentada de IKEA. c: Gafas de

realidad virtual Oculus Ritft S, producidas por Oculus VR.

la calibracién de la cdmara para estimar su movimiento y la reconstruccion de la

escena.

El procedimiento de calibracion consiste habitualmente en la captura de varias
iméagenes de un patron de geometria conocida, realizadas desde distintos puntos de
vista como los de la Figura |1.2] siendo muy estrecha la relacion entre estas vistas y

el error en la estimacion de los parametros de calibracion.

En general, las diferentes técnicas de calibracién existentes, se pueden agrupar

atendiendo a la manera en la que los parametros son estimados de la siguiente forma

17, 20}, 16]:

= Técnicas lineales: Se caracterizan por su sencillez y rapidez. Proporcionan
una solucién cerrada (sin iteraciones) pero no son capaces de tener en cuenta

la distorsién (no lineal) producida por la curvatura de las lentes utilizadas,
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“ ‘

Figura 1.2: Diferentes vistas de un patrén de calibracién.

resultando en calibraciones que pueden ser poco precisas. El trabajo realizado

por Y. Abdel-Aziz [1] es uno de los ejemplos méas conocidos de esta técnica.

= Técnicas no lineales: En ellas si se tiene en cuenta la distorsion gracias a un
procedimiento iterativo, lo que permite aumentar la precision en la estimacion
de los parametros. Sin embargo, el algoritmo iterativo necesita una semilla
cercana a la solucion real para converger. El trabajo realizado por D. C. Brown

[7] es un buen ejemplo de esta técnica.

» Técnicas de doble paso: Fueron las ultimas en desarrollarse, y son una com-
binaciéon de las anteriores. En un primer paso obtienen una solucion cerrada
de los parametros a estimar mediante una aproximacion, para posteriormente
realizar una optimizacién no lineal iterativa. Gracias al primer paso, la con-
vergencia es generalmente mejor que en las técnicas no lineales ya que entre
otras ventajas, lo habitual es que se necesiten un menor niimero de iteracio-

nes. Ejemplos de esta técnica cominmente utilizados los encontramos en los

trabajos de Z. Zhang [27], J. Heikkila [11] o R. Tsai [26].

Debido a las ventajas mencionadas para la tiltima técnica, es la que mas comuinmen-
te se utiliza en aplicaciones de visién por computador [I7] y en la que nos centraremos

en este TFG.

1.1. Motivacion

El trabajo de Z. Zhang [27], facilité enormemente la calibracién de camaras al

necesitar unicamente una superficie plana con un patrén similar al de un tablero de
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(a)

Figura 1.3: Tipos de ayuda en la colocaciéon de los patrones. a: Automatizada, por
medio de un brazo robético que controla la posicién de la camara [3]. b: Visual, a

través de la proyeccion del tablero en las imdgenes capturadas por la cimara [18].

ajedrez, denominada rejilla o patrén de calibracién (el que ya se ha mostrado en la

Figura .

La razon por la que la orientacién y posicion del patron influyen en la precision
de la calibracién, es porque éstas determinan las ubicaciones en la imagen de las es-
quinas de los cuadrados blancos y negros que lo conforman, siendo éstas las entradas

del sistema.

Gracias a este método se pueden obtener resultados precisos sin llevar a cabo
grandes inversiones como las necesarias en otras técnicas, como en la ya citada [20]
en la que es necesario conocer la traslacion de la camara a calibrar, lo que encarece
el equipo necesario. Es por estas razones por las que el trabajo de Z. Zhang [27] es

uno de los métodos de calibracion mas comunmente utilizados en la actualidad.

En los tdltimos anos, varios trabajos de investigacién han realizado mejoras sobre
esta técnica basica de calibracién, centrandose en cémo optimizar la colocacién del

patrén/cdmara para minimizar la varianza en la estimacién de los parametros.

Algunos de los trabajos que siguen esta tendencia son [I8, 15, 3, 19], en los que se
establecen criterios que permiten calcular qué posicién y orientacion del patrén de
calibracién es la mejor a partir de las capturas realizadas previamente. En la Figura

se muestra cémo es la implementacién de dos de estas técnicas.
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Sin embargo, es escasa la literatura acerca de como, desde un inicio, sin entradas
correspondientes a algunas posiciones y orientaciones, se deberia colocar la cdmara
o el patréon de calibracion. En otras palabras, no se ha trabajado sobre un criterio
general que permita establecer desde un inicio cudles son las posiciones 6ptimas de

la cAmara/patrén y es en esta linea donde queremos contribuir con este TFG.

1.2. Objetivos

El objetivo que pretendemos alcanzar con este TFG es desarrollar un método
nuevo para la calibracién de una camara, asi como mostrar su desempeno con res-
pecto al estado del arte. Para ello, mas concretamente, se realizaran las siguientes

tareas:

» Analizar la influencia de distintas orientaciones y posiciones del patron de
calibracién en la precisién del proceso; atendiendo para ello a distintos criterios

como la distancia con respecto a la camara.

= En base al analisis anterior, desarrollar un nuevo procedimiento de calibracién
que mejore al estado del arte en precisiéon y tiempo de ejecucién en datos

simulados.

» Elaborar una herramienta interactiva que permita la implementacién del méto-

do desarrollado en el punto anterior.

= Con esta ultima herramienta, llevar a cabo un anélisis experimental con image-
nes reales para verificar las conclusiones de simulacion y realizar estudios adi-

cionales si fuera necesario.

1.3. Herramientas utilizadas

El lenguaje de programacion utilizado en este trabajo ha sido MATLAB [13],
ademas se ha hecho uso de la toolbox desarrollada por el investigador J.Yves Bouguet

de calibracién de una cdmara [4].
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1.4. Estructura del trabajo

De aqui en adelante, el TFG esta organizado de la siguiente forma.

Capitulo 2. Formacion de la imagen: En este capitulo se tratan los aspectos
fundamentales sobre el proceso que permite a una camara formar una imagen. Se
tratara brevemente como es la convergencia de la luz a través de una lente, y se
explicard con detalle el modelo matematico detréas de esta formacion y que recibe el

nombre de modelo pin-hole.

Capitulo 3. Proceso de calibracion: En esta parte se explicara con detalle
los aspectos méas importantes del proceso de calibracion, el cual se divide en la
obtencién de una solucion cerrada y en la optimizacién de esta primera solucion
inicial. Este capitulo junto con el anterior, sirven para entender y dar contexto al

resto del trabajo.

Capitulo 4. Simulacién: Se muestran los andlisis realizados acerca de la rela-
cién entre la distancia y la orientacién del patrén de calibracion relativo a la cdmara,
con la precisién de la calibracion. Ademas en este capitulo se presenta una propuesta

base de como colocar los patrones asi como su comparacion con el estado del arte.

Capitulo 5. Implementacién con imagenes reales: Aqui se pone a prueba
el modelo desarrollado en el capitulo anterior, y se ve si en la realidad rinde de la
misma manera que en la simulacién. Tras ello estudiamos las posibles limitaciones
y tras analisis adicionales definimos el método para situar de manera adecuada los

patrones de calibracion.

Capitulo 6. Conclusiones: En este capitulo se realiza un resumen y analisis
critico sobre el método desarrollado, y se proponen posibles lineas futuras en relacién

a este trabajo.



Capitulo 2

FORMACION DE LA IMAGEN

En este capitulo se explicaran los aspectos geométricos relacionados con el pro-
ceso de formacién de una imagen en una camara y su modelo matematico. Esto serd

de utilidad para entender y desarrollar el resto del trabajo.

Se comenzara con una breve explicacién acerca de cudl es la funcién que desem-
penan las lentes, para luego definir la transformacién que se produce al capturar
una imagen del mundo 3D, asi como los parametros que la definen y que son los que

deberemos estimar en la calibracién.

2.1. Modelo de las lentes

La formacién de una imagen en el caso de una camara digital, se consigue por
medio de una lente o conjunto de ellas, a través de las cuales los rayos de luz,
provenientes del exterior, son proyectados sobre un chip compuesto por elementos
fotosensibles denominados fotositos, que codifican de manera digital la cantidad de

luz recibida de dichos rayos [23] [6].

En la Figura se muestra este proceso de formacion para el caso de una lente
delgada. En ella se observa cémo tres posibles rayos (en amarillo) provenientes del
objeto, al atravesar la lente se proyectan en el plano imagen o chip fotosensible,
lo que permite la formaciéon de una imagen invertida del objeto. En esta Figura

también se muestra el eje éptico, el cual se obtiene uniendo los centros de curvatura

17
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Figura 2.1: Proyeccién de la luz segin el modelo de lente fina. a: Objeto enfocado
idealmente al converger los rayos en el mismo punto en el que estd el sensor. b:

Objeto con un cierto desenfoque al no ocurrir lo anterior.

de las dos caras de la lente.

Este comportamiento viene determinado por la ley de las lentes:

1 1 1

2o Zi f
Donde f es la distancia focal, la cual nos da una indicacién de como es de fuerte la
convergencia de los rayos que atraviesan la lente, z, representa la distancia entre el

objeto y la lente y z; la distancia entre la lente y la imagen enfocada H

A partir de esto, podemos deducir que si los rayos de luz provenientes de un
objeto al ser proyectados sobre el chip o plano imagen, presentan una distancia z;
diferente a la distancia a la que se situa el plano imagen, esto provocara que el
objeto aparezca con un cierto desenfoque, cuya magnitud vendra dada en funcién

de la profundidad de campo del conjunto de lentes utilizado [6] (ver Figura [2.1b)).

En la realidad, lo habitual es que una camara esté compuesta por un conjunto mas
sofisticado de lentes que permitan disminuir efectos no deseables como la aberraciéon
esférica y cromatica, producidas por la geometria de la lente y por las diferencias en
la convergencia de rayos de luz de diferente color respectivamente, y que provocan

que la distancia focal varie en funcién de éstas. Para mas informacion acerca de esto,

!Con imagen enfocada, nos referimos a que, considerando un objeto 2D como el de la Figura
éste aparecerd perfectamente enfocado si el cruce de los rayos provenientes de todos sus puntos

tras travesar la lente, se producen en el chip fotosensible. Para objetos 3D el razonamiento es igual.
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se recomiendan los trabajos [23], [12]. Un ejemplo de conjunto de lentes de este tipo

es el denominado como lentes de disefio Double-Gauss mostrado en la Figura[2.2]

Figura 2.2: Diseno de lentes Double-Gauss. Figura extraida de [12].

Por otro lado, en visiéon por computador es muy comin aproximar este compor-
tamiento real de las lentes mediante el modelo pin-hole [23], [6, 27], explicado en la
siguiente seccién, y que por tanto es el que se utilizara para el desarrollo de este
trabajo. Para mas informacién acerca de los distintos modelos de camara, se pueden

consultar las siguiente fuentes [10, 22].

2.2. Modelo pin-hole

En el modelo pin-hole, se presenta un modelo de camara simplificado, en el cual
solo se permite el paso de los rayos a través de una pequena apertura o agujero (ver
Figura , en vez de a través de una lente o conjunto de ellas como se ha explicado
anteriormente. Al proyectarse estos rayos en el plano imagen, al igual que en el caso
anterior, forman una imagen invertida en el lado opuesto de la camara del objeto

del que provienen dichos rayos.

Esta simplificacion trae consigo varias consecuencias. El hecho de que todos los
rayos de luz provenientes de un punto en el espacio tengan que pasar por esta
pequena apertura, que podemos considerar como un punto [0, 23], significa que que
todos los rayos proyectados en el plano imagen de dicho punto espacial, provienen
de una misma direccién. Esto provoca que aspectos comentados anteriormente como

el desenfoque, no aparezcan en este modelo.

Ademas, desde un punto de vista geométrico, es equivalente tratar a la imagen
formada del entorno en un plano imagen “virtual” situado delante del plano imagen

y a la misma distancia que el plano imagen en el lado opuesto de la camara. Esto
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: Plano imagen
S\ virtual

Plano imagen
real

Figura 2.3: Modelo pin-hole de formacién de la imagen.

P=(X,Y,Z) |
Zc
/ :
z=fc
Yc
p
ol ] !
P
x pv‘“c\pa
pun c0) | :fc |
/
planc imagen vy zc )
) :

Figura 2.4: Modelo pin-hole presentado de manera esquematica. a: Vista general. b:

punto p visto de perfil (imagen superior) y desde arriba (imagen inferior).

posibilita trabajar con una imagen no invertida en el modelo. Este plano imagen

“virtual”, que por comodidad de aqui en adelante nos referiremos a él como plano

imagen, se puede observar en las Figuras 2.3y [2.44]

A su vez en este modelo, el punto que representa la apertura que se ha comentado,
se corresponde con el origen del sistema de coordenadas que define la posicién y
orientacién de la cdmara y que, por convencién [0, 23] 27], tal y como se aprecia en
la Figura [2.44] el eje Z¢, también denominado como eje ptico, es perpendicular al
plano sensor o imagen y con un sentido que “apunta” hacia el entorno, y los ejes X¢

e Yo son paralelos al borde horizontal y vertical del plano sensor respectivamente.
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En la misma Figura, 2.4a] también aparecen dos de los pardmetros que definen

este modelo y que, saber lo que son, nos servird para poder continuar este desarrollo:

» Punto principal (cc): representa el punto de corte del eje dptico (eje Z) con

el plano sensor.

» Distancia focal (fc): representa la distancia que hay entre el punto principal

y el origen de la referencia camara, medida, por tanto, sobre el eje Z¢.

Ahora, observando ambas figuras de y considerando los puntos generales que
aparecen en ellas: P = (X,Y, Z) en el entorno y p = (z,y, z) en plano sensor, ambos,
vistos desde la referencia camara, se puede concluir que:

X Y
T=f= = f—= 2.1
7 y=1I7 (2.1)

Por otro lado, como la localizacion de los puntos en una imagen viene dada
en coordenadas medidas en pixeles, debemos transformar las unidades si queremos
relacionar los puntos del espacio con los de una imagen. Para ello, tenemos que
recordar que el plano imagen de una camara digital estd formado por fotositos,
dispuestos en una rejilla de tamano W x H, correspondiéndose cada uno de ellos

con un pixel de la imagen formada [6].

En la Figura [2.5a] se muestra una representacion del plano imagen con los pixeles
o fotositos discretizados, asi como su correspondiente sistema de coordenadas (u, v).
[gualmente, por convencion es habitual tomar el origen de este sistema de coordena-
das tipo pixel en el centro del pixel situado en el borde izquierdo superior del plano

imagen [6], 23], 10].

De esta forma, en coordenadas pixel, el punto principal lo podemos expresar
como: c¢ = (U, v,); de igual forma, la ecuacién también la podemos expresar
en coordenadas pixel desde el sistema de referencia (u,v) tal como se muestra a

continuacion en 2.2t

u:i+uo v:£+vo (2.2)

Pw Ph

Donde p,, representa el ancho de los pixeles y pp, representa la altura de los

mismos.
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P=(X)Y,Z)

plano imager
//

H pixeles | — |+

Pv

P

Figura 2.5: Modelo pin-hole con el sistema de coordenadas pixel (u,v). a: Vista

general. b: posible falta de perpendicularidad de un pixel.

El desarrollo hasta este momento, se puede expresar matricialmente de la forma
mostrada en la Ecuacién en ella, tanto el punto en coordenadas pixel (p) como
el punto en coordenadas desde la referencia cAmara (P) aparecen representados en
coordenadas homogéneasﬂ7 debido a esto, para obtener los puntos en las coordenadas
no homogéneas es necesario dividir por su ultimo componente, tal y como se muestra

en la Ecuacion 2.4]

0 w, 0
~ E )
p=10 Ly, ofP (2.3)
0O 0 1 0
X X
u u ) Y W
w Z z

La Ecuacién [2.3| representa una transformacién perspectiva, puesto que, para

proyectar en el plano imagen los puntos vistos desde la referencia camara, estamos

2Para distinguir vectores en coordenadas homogéneas y euclideas utilizaremos una notacién
con/sin gorro. P se refiere al punto en coordenadas homogéneas, y P al punto en coordenadas

euclideas.
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Punto de
fuga

Figura 2.6: Ejemplo de cémo lineas paralelas en 3D se cortan en un punto de fuga

(vanishing point) tras una transformacion perspectiva.

dividiendo las componentes x e y por su componente z [23, (6], [10], algo que también

se puede observar en la ecuacion [2.1

Cuando se realiza este tipo de transformacion, una de las pocas propiedades
que se conserva de los objetos, es la de mantener rectas las lineas que lo son; sin
embargo, la orientacién, las longitudes, los angulos y el paralelismo que pueden

presentar ciertos objetos, no tienen por qué mantenerse [6l, 23].

Un efecto interesante resultado de esto, es el hecho de que lineas que en la realidad
son paralelas, al hacerles una foto, si éstas no son paralelas al plano imagen, se
cortaran en el punto denominado como punto de fuga o vanishing point, tal y como
se muestra en la Figura [2.6] En relacién a esto, una utilidad de las coordenadas
homogéneas es que podemos representar este punto, que en la realidad estaria situado

en el infinito, colocando un cero como ultimo elemento del vector.

Por 1ultimo en cuanto al modelo pin-hole, se puede incluir un parametro que
tenga en cuenta la falta de perpendicularidad entre los bordes de los pixeles que
conforman el plano sensor, tal y como se muestra en la Figura [2.5bl Para incluirlo
en el modelo, bastaria con completar la Ecuacién [2.1] realizando lo mostrado en la

Ecuacién 2.5 o equivalentemente completando la Ecuacién [2.3] como se presenta en
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la Ecuacion 2.6

X Y
r = fE + fZ tan(o) (2.5)
feIe tan(a) u, 0
Pw Pw B
p=10 fe vy 0P (2.6)
0 0 1 0

Sin embargo, esta inclinacién es despreciada normalmente, debido a que las técni-
cas habituales de fabricacién de sensores permiten que este parametro sea insignifi-

cante [6} 23].

2.3. Modelo de distorsion

Debido a las simplificaciones llevadas a cabo en el modelo pin-hole, un aspecto
importante como la distorsién debido a la geometria de las lentes usadas en una
camara y que provocan el desplazamiento de los puntos en el plano imagen con

respecto a la ubicacién calculada, no esta incluido.

Este tipo de distorsion se define por dos componentes, la primera es la distorsién
radial, cuya magnitud de desplazamiento estd relacionada con la distancia del punto
en la imagen al punto principal; y la segunda es la tangencial, cuya magnitud se
relaciona con el producto de la coordenada vertical y horizontal de un punto en el

plano imagen.

De estas dos componentes, la distorsién radial es generalmente la dominante [6,
28], y se tiende a no considerar a la distorsién tangencial [27, 23]. En este trabajo solo
presentaremos los aspectos mas importantes relacionados con la distorsion radial,

Para mas informacion se recomienda la lectura de [2].

Como hemos introducido antes, la distorsion radial es la causa de que los puntos
en la imagen sean desplazados segun una direccion radial con centro en el punto
principal (cc) de la cdmara (ver Figura [2.7), por lo que se puede aproximar con

precisiéon con un polinomio como el de la Ecuacién [4, 23].

or = 1{317’2 + k?27‘4 + k'37“6 + ... (27)
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Coordenadas U (pixeles) Coordenadas U (pixeles)
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IMAGEN: 1 IMAGEN SIN DISTORSION: 1

Figura 2.7: Imdgenes reales (arriba) y simuladas (debajo) con un modelo de cdmara
con coeficientes de distorsién k1 = —0,146 y k2 = —0,015 (izquierda) y sin dis-
torsion (derecha). En ellas se observan como, al tener distorsién radial, las lineas se

curvan cada vez mas conforme nos acercamos a los bordes de la imagen.

Donde 7 representa el desplazamiento que sufre el punto en la imagen con respecto
a la ubicacion calculada por el modelo pin-hole, r representa la distancia radial del
punto en la imagen al punto principal y k; los coeficientes a estimar y que definen

la magnitud de este tipo de distorsién en la imagen.

Cuanto mayor sea el grado de este polinomio, mayor serd la distorsién radial que

se puede modelar. Lo habitual es usar los dos primeros coeficientes [27, 23].

Para introducir la distorsién radial en el modelo que hemos desarrollado, modi-

ficamos la Ecuacion [2.3] de la siguiente forma:

720w L1+ kar? + kar?)
]5 = 0 % Vo fd — l‘Nd = %(1 + ]ﬂ17"2 + ]{127"4) (28)
0 0 1 1

Donde 7 = ()24 (%)?, lo que representa la distancia radial (al cuadrado) desde

el origen de la referencia (z, y) situado en el centro del plano sensor de la Figura
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de manera normalizada; es decir, considerando una distancia focal fc = 1 unidad

(con la que se esté trabajando, por ejemplo mm).

De esta forma, frente a posibles variaciones en la distancia focal de la camara,
la estimacion de los coeficientes de distorsion tedricamente no se ven afectados y es
asi como estd configurado el modelo de cdmara en [4], la herramienta principal que

se utilizara para la elaboracién de este trabajo.

2.4. Transformaciéon mundo < camara

Hasta ahora, el modelo que hemos explicado nos permite obtener las coordenadas
en pixeles de cualquier punto situado en el entorno que esté referenciado al sistema

de coordenadas que define a la camara.

Sin embargo, en la practica conocer los puntos del entorno desde la referencia
camara no es siempre posible. Por lo tanto, lo iltimo necesario para completar el
modelo es introducir la transformacién necesaria de una referencia desde la que si
conozcamos la ubicacién de estos puntos (referencia mundo), a la referencia de la

camara.

Esta transformacién, compuesta por una rotacién y una traslacion que se efectian
sobre la referencia mundo para pasar a la referencia camara, se puede expresar de

la siguiente manera:

P=(R )M (2.9)

Donde R (3x3) es la matriz de rotacién, ¢ (3x1) es el vector de traslacién, M son las
coordenadas (conocidas) de las esquinas del patrén de calibracion desde la referencia
mundo y P por tanto, son las coordenadas de las esquinas del patrén desde la

referencia camara. De una forma mas visual, esto aparece en la Figura [2.8|

Ademas tal y como se puede apreciar en esta figura, en el proceso de calibracion
de una camara, la referencia o sistema de coordenadas mundo, estd ubicada en el
patron de calibracion. De esta forma, se pueden conocer de antemano la ubicaciéon

de todas las esquinas del patron, ya que la geometria de éste es conocida.

Con esto se termina el capitulo acerca del proceso de formacién de una imagen
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Figura 2.8: Vista 3D del patrén de calibracién y la cdmara (simplificada en azul con

su angulo de visién)

y cémo se puede modelar mateméaticamente. Esta base nos servirda para entender
y llevar a cabo el desarrollo del siguiente capitulo que trata los aspectos tedricos

acerca del proceso de calibracion de la camara.
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Capitulo 3

CALIBRACION DE UNA
CAMARA CON PATRON
CONOCIDO

En este capitulo se van a presentar los conceptos tedricos necesarios para en-
tender el proceso de calibracién de una camara. Como ya se ha comentado en la
introduccion, este es el proceso que permite obtener los parametros intrinsecos que

definen a una cadmara y que han sido presentados en el capitulo anterior.

El método explicado en este TFG es el desarrollado por el investigador Z. Zhang
en [27, 28], en el que se requiere capturar varias imagenes de un patrén de calibracién
como los que hemos ensenado en los capitulos anteriores (ver Figurapor ejemplo),
localizando, mediante un algoritmo de deteccién como el de [9], las esquinas en la

imagen del patrén (ver el ejemplo de la Figura .

Con estas localizaciones detectadas, se calculan los parametros del modelo pin-
hole, con distorsion incluida, asi como su orientacion y posicion, que mejor estiman la
ubicacion de las esquinas en la imagen, en base a su ubicacién 3D desde la referencia
mundo ubicada en el patrén (tal y como se observa en la Figura , las cuales al
conocer la geometria del patrén (nimero de cuadrados y longitud de éstos), también

son conocidas.

Este proceso se divide fundamentalmente en dos fases, la primera de ellas es la

29
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Figura 3.1: Ejemplo de deteccién de esquinas mediante el algoritmo de deteccion
implementado en [4], el cual estd basado en [9]. a: Perspectiva de la cdmara. b:

Zoom de a con la deteccién (cruces rojas) aumentada por motivos de visualizacion.

obtencion de una primera estimacién de los parametros mediante una solucién ce-

rrada; y la segunda es la optimizacién no lineal de esta primera estimacion mediante

un procedimiento iterativo.

Dedicaremos una primera parte para expresar la notacién que se utilizard en el
calculo de la solucién cerrada, sirviéndonos de lo elaborado en el capitulo anterior.
En una segunda parte se explicarda como obtener esta solucién cerrada, basandonos

principalmente en los trabajos [27), 28]. Por tltimo se explicard el procedimiento de

optimizacién no lineal.

3.1. Notacion

En este capitulo, una esquina del tablero en 3D sera representada por M =
(X,Y, Z)T mientras que su proyeccién 2D en el plano imagen seré representada por:
m = (u,v)T. Para expresar estos puntos en coordenadas homogéneas se utilizard la
misma notacioén con gorro que hemos usado hasta ahora; es decir, M = (X,Y,Z, )T

y m = (u,v,1)T. De acuerdo a esto y recuperando la Ecuacién tenemos:

smzA(R t)M (3.1)
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Donde s es el factor de escala que se utiliza para conseguir un 1 como ultimo elemento
del vector m y asi tener directamente las coordenadas no homogéneas en sus dos

primeros elementos.

Por otro lado, A es la matriz que contiene los parametros intrinsecos que permiten
la proyecciéon de un punto desde el sistema de coordenadas cdmara al sistema de

coordenadas (u, v) del plano imagen y que ya habfa sido introducida en la Ecuacién

2.3

faa 0w,
S (3.2
0o 0 1

Con el objetivo de facilitar la lectura, de aqui en adelante nos referiremos a l{—c

Jfc
Ph

focal medida en pixeles, al igual que u, y v, (coordenadas del punto principal) que

como fcp vy a £& como fey, representando por tanto ambos parametros la distancia

también se miden en pixeles.

3.2. Obtencidon de la solucion cerrada

El objetivo de esta solucién cerrada es de servir como “semilla” para el método
de optimizacion iterativo posterior y asi favorecer su convergencia. Por ello, esta
solucion cerrada no es méas que una aproximacion de la solucién real, que surge de
no considerar la distorsién radial que mas tarde es introducida en el proceso de

optimizacién.

Para favorecer la comprension de esta seccion asi como su organizacién, se va a
dividir en las tres partes diferenciadas: calculo de la matriz de homografia, restric-

ciones en los pardmetros intrinsecos y solucién final.

3.2.1. Calculo de la matriz de homografia

Como la referencia mundo estd ubicada en una de las esquinas del patréon de
calibracién con los ejes Xinundo € Ymundo paralelos a los bordes de dicho patrén

(Figura, la coordenada Z de las esquinas desde esta referencia es nula. Sabiendo
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esto e introduciéndolo en la Ecuacién 3.1} nos queda:

u

Slwv :A(T1 Ty T3 t)

X
=A (Tl T9 t) Y
1 1

X
Y
0
1
Donde se ha representado a la matriz de rotaciéon R por sus columnas r;. Por otro

lado, como Z = 0 se cumple siempre, podemos seguir llamando a M de la forma

M= (X,Y,1)T.

De esta forma, la matriz que relaciona las coordenadas de las esquinas 3D con
sus respectivas coordenadas pixel y que es propia de cada imagen capturada del
patrén de calibracién, denominada como matriz de homografia (H), viene dada por
la Ecuacién [3.3]

hf
H33= | hp| =A <r1 To t) (3.3)

hys
Donde se ha representado por sus filas hy;. Debido a esto, el primer paso para ob-
tener los parametros intrinsecos, es el de estimar los elementos de esta matriz de
homografia. Para ello, podemos plantear un sistema de ecuaciones donde las incogni-
tas sean los propios elementos de la matriz. Esto se puede conseguir relacionando

las componentes de m con las de M:

u o 1 hflM
v hf3M hsz

m =

A partir de la ecuacién anterior:

L, | = Lx = 091 (3.4)

En cuanto al nimero de incégnitas, la matriz de homografia esta formada por 9
elementos, pero como esta definida segiin un factor de escala tal y como se observa
en la Ecuacién [3.1], el ntimero de soluciones que podrian cumplir el sistema [3.4] es
infinito. Para solventar esto, se puede adoptar H(3,3) = 1 o lo que es lo mismo

z(9) = 1 (esto se realiza asi por ejemplo en [4]).
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De esta forma, el niimero de esquinas que han de tenerse en cuenta debe ser > 4
puesto que cada una aporta 2 ecuaciones a (3.4} Es decir, si se aportan n esquinas,

las dimensiones de L seran de 2n x 9.

La solucion a este sistema se corresponde con el vector propio asociado al valor
propio mas pequeio de la matriz LT L de la Ecuacién . Este célculo se puede
realizar eficientemente mediante la descomposicién de LTL en valores singulares
(SVD) y es de esta forma como se realiza en [4]. La demostracién a esto se puede

encontrar en [g].

Por 1ltimo en relacién a la obtenciéon de la matriz de homografia, decir que
debido al ruido que puede estar presente en una imagen por causas como pequenas
diferencias en la ganancia o en el offset de los fotositos [0], la Ecuacién 3.1/ no siempre
se cumple. Es por esto por lo que si n > 4 se puede realizar una optimizaciéon por

minimos cuadrados minimizando la siguiente suma de errores cuadraticos:

n

> (mi —1ma)" (mi — 1)

i=1

nde m; son rden uin u median uacion |3.
Donde son las coordenadas de las es as calculadas mediante la Ecuacién |3.1
y m; son las coordenadas detectadas de las esquinas. Un procedimiento similar de

optimizacién sera explicado con mas detalle posteriormente.

3.2.2. Restricciones en los parametros intrinsecos

Teniendo ya calculada la matriz de homografia y expresandola por columnas

como H = (hy, ha, h3), si la aplicamos en las ecuaciones y tenemos:

(e he hs) =2A(r v o)

Donde A al igual que la constante de la Ecuacién [3.1] representa un factor de escala.
Ademas, de esta ecuacion se desprende que h; = AAr; con ¢ = 1,2 y sabiendo que

en una matriz de rotacién las columnas deben ser ortogonales y por tanto 777y = 0:
Al (AH)TAthy =0 (3.5)

Ahora, atendiendo a la condicién de normalidad que también deben tener tanto

como 79, podemos igualar sus médulos:

WA A hy = K (AT A, (3.6)



34CAPITULO 3. CALIBRACION DE UNA CAMARA CON PATRON CONOCIDO

Estas dos condiciones, que sirven para relacionar la matriz de parametros intrinsecos
A con las columnas ya calculadas de la homografia, son las que nos permitiran

calcular los parametros intrinsecos tal y como se explicara en la siguiente sub-seccion.

Algo importante a senalar sobre esto ahora es la existencia de rotaciones, de-
nominadas como degeneradas, que provocan que las ecuaciones aportadas por dos
iméagenes o matrices de homografia de dos patrones de calibracién con una tnica
rotacion sobre su eje Z de diferencia sean combinaciones lineales unas de otras, por
lo que en vez de poder extraer 4 ecuaciones (2 por cada imagen) solo podriamos

extraer 2.

Por 1ltimo senalar que, debido a que debemos estimar también los pardametros
extrinsicos relacionados con la rotacién y la traslacién del patrén de calibracién (6
grados de libertad), al tener la matriz de homografia 8 grados de libertad (recordemos
que el noveno se correspondia con la escala), solo podremos estimar dos pardmetros
intrinsecos con una unica homografia, o lo que es lo mismo, con una tnica imagen
del patron de calibracién, por lo que para estimar correctamente los parametros

intrinsecos sera necesario tomar varias imagenes de éste.

3.2.3. Solucién cerrada final

Como hemos comentado antes, la ecuaciones y son las que nos permi-
tiran obtener los pardmetros intrinsecos. Para facilitar esto nos podemos definir la

siguiente matriz:

B — (Afl)TAfl —
1 O _ Uo fca
By Bia Bis 7 7 fes (37)
= | B2 DBy DBy | = 0 f% —JZ"C"
> 2 2 2
B3 Bss Bss _ofer  _wo  (Wofca)” 4 v, 4

fcifes fe3  feifes U fed

Como se puede ver, esta matriz es simétrica y el término Biy es nulo debido a la
consideracién que ya ha sido argumentada de que o = 0 en la ecuacién [2.6, Ahora,

si reorganizamos los términos de la matriz B de la forma:

b = [Bll, B227 Bl37 3237 B33]T
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Y los de h; (columnas de la matriz de homografia H) de la forma:
h; = [hi1, hiz, his]"

Entonces, generalizando las ecuaciones y para dos columnas h;, h; (con i,j =

1 6 2), podemos reorganizarlas de la siguiente manera:
h{ Bhj = v};b (3.8)

Donde

hiihj

hiahijz

Vij = | hishji + hahjs

hishjo + hiahjs
hushys

Con lo que, finalmente y de manera compacta, podemos agrupar las ecuaciones

y [3.6] en el siguiente sistema:

T
Vio

T b= 02n><1 — Vb = 02n><1 (39)
(V12 - V22)

Donde V es una matriz 2n x 5. Esto significa que tendremos una solucién tnica
del sistema si el nimero de imégenes capturadas del patrén de calibracién es n > 2

dado que hay que establecer un factor de escala para b.

Aligual que en el sistema de ecuaciones [3.4] anterior, la solucién a este sistema se
corresponde con el vector propio asociado al valor propio mas pequeno de la matriz

VTV,

Con esto, ya tenemos determinados los elementos de la matriz B de la Ecuacién
y solo faltaria despejar de ésta los parametros intrinsecos para poder obtener
la solucién cerrada de la matriz A (ecuacién [3.2) (despejarlos no aporta mucha

informacién a este TFG por lo que si el lector estd interesado puede dirigirse a [27]).

Por 1ltimo, lo que queda una vez ya hemos calculado los elementos de la matriz
A, es calcular los parametros extrinsicos a partir de ésta. Para ello, a partir de la
Ecuacion se deduce que:
t=\A"'hy

T = )\A_lhl
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ro = MA " 'hy

Con \ = 1/||A_1h1H = 1/HA_1h2H debido a la normalidad de las columnas de una
matriz de rotacién. Ademas, debido a que las columnas de la matriz de rotaciéon son
ortogonales:

T3 =71 X Ty

Tras esto, ya hemos completado la estimacion de la solucién cerrada de los parame-
tros de la camara. Como ya hemos dicho en el principio, este desarrollo se correspon-
de con los trabajos de [27, 28] del investigador Z. Zhang de los que hemos presentado
los aspectos fundamentales para dar contexto y entender el resto del trabajo. Para

tener méas informacion acerca del proceso se recomienda visitar los articulos citados.

A continuacién damos paso al proceso de optimizacién con el que se mejorara
la estimacion de esta solucion cerrada, teniendo en cuenta aspectos que no han sido

tratados en esta seccion como la distorsion radial.

3.3. Refinamiento de la solucion cerrada

Como hemos dicho anteriormente, la solucién cerrada es una aproximacion de
la solucion real al no haberse tenido en cuenta los efectos de la distorsion radial,
los cuales aportan un comportamiento no lineal al depender cuadraticamente de la

posicién en el plano imagen (ver Ecuacién [2.8)).

Es debido a esto, por lo que para estimar correctamente los parametros, no
basta con recurrir a técnicas algebraicas lineales de resolucion como las de la secciéon
anterior; sino que hay que recurrir a técnicas de optimizacion no lineales como la

que se lleva a cabo en [4] y es la que se va a explicar en esta seccion.

El método de estimacion al cual nos referimos se denomina como “minimos
cuadrados no lineales de Gauss-Newton” (variante del método de optimizacién de
Newton), con el que se minimiza la suma de los errores cuadréticos ponderados (f)
entre las coordenadas pixel calculadas (m;) y las coordenadas pixel detectadas (m;),

el cual se denomina como error de reproyeccién:

flz) = % Z Am; ()W, Ami(z) —  Amy(z) = m; — () (3.10)
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Figura 3.2: Ejemplo de esquinas detectadas con cierto error (cruz roja, aumentada
por motivos de visualizacién). Se puede observar cémo intuitivamente el pixel don-
de deberfa situarse la esquina detectada (sobre las lineas amarillas que cruzan la

diagonal de los cuadrados) no coincide con la deteccion.

Donde i representa la imagen i-ésima del patrén de calibracion, por lo que el resto
de variables de la ecuacion estan referidas a dicha imagen; x representa el vector
que contiene todos los pardametros a estimar y que por tanto lo podemos representar

como = = (fc;, Uy, Vo, ki, Ry t;) y Am;(x) es el error de reproyeccién.

Algo importante a senalar en este punto, es que la deteccién de las esquinas
del patrén de calibraciéon no es perfecta (ver Figura |3.2). Es por esto que m; es
una estimacion de la ubicaciéon de las esquinas sujeta a un determinado error en la

deteccion. Este error es comun considerarlo como un error Gaussiano de media nula

y desviacién tipica o (N(0, 02)) [27, 6, 25].

Por otro lado, W; se corresponde con la matriz de pesos, la cual es una matriz
semi-definida positiva que permite dar mas importancia a determinados errores de
reproyeccion. En la préactica, esta matriz suele considerarse como diagonal y con
todos los elementos iguales, representando asi que los errores en la deteccion son

iguales e independientes para todas las esquinas [27] 25] [18].

Ademas, con el objetivo de que tenga un significado estadistico 1util, esta matriz

se suele elegir como aquella que aproxime a la inversa de la matriz de covarianza
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asociada a la deteccién de las esquinas (m;). De esta forma, la Ecuacién se

corresponde con el negativo del logaritmo de la estimacion de méxima verosimilitudﬂ.

Sabiendo todo esto, para representar la ecuacion de manera mas compacta,
podemos formar un tnico vector en el que aparezcan todas las coordenadas pixel
asociadas a cada esquina de todas las imagenes que hemos utilizado del patrén. De
esta forma definimos m = (m?,...,mI)T. En cuanto a las matrices de pesos de cada
imagen W;, las podemos agrupar en una matriz diagonal por bloques de la forma

W = diag(W1, ..., W,,) resultando en la siguiente ecuacién equivalente:

flz) = %Am(m)TWAm(x) —  Am(z) =m —m(z) (3.11)

Antes de empezar con las operaciones algebraicas que hay que llevar a cabo en
este método, es importante destacar la importancia de la solucion cerrada. Ya que
este método al igual que otros de optimizacién no lineal como Levenberg-Marquardt
o Newton, necesitan una estimacién inicial de los parametros a estimar, estando la
convergencia de estos métodos fuertemente relacionada con lo buena o mala que es

dicha estimacién previa [25].

Para visualizar esto, se recomienda ver la Figura|3.3] en la que se representa una
hipotética funcién f(z) como la de en su eje Z, que viene dada en funcién de 2
variables X e Y (para poder visualizar en 3D utilizamos solo 2), en la que se observa
coOmo para dos soluciones cerradas con una diferencia proxima en en la estimacion
de sus 2 variables, podemos llegar a acabar en un minimo local en vez de uno global

de f(x) tras la optimizacién o proceso iterativo.

Tal y como hemos dicho antes y en relaciéon a la Ecuacién |3.11) x recoge a
todos los pardmetros de los que depende la funcién f(x) a minimizar, y son los que
queremos estimar. Ademds, como ya hemos introducido antes, los valores que pueden
tener este conjunto de parametros estan asociados con un espacio multi-variable no

lineal que da como resultado a las coordenadas pixel m.

Sin embargo, para realizar la optimizacién, tenemos que asumir que localmente

es posible linealizar este espacio; es decir, ante pequenos cambios en el vector x,

1La estimacién de méxima verosimilitud de una variable distribuida normalmente establece la
media y la varianza mas verosimiles dada una muestra de dicha variable. Dicha media y varianza
se corresponden con aquellas que consiguen minimizar la expresién (particularizada a nuestro

problema) [3.10} siempre y cuando W; sea la inversa de la matriz de covarianza [25].
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= Solucién cerrada/estimacién inicial: @ = Minimo local:

= Proceso iterativo: = Minimo global: $¢
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Figura 3.3: Muestra de cémo diferencias en la estimacién inicial, pueden llevar a

acabar en un minimo local de f(x) en vez de en uno global.

denominados como dz, la transformacién producida en m sera localmente lineal. De
esta forma, asocidndolo a la Ecuacién donde f(x) es una funcién cuadratica con

m, significa que podremos aproximar f(x + dx) con una serie de Taylor de segundo

ordenP}

2
flz+ox) ~ f(x) + %&E + %MT fl—x‘édx (3.12)

Donde x representa el valor actual de los parametros en cada iteracion. De esta forma

si conseguimos minimizar este modelo local cuadratico, conseguiremos minimizar la

Ecuacién [25].

Ademads en esta ecuacion, aparecen los conceptos de gradiente (g) y matriz hes-
siana (H) de f(z), muy importantes en este desarrollo ya que, como veremos a
continuacion, nos permitiran calcular la variacién de los pardmetros necesaria en
cada iteracién o dx, con el objetivo de acercar f(x) a su convergencia (alcanzando

el minimo global). Estos términos son:

d, d?
9= ) =0

2Recordemos que, una funcién f(x) aproximada por una serie de Taylor de segundo orden y en el

. d d2
entorno de un punto xgetyq; viene dada por f(z) = f(actuar) + % (z— Tactual) + %7{(:15 — Tactual)?-

Para escribirlo en su forma incremental, basta con sustituir en esta ecuacién el valor x = Zgcryar+02

quedandonos finalmente la ecuacion
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Ahora, recordando que f(z) = $Am(z)"WAm(z), donde Am(z) = m—n(z), y
sabiendo por tanto que d?—xm = % = J, matriz jacobiana de las esquinas calculadas;

podemos expresar el gradiente y la matriz hessiana igualmente de esta forma:

df T & f T
g:%(x):Am WwJ H:w(x)%JWJ
Donde se ha considerado la componente de la matriz hessiana 0577? ~ 0 al ser una

aproximacién propia del método de optimizacién de Gauss-Newton, algo que es
muy comun en la optimizacién por minimos cuadrados, dado que con las asunciones

realizadas m(x) es localmente aproximadamente lineal [25].

Con estas herramientas, ya es posible formular el dx a realizar para alcanzar el
minimo de la funcién localmente cuadratica f(x + dx), consiguiéndolo mediante la

diferenciacion de con respecto a x e igualandola a un vector de ceros:

d
—f(x—i-é:z:)%g%—Héx:O —
dx

(3.13)
— dz=-H'g = do=—-J"WIHITTWAm

Algo a destacar de esta expresién es que el dx al venir dado por —H g, y
el gradiente de la funcién a minimizar, g(z), representar la direccién en la que
se produce la variaciéon mas réapida de f(x), significa que si H, evaluada en z, es
definida positivaﬂ entonces al aplicar el dz calculado estaremos reduciendo f(x)

hasta alcanzar el minimo global.

Sabiendo esto, podemos reafirmar de nuevo la importancia de la solucion cerrada,
dado que la condicién de que H sea definida positiva se cumplird si esta soluciéon
cerrada nos da un valor de z que se encuentra dentro del espacio de f(x) en el que la
aproximaciéon de segundo orden en series de Taylor [3.12] es aproximadamente valida

25].

Dicho desde un punto de vista geométrico, si H es definida positiva en en el
entorno del espacio en el que la aproximacién es valida, f(z) localmente vendra

dada por una funcién cuadrdtica con un inico minimo [25] como la de la Figura [3.4]

3Si H evaluada en un cierto valor de los pardmetros () es definida positiva, significa que para
cualquier vector g, g7 H g > 0, lo que implica que H~'g no transforma la direccién de g un

angulo superior a 90°; siendo por tanto dz una variacién de los pardmetros que reduce a f(z).



3.3. REFINAMIENTO DE LA SOLUCION CERRADA 41

05

Figura 3.4: Ejemplo de funcién cuadritica (Z = X? + Y?) que cumple la aproxima-
cién w

3.3.1. Interpretacion probabilista de la matriz hessiana

Un aspecto que serd de gran utilidad en la evaluacion de las simulaciones reali-

zadas en el siguiente capitulo, serd la incertidumbre asociada a ellas.

En nuestro problema, al estar utilizando el método de optimizacién de Gauss-
Newton, la incertidumbre podra ser calculada a partir de la matriz hessiana de
f(z), que recordemos que viene dada por H = 327’; ~ JT'W J, donde J es la matriz
jacobiana asociada al calculo de las esquinas y que serd presentada con mas detalle

en el siguiente capitulo.

Como hemos introducido ya antes, al considerar un ruido gaussiano en la de-
teccion de las esquinas, la expresion |3.11| representa el negativo del logaritmo de la

estimacién de maxima verosimilitud (¢(x)):
fla) = —L(x) == log(g(mi|z))

Donde se ha utilizado una notacién similar a la de [14], en la que g representa la
funciéon que nos permite obtener las coordenadas de las esquinas que vienen dadas

por las ecs. [2.8]y

Con esto, es posible definir la matriz de informacién de Fisher observada (I(x))
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[14] como:
d2
da?

Que, como vemos coincide con la matriz hessiana. Ahora, sabiendo que la inversa de

I(x) = () = H(z)

la matriz de informacién de Fisher, se corresponde con la matriz de covarianza de la
estimacién de los pardmetros (z) [14], y que esta matriz converge asintéticamente a

I(x) [25], podemos aproximar la varianza en la estimacién de los pardmetros por:

Var(z) = diag(H™") ~ diag((J"WJ)™")

A partir de esto, es posible definir la incertidumbre en la estimacién de los
parametros como =+ 3 Var(:z:)% = 4+ 3 0;, por tanto, esta incertidumbre anadida a la
estimacion de cada parametro x; representa una region en la que el verdadero valor

se situard el 99, 7% de las veces.

De esta forma es tal y como esta implementada la obtencion de las incertidumbres
asociadas a los pardmetros en [4], cuyos resultados seran utilizados de cara a la

simulacion y que gracias a este contexto podemos saber de dénde viene dicho calculo.

Como conclusién, iterar el dx de |3.13] es lo que se conoce como el método de
Gauss-Newton, del que hemos presentado sus aspectos fundamentales en esta seccion
y damos por terminado su desarrollo. Gracias a él, como ya hemos dicho, es posible
mejorar la solucién cerrada obtenida previamente, algo que es légico ya que es aqui

cuando el modelo de distorsion radial ha sido introducido.

De esta forma, damos por terminada la explicacion de los aspectos fundamentales
detras de uno de los procesos de calibracién més utilizados actualmente; [18], [3] [T9] [T5]
son solo algunos de los ejemplos de investigaciones recientes que utilizan las mismas

bases de este método.



Capitulo 4

SIMULACION

En este capitulo se van a mostrar las simulaciones realizadas con el objetivo
de alcanzar el objetivo propuesto, es decir, encontrar un procedimiento general de
seleccion de posiciones y orientaciones del patrén de calibracién de tal forma que
podamos superar la precision de una calibracién estandar asi como la de los métodos

ya establecidos en el estado del arte.

En una primera parte introduciremos el entorno de trabajo desarrollado, el cual
nos permitira obtener resultados de manera visual y analitica. En una segunda parte
se analizaran los resultados. Finalmente, se comparara el método desarrollado con

los del estado del arte.

4.1. Entorno de trabajo desarrollado

El software utilizado para la creacion del entorno de trabajo ha sido MATLAB
[13], junto a la toolbozﬂ de calibracion de una camara desarrollada por el investigador
Jean-Yves Bouguet [4], en la cual se implementan las ecuaciones desarrolladas en los
capitulos [2] y [3] Dicha toolbox contiene los algoritmos para una calibracién esténdar
de la cdmara. En este TFG hemos realizado numerosas modificaciones sobre dicha

toolbox para alcanzar nuestros objetivos.

!Toolbox es la palabra utilizada para referirse a los algoritmos destinados a un campo o rama
cientifica en concreto, los cuales se ponen a disposicion de terceros ya sea gratuitamente o mediante

su compra.

43
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Con el entorno de trabajo que hemos desarrollado somos capaces de crear de ma-
nera automatica patrones de calibracién sintéticos o virtuales (creando hipotéticas
coordenadas de esquinas), hasta mas de 1 millén de ellos, y llevar a cabo més de

1000 calibraciones con un tiempo de computacién razonable.

La generacion de los patrones siguen el procedimiento mostrado en el Algoritmo
[[] Como se puede observar en él, se generan miltiples traslaciones para una rota-
cion dada del patron, siempre que se cumpla la condicién de que es visible en la
camara. Para observar distintos pardametros que se han definido en él visualmente,

se recomienda ver la Figura 4.1]

Algoritmo 1: Generacion de patrones de calibracion

L: patrongeom {geometria del patrén de calibracién}

2: cam {parametros intrinsecos de la camara a simular}

3: dist,, {distancia entre 2 tableros contiguos con mismo alejamiento}
4: dist, {diferencia de alejamiento entre tableros}

5: Aang {incremento de giro angular en un eje (grados sexagesimales)}

6: for giro, = 0 to 359 con paso = Aang do

7. for giro, = —89 to 90 con paso = Aang do

8: for giro, = 0 to 359 con paso = Aang do

9: Ryatron = Rot,(giro,)Rot,(giro,)Rot,(giro,)

10: Patron_visible = Test_visibilidad(cam, patrongeom, Rpatron)

11: if Patron_visible then

12: Tpatron = Crear_traslacion(cam, patrongeom, Rpatron, distyy, dist,)
13: end if

14: end for

15: end for

16: end for

En cuanto al test de visibilidad, se impuso en primer lugar que la normal del
patron expresada desde la referencia camara, debia tener una componente negativa
en el eje Z,.; de esta forma, se consiguen eliminar situaciones como las de la Figura

4.2l

Para completar estd condicién y evitar casos como los de la Figurald.3|que surgen

debido a la transformacién perspectiva realizada por la camara, se impuso también
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Posicion espacial del/los tablero/s y la camara

Posicion de las camaras con referencia mundo/tablero

-Ye
Z(mundo) (mm}

—Xc2
500 X3 @
400 | @ 2
c3

300

200

X(mundo) (mm) 100

Y(mundo) (mm)

(a) (b)

Figura 4.1: Vista 3D del proceso de generacion de patrones para una tunica rota-
cion. a: si consideramos que cambia la posicién de los tableros. b: equivalencia a si

consideramos un cambio de posicién en la camara.

Posicion espacial del/los tablero/s y la camara
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Figura 4.2: Ejemplo de patrén no visible debido a que su normal tiene componente

positiva en el eje Z. de la camara. a: vista 3D. b: Imagen que capturaria la camara.
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Posicion espacial delllos tablerols y la camara
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Figura 4.3: Ejemplo de patrén no visible debido a que su normal forma un dngulo
inferior a 90° con la direcciéon que marcan los rayos de luz entrantes de mayor
inclinacién en plano X7 de la camara. a: vista 3D. b: Imagen que capturaria la

camara.

la siguiente condicion: Si la normal del patrén tenia proyeccién sobre los planos X.Z,
e Y,.Z,., dicha proyeccion debe formar un angulo mayor a 90° con la direccion de los
rayos que entran con una mayor inclinacién por dichos planos y que coinciden con
los limites del angulo de visién de la cdmara. Si no se cumple esta condiciéon, no
se crean traslaciones que ubiquen a la proyeccion del patron en la mitad del plano

X.Z. 0 Y.Z. asociado al rayo de luz comentado.

En cuanto al criterio de creacién de las rotaciones del Algoritmo [I] se disend
para que se pudiesen crear todas las rotaciones posibles con el minimo coste compu-
tacional; es decir, evitando repetir rotaciones equivalentes que se pueden producir

por diferentes combinaciones de giros en los ejes.

En nuestro caso, al utilizar la secuencia de rotaciones Rot,(a)Rot,(3)Rot,(v), no
solo existe el conjunto de rotaciones equivalentes que son fruto de sumar al dngulo
de giro un miltiplo entero de 360° y que viene dado por Rot,(c« + 360k)Rot, (5 +
360k) Rot (v + 360k), sino que también existe el conjunto de rotaciones equivalentes

Rot,(a+180)Rot, (180 — 3) Rot ,(y+180). Sabiendo que la equivalencia de un angulo
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90°

180° 360°

270°
Figura 4.4: Circulo que muestra la Figura 4.5: Tablero utilizado en la ma-
zona, sombreada, en la que se en- yoria de los analisis

cuentran los dngulos equivalentes a un

angulo (e (—90°,90°]

B e(—90°,90°] asociado a Rot, se encuentra en la zona sombreada del circulo de la
Figura[4.4] podemos establecer un giro cualquiera en los otros dos ejes y obtener una

matriz de rotacién unica, siempre y cuando 5 no pertenezca a dicha zona sombreada.

Por tltimo, para la funcién asociada a la creacién de las traslaciones, se adopto el
criterio de calcular el alejamiento minimo para que el patrén sea totalmente visible
en la camara, y partir de esta localizacion ir aumentando el alejamiento segin dist,
a la vez que se sittiian los patrones que pudiesen entrar en dicho angulo de visién en

base a dist,,.

Este calculo se realizo en base a la geometria del patrén y las caracteristicas de
la camara, centrandose principalmente en los limites establecidos por el campo de
visién. Debido a su extension y mayor complejidad, si el lector estd interesado en
la funcién, puede dirigirse al anexo[A] donde se encuentra el c6digo con comentarios

detallados.
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Parametros Unidades
Horiz. (nx) 640
Resolucion Pixeles
Vert. (ny) 480
fcl 660
Distancia focal Pixeles
fc2 660
ccl (u,) 319.5
Punto principal Pixeles
cc2 (v,) 239.5
kcl -0.26 mm =2
Coef. de distorsion
kc2 0.13 mm ™4

Tabla 4.1: Modelo de camara utilizado en la mayoria de los analisis realizados

4.2. Importancia de la colocacion del patron

Para mostrar la importancia que tiene la colocacion de un patrén en relacion al
error de la calibracién, se realizé un analisis consistente en 600 calibraciones formadas

por 30 imagenes cada una, con una eleccién aleatoria de los tableros creados mediante

el Algoritmo [I}

Inspirados por el modelo de cdmara utilizado en la documentacién de [4] y con
el objetivo de simular con un modelo de camara real, se utilizaron unos parametros
muy similares a los obtenidos por J. Yves-Bouguet en esa calibraciéon de ejemplo,

los cuales aparecen recogidos en la tabla [4.1]

En cuanto al patrén de calibracion se utilizo de nuevo el de la documentacion de
J. Yves-Bouguet (ver Figura[d.5), es decir, un tablero de 11 x 12 cuadrados en los ejes
Xonundo © Ymundo Tespectivamente, y de un tamano cada uno de dX = dY = 30mm.
El error en la detecciéon de sus esquinas tal y como se ha introducido en la seccién
se considerd gaussiano con media nula y con desviacion estandar de 1 pixel

(aceptable para la gran mayoria de camaras [27]).

Los resultados aparecen en la Figura [4.6] en la que se muestra el error en la
estimacion de los parametros de la camara conforme se van anadiendo imagenes a la
calibracién. Cada linea representa una tunica calibracién, por lo que al representar
todas en una misma grafica, se puede observar entre que valores maximos y minimos

puede estar el error asi como su frecuencia.
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Figura 4.6: Error en la estimacién de 600 calibraciones (cada una representa una

linea). Nétese la gran variacion del error, debida a las distintas posiciones de camara

de las calibraciones. a: Distancia focal (f¢;). b: Punto principal (c¢;). ¢: Distorsién

(kCZ)
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Eje optico real:
Eje optico estimado: — - — - -

Figura 4.7: Significado geométrico del error

fe

Como conclusion, los errores de distintas calibraciones tienen un rango de va-
riacion muy amplio. Esto justifica la intencién de establecer un procedimiento de

orientacion y traslacion de los tableros que garantice errores bajos.

4.3. Sensibilidad con el niimero de imagenes

Este analisis se plantea como una extensién del anterior, en el que se muestra
el promedio de los errores relativos en la estimacion de los pardametros de las 600

calibraciones anteriores en funcion del nimero de iméagenes utilizado.

En todos los parametros se ha utilizado la definicién normal de error relativo:

e,r,r.ofr.rel — paramyeql —PaTAMestimado
parameyeql

excepto en el caso del punto principal (c¢;) debido
a que, tal y como senalan los trabajos [27, 24], su error no tiene una importancia
significativa; mientras que si se opta por utilizar en el denominador la distancia
focal, esto le aporta un significado geométrico al representar la pendiente entre el
eje 6ptico calculado y el eje dptico real (ver Figura. Los resultados se presentan
en la Figura[4.§|

Al observar estos resultados, se concluye que conforme el nimero de imagenes
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Figura 4.8: Errores relativos promedio de los parametros conforme se anaden imége-

nes (izq.) y mejora en el error relativo por adicién de una imagen (dcha.) a: Distancia

focal (f¢;). b: Punto principal (c¢;). c: Distorsion (ke;).
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Parametros a) b) | Unidades
Horiz. (nx) 3264 320
Resolucion Pixeles
Vert. (ny) 2448 240
fcl 2244 300
Distancia focal Pixeles
fc2 2444 300
ccl (u,) 1631.5 159.5
Punto principal Pixeles
cc2 (v,) 1223.5 120.5
kcl -0.146 -0.3 | mm™2
Coef. de distorsion
kc2 -0.015 0.2 mm™*

Tabla 4.2: Modelos de camara que se anaden al anélisis de influencia de la distancia

aumenta, la precision en la estimacion de los parametros también lo hace. Sin em-
bargo, hay que tener en cuenta que al anadir mas imagenes, el proceso de calibracién
se hace mas largo y eso puede llegar a ser un inconveniente en aquellas situaciones
en las que se requiera calibrar un ntmero considerable de camaras o en las que no
se disponga de mucho tiempo. Por estas razones hay que intentar conseguir unos

resultados precisos con un nimero de imagenes aceptable.

Por otro lado, tal y como se observa en las gréaficas, en general a partir de haber
utilizado 20 imagenes, las mejoras en el error se aproximan a un valor nulo. Es por
esto por lo que en los siguientes analisis se considerd la utilizacién de 20 imagenes

por calibracion.

4.4. Sensibilidad con la distancia

En este analisis se estudia cual es la influencia del alejamiento del patréon de
calibracién de la camara; es decir, como la ubicacién del patrén con respecto al eje
Z,. de la camara afecta a los resultados. En él, ademas de utilizar el mismo modelo
que en los andlisis anteriores y con el objetivo de reafirmar las conclusiones extraidas,

se evaluaron otros dos modelos de cdmara que aparecen en la tabla

El analisis consistié en establecer 3 rangos de alejamientos en los que se realizaron
100 calibraciones de 20 imédgenes cada una. De esta forma se llevaron a cabo un total

de 900 calibraciones teniendo en cuenta los 3 modelos de camara evaluados.
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Figura 4.9: Punto de vista geométrico del anélisis. Las esferas representan los tramos
de alejamiento en los que se puede situar la cdmara, cuyos radios aparecen en la

imagen. En este caso, 10 cdmaras aparecen ubicadas en el tramo 3.

Los tres rangos de alejamiento fueron los siguientes:

s Tramo 1: es el mas proximo a la camara, comprendido entre el minimo aleja-
miento posible para que un patrén pudiese entrar en el angulo de vision de la

camara y 1/3 del alejamiento maximo, que consideraremos como 1,5m.
» Tramo 2: comprendido entre 1/3 y 2/3 del alejamiento méximo analizado.
s Tramo 3: comprendido entre 2/3 y el alejamiento maximo.

Desde un punto de vista geométrico, si se considera que la cdmara cambia de
ubicacion y no el patrén, esto equivale a situarla entre 2 esferas cuyos radios vienen

determinados por los tramos de alejamiento como muestra la Figura [4.9

Un primer resultado del analisis, para el modelo de camara de la tabla [4.1] se
puede observar en la Figura[4.10] en la que se muestra el error obtenido en todos los
pardmetros para las 100 calibraciones realizadas (cada una representa una linea) en
cada rango de alejamiento. Se puede observar que los mejores resultados se obtienen
para los menores valores de la coordenada Z. del patrén, que corresponden a las dos

columnas mas a la izquierda en la figura.

Los valores promedio del error para estas calibraciones se muestran en la Figura
Esta es otra forma de verificar que conforme la distancia o alejamiento en Z,.

disminuye, los resultados en la calibracion mejoran al presentar un menor error.
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Figura 4.10: Error en cada una de las 100 calibraciones realizadas en cada tramo.
Los tramos aparecen en el titulo de cada figura, incrementando el alejamiento de

izquierda a derecha. a: Distancia focal (f¢;). b: Punto principal (c¢;). c: (k¢;).

Esta tendencia también se obtuvo en las otras dos camaras evaluadas, como
muestra de ello se adjuntan en la Figura los valores promedio del error de la

distancia focal fc¢; para ambos modelos.

Otra forma de evaluar la precision de una calibraciéon es en base a la incerti-
dumbre asociada a la estimacién de los parametros y que ya ha sido introducida
en la seccion Por ello, durante este analisis también se recogieron los datos

asociados a la incertidumbre de los parametros.

Los datos de incertidumbre que mostraremos de aqui en adelante, representan
la mitad de todo del rango de incertidumbre. Es decir, si el valor estimado de la
primera componente de la distancia focal es fc; = f?:l + k pixeles, nosotros haremos

referencia a ese valor de k en vez de a 2k.
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Figura 4.11: Valores promedio del error en los 3 tramos de alejamiento evaluados
para el modelo de cdmara de la tabla[l.1] a: Distancia focal (fc;). b: Punto principal

(cc;). c: Distorsion (ke;).
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Figura 4.12: Valores promedio del error en la estimacién de fc¢; en los 3 tramos de

alejamiento para los modelos de cdmara de la tabla . a: modelo a). b: modelo b).

En la gréfica se muestra la suma de las incertidumbres asociadas a la dis-
tancia focal (f¢;) y al punto principal (c¢;) (ambas en pixeles) de los tres modelos de
camara. De nuevo se observa que en el tramo mas cercano a la camara se obtienen

unos mejores resultados al ser inferiores los niveles de incertidumbre.

4.4.1. Justificacion teodrica

Para justificar tedricamente estos resultados, podemos obtener analiticamente los
elementos de la traza de la matriz hessiana, introducida en la seccién y tratada
con mas detalle en la sub-seccién m Esta matriz viene dada por H = JTW J,

donde J = ij—’;‘ es la matriz jacobiana de las coordenadas estimadas de las esquinas

del patréon de calibracion.

Para su cédlculo consideraremos un modelo sin distorsién radial, ya que esto faci-
litara el entendimiento de los resultados. Esta simplificacién no afectard significati-
vamente al andlisis, dado que los coeficientes de distorsion se utilizan para corregir
puntos en el plano imagen. Dicha correccién inicamente se basa en informacion del
plano imagen y no en informacién del entorno (influencia con la distancia a la cama-

ra), mientras que la distancia focal es la que ubica los puntos del entorno en el plano

imagen en funcién de su ubicacién relativa a la camara en 3D.

De esta forma, definiendo una matriz de rotacion genérica del patrén de cali-

bracién R = Rot,(8)Rot,(8)Rot,(«), y representando las operaciones seno y coseno
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Figura 4.13: Valores promedio de la suma de incertidumbres asociadas a fc¢; y cc;
en los 3 tramos de alejamiento. Modelos de cdmara: a: tabla 4.1} b y c: tabla

modelos a) y b) respectivamente.

por S y C respectivamente, tenemos:

Ahora, definiendo una traslacién del patrén de calibracién genéricat = (X,,Y,, Z.)"
y unas coordenadas genéricas de una esquina desde la referencia mundo ubicada en el
patrén M = (X,Y,0,1)7, las coordenadas normalizadas (considerando la distancia

focal de 1 unidad), y que habiamos denominado como 7,4, vienen dadas por:

N ~ 1 Zq(1)
Tq= (R t)M — l’d:m A(2)
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Por lo que las coordenadas en pixeles m son:

. u zq(1) fer + o
m = =
v xq(2) fea + cco

Recordemos que la matriz jacobiana viene dada por J = ‘fi—m siendo x los parame-

i’

tros a estimar, por lo que si definimos las siguientes sub-matrices asociadas a una

esquina ¢ de la imagen del patron j:

ou ou ou ou % % 8_u ou Ou Ou

y Ofcy Ofcy Ocey  Occy B 00 08 OJa 0X., 0Y. 0Z,
Yl v v v o Yoo v oaw av aw o
0fcy Ofcg Ocey  Occy 00 08 Oa 0X. 0Y. 0Z.

podemos expresar la matriz jacobiana asociada al célculo de las coordenadas de esta

esquina de la siguiente forma:

Jij = (Ai,j Bi,j)

Aplicando esto para todas las esquinas ne del patrén de calibracion que aparece en

la imagen j tenemos:

Arj B

J

g = (A- Bj) _ | Az | Bs,;

Ane,j Bne,j

Finalmente, generalizando para un ntimero de imégenes ne, la matriz jacobiana del

sistema nos queda de la siguiente forma:

AL By 0 ... 0
R
Avi 0 0 ... By

A partir de esto, ya es posible obtener la expresién analitica de la matriz hessia-
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na’

S ATA; ATBy, ATB, ... ALB,

BfA, BB, 0 ... 0

I(z)=H(x)=J"J = BT A, 0 BIB, ... 0
BT A, 0 0 ... BB,

Donde I(x) es la matriz de informacién de Fisher observada (ver seccién [3.3.1]).

Como nos estamos centrando en la incertidumbre de los parametros intrinsecos
(fc,cc), consideraremos que las componentes relativas a la informacién aportada
por las distintas imagenes del patréon de calibracién en cuanto a estos parametros,
quedan recogidas en el bloque matricial Z:il AT A;, més concretamente en la traza

de dicha matriz.

Esto se aprecia mejor si mostramos la traza en forma de derivadas parciales y

particularizada para una imagen j:

(5r) () oo () + (P?)
|G = Cot) s () - (5522)
(i) = () e (e + (5
(P5) o () oo () ()

Se puede observa que cada fila estd formada por las segundas derivadas de las
coordenadas de las esquinas calculadas con respecto a fcy, fco, cc; y ccy respectiva-
mente. Calculando cada fila por separado y asociandolo a su respectivo parametro

intrinseco, se obtiene:

2En este desarrollo se estd considerando a la matriz de pesos W como una matriz identidad, de
esta forma estamos considerando un error en la deteccion de las esquinas caracterizado por una
o = 1 pixel. Para generalizarlo a cualquier ¢ bastaria con multiplicar todos los elementos de la

matriz hessiana por el inverso de dicho valor.
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A Xe+ M;(1)C(a)C(B) — M;(2)C(B)S(e) >2
Ze+ M;(1)(S(a)S(0) — C(a)S(B)C(0)) (9))

fe — 2?261 (

+
Ye+ M;(1)(S(a)C(6) + C(a)S(8)S(6)) + Mi(2)(C( )C(H)—5(06)5(5)5(9))>2
+

oy sy ( Cla
2 A Mi(l)(S(a)S 6) — C(a)S(B)C(0)) MZ(Z)(C(Q)S 0) + S(a)S(B)C(0))
ccl—>21:ne ccy — 1 =mne

=1 i=1

Obsérvese que en los términos asociados a fc; v feo, el parametro que define el
alejamiento Zc¢ aparece inicamente en el denominador. Ademas, Zc¢ domina al resto
de términos al aumentar, al ser éstos ultimos proporcionales a productos de senos y

cosenos.

Por lo tanto podemos concluir que conforme el alejamiento en Zc relativo a la
camara aumenta, la informacion anadida por las coordenadas de las esquinas dis-
minuye. Esto se puede relacionar con la cuantificacion de la incertidumbre asociada
al cdlculo de dichos pardmetros, ya que tal y como se explicé en la seccién [3.3.1] la
inversa de la matriz hessiana representa la matriz de covarianza de la estimacion de

los parametros.

Es posible dar una intuicién a este comportamiento: Si el patrén se aleja indefi-
nidamente de la camara, todas las coordenadas de las esquinas tenderan a aparecer
en un unico punto en la imagen. La informacién que se podria extraer del patréon en

este caso seria nula.

Tras estas observaciones extraidas mediante simulacion y verificadas de manera
tedrica, se concluyd que para mejorar la precision de la calibracion habia que situar
lo mas cerca posible el patrén de la camara, para asi reducir al maximo el valor de Z,.
Para demostrar esto de la manera mas formal y correcta posible, se deberia calcular
analiticamente la inversa de la matriz hessiana, pero debido al coste computacional

y al tiempo que requeriria, no se planteé dentro de los objetivos de este TFG.

4.5. Sensibilidad con la orientaciéon

Tras haber extraido la conclusién anterior, se creé otro conjunto de aproximada-

mente 4500 patrones de calibracién con el Algoritmo [1] incluyendo la condicién de
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Figura 4.14: Ejemplo de 2 patrones situados lo mas cerca posible de la camara.

que todos ellos debian estar lo mas cerca posible de la cAmara. En la Figura se

muestra un ejemplo de esto.

Para analizar la influencia de la orientacion del patron, se decidié estudiar como
influia el angulo que formaban en 3D la normal del patrén de calibracion y el eje

optico de la camara.

Debido a las condiciones de visibilidad impuestas, este angulo podia situarse
unicamente en un rango € (90°, 180°); aunque, para una mayor facilidad de entendi-
miento el dngulo calculado fue el existente entre el eje 6ptico y la normal del plano
en sentido contrario; de esta forma el nuevo rango se sitia entre los (0°,90°). De

aqui en adelante nos referiremos a dicho angulo como 6.

Un total de 1000 calibraciones de 15 imagenes cada una fueron llevadas a cabo
(aunque también se realizaron calibraciones cuando el nimero de imégenes era > 2,
de esta forma el total llevado a cabo es de 1000x14). A partir de ellas, se observé

que podia existir una relacion entre 6 y la precision de la calibracion debido a 2
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Incert. fc + cc (pix)

8 entre Normal y Eje Optico (°)

Figura 4.15: Valores promedio de la suma de la incertidumbre en la estimacién de
fc y cc. Cada barra representa el valor promedio de esta incertidumbre de todas
aquellas calibraciones en las que en el nimero de imagenes indicado se ha utilizado

al menos un patron con un valor de 6 igual o superior en 10° al asociado.

observaciones:

= Peores resultados cuando se calibraba con 2 imégenes si habia presencia de

patrones de calibracion con un 8 < 10°. Esto se puede observar en la Figura

4. 0]

= Peor precision si se supera un promedio de § = 70° conforme aumenta el

nimero de imdgenes, tal y como se muestra en la Figura

Tras estas observaciones se analizo el problema desde la perspectiva de encontrar
el valor del angulo 6 para el que se obtenian menores errores. Dicho de otra forma, se
decidi6 analizar la precision de la calibracién fijando un € y distribuyendo el patrén
de calibracién por todo el plano imagen gracias a un giro realizado en torno al eje

éptico (asi 6 no varia).

Este método como veremos mas adelante, obtuvo unos resultados positivos. Una

ventaja es que se evitan las rotaciones degeneradas introducidas en la seccién |3.2.2
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Figura 4.16: Anélisis sobre las 100 peores y mejores calibraciones (en cuanto a in-
certidumbre) que muestra cuantas de ellas y en que % con respecto al total (linea

negra) cumplen que 6 > 70°.

debido a que en este caso la rotacion (R) del patrén con respecto a la cdmara viene

dada por:

R, = Rot,(180°)Rot,(—90°) — R = Rot,(a)R,Rot.(0)

Donde R, es una rotaciéon que sirve para situar el patron de calibracion frente a la
camara y Rot,(«) es la rotacion realizada sobre el eje 6ptico que permite distribuir
el patrén por la imagen. De esta forma si 6 # 0, hay una diferencia de Rot, () entre

2 rotaciones consecutivas y nunca una Rot,, evitando asi las rotaciones degeneradas.

Para obtener el valor 6ptimo de 6, se considerd a aquel que minimizase la suma
de las incertidumbres asociadas a los pardametros fc y cc. Se excluy6 de esta suma
a la incertidumbre de los coeficientes kc al venir dados en unas unidades distintas
a los pixeles; sin embargo, esta consideraciéon no se pensé como negativa ya que
al minimizar la incertidumbre del resto de parametros, se contribuye a una mejora

global de la calibracion.

Analizar el angulo 6 6ptimo para un unico modelo de camara tal y como he-
mos hecho hasta ahora seria un andlisis incompleto. Por ello ejecutamos el método

del Algoritmo [2] para evaluar aproximadamente 200 modelos diferentes de camara
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Figura 4.17: Definiciéon grafica de las 2 componentes del dngulo de vision.

variando el dngulo de vision (AOV) horizontal y vertical:

AOVy = 2 arctan (O’me) AOVy, = 2 arctan (O,5ny)
fa feo

Donde recordemos que nz y ny son la resolucién en pixeles horizontal y vertical.
Estas dos componentes representan el angulo medido desde el eje éptico que la

camara es capaz de capturar. Graficamente se puede ver en la Figura [4.17]

Tal y como se puede ver en el algoritmo, tinicamente se varia la distancia fo-
cal para cambiar el valor del angulo de visién. Otro andlisis muy relevante es la
comparacion con otros modelos de camara en los que también haya variacion de la

resolucidn.

El ruido en la deteccién de las esquinas se considerd igual para todos los valores
de 0 y de un valor de 0,1 pixeles. Esta consideracién sera mejorada tal y como se

vera en el capitulo correspondiente a la implementacién con imagenes reales.

Los resultados a este andlisis se muestran en la Figura [£.18a] a partir de la cual
se puede extraer una relaciéon aproximadamente cuadratica entre el angulo de visiéon

y el angulo 6 que proporcionaba una menor incertidumbre y que viene dada por:
Ooptim = 0,00923A0V? — 1,094A0V + 79 (4.1)

Tal y como se muestra en la figura, esta relacion en realidad esta asociada al angulo

de visién horizontal; sin embargo, se adopté también para la componente vertical al
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Algoritmo 2: Analisis para encontrar el angulo 6 éptimo

1:
2:

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

[AOV,, AOV;] = [18°, 102°] {Angulo de visién inicial y final}
[nx, ny] = [640, 480] {Resolucién horizontal y vertical}
cc = [0, 5nz 0, 5ny] {Consideramos el punto principal en el centro de la
imagen}
PatTongeom {Geometria del patrén de calibracién}
Odeteccion {D€sviacion tipica del error en la deteccién de las esquinas}
for cam =1 to 200 do
AOVy = AOV;—AOVo im, + AOV,

200

[fer feo] = fF(AOVy, nx) {Aplicamos la ec. del AOV considerando
fer = fea}
for # = 1° to 90° con paso = 1° do
for a = 0° to 359° con paso = 24° do
Ryatron = Rot,(a)R,Rot,(0)
Tpatron = Crear_traslacion( fc, cc, nx, ny, patrongeom, Rpatron)
esquinas = Crear_esquinas(cam, Rpatron, Tpatrons 0 Odeteccion)
end for
cali=Realizar_calibracién(cam, 8, Rpatron, Lpatron, €Squinas)
all_cal=Guardar_calibracién(all_cal, cali)
end for
cal_min_incert=Selecc_0_con_min_incert(all_cal)

end for

ser similares y al haber barrido un mayor rango de la componente horizontal y por

lo tanto ser mas preciso.

Para probar si esta relacion se podia considerar como valida se evaluaron dife-

rentes modelos de camara, a los que se les sometio un analisis similar al presentado

en el algoritmo [2] De esta forma se pudo comparar el  éptimo en cuanto a incerti-

dumbre en los parametros fc y cc y el calculado por la expresion Los modelos

de cAmara evaluados se recogen en la tabla 4.3y los resultados de esto se muestran

en la Figura [4.18b]

Algo a destacar de la Figura es el hecho de que los valores de 6 calculados

mediante la expresion (puntos verdes) difieren ligeramente de los valores 6ptimos
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La curva azul es el ajuste cuadratico teniendo en cuenta todos los puntos y la roja es el

resultado de excluir aquellos puntos que se desvian mas de una desviacion tipica del ajuste
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(b) Incertidumbre en funcién del valor de 6 con el que se lleva a cabo la calibracién para

las cdmaras de la tabla .3l El valor de # asociado a un menor valor de incertidumbre

marcado en verde.

aparece marcado en rojo, mientras que el 6 calculado mediante la expresién [4.1] aparece

Figura 4.18
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Parametros 1) 2) 3) 4) 5) 6) 7) 8) Unidades
Horiz. (nx) 1600 2100 1400 2000 800 1000 1400 2500
Resolucion Pixeles
Vert. (ny) 1200 1900 1300 1600 700 1000 1400 2000
fcl 700 1200 2500 660 400 1200 660 2000
Distancia focal Pixeles
fc2 700 1200 2500 660 400 1200 660 2000
ccl (u,) 799,56 1049,5 699,5 999,56 399,5 4995 699,5 1249,5
Punto principal Pixeles
cc2 (v,) 599,56 949,5 649,5 799,56 349,5 4995 699,5 999,5
kcl -0,26 -03 -01 -03 -01 -03 -0,26 -0,2 mm ™2
Coef. de distorsion
ke2 0,13 02 0 01 015 013 013 0,1 mm~4
Ang. de vision AOVy 97 82 31 113 90 45 93 64 ()

Tabla 4.3: Modelos de camara usados para validar la expresion .

reales (puntos rojos), y ademés esta diferencia se puede explicar por la existencia
de una zona de estabilidad de la incertidumbre que en general se mantiene entre los

40° y 70°.

Como conclusion ante estas observaciones, se penso en establecer un método que
consistiese en situar el patrén lo mas cerca posible con las orientaciones determinadas
por el 8 éptimo calculado. Para probar su validez, se comparé con el estado del arte

asi como con una colocacion aleatoria de los patrones de calibracion.

4.6. Comparacion con el estado del arte

El método desarrollado se compard con el trabajo llevado a cabo por A. Ri-
chardson [I§], conocido como AprilCal, con el trabajo de S. Peng y P. Sturm [I5],
conocido como Calibration Wizard y con el método implementado por R. Boada en

su Trabajo Fin de Méster [3].

Todos estos métodos tienen en comun que son incrementales; es decir, se parte
de un pequenio nimero de imédgenes (generalmente 2 6 3) con las que se realiza una

calibracion inicial para tener una primera estimacion de los parametros.

A partir de esta estimacién inicial, se calcula qué ubicacién del patron es la mejor
en base a distintos criterios y una vez determinada, se realiza otra foto al patrén
y se calibra de nuevo la camara hasta alcanzar un cierto grado de precision. Los

fundamentos del criterio que sigue cada método se explican a continuacion:
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1. AprilCal: en él, se selecciona qué ubicacion es la mejor de en torno a 60 ubi-
caciones posibles del patrén, las cuales estan distribuidas por todo el plano
imagen. La seleccién de la ubicacién 6ptima es aquella que presenta una me-

nor incertidumbre en los parametros intrinsecos.

2. Calibration Wizard: la metodologia es similar al anterior; es decir, se seleccio-
na la ubicacién del patron que minimiza la incertidumbre de los parametros
intrinsecos. Sin embargo, en vez de considerar un conjunto de 60 posibles ubi-
caciones, se realiza una optimizacion global que tiene en cuenta todo el espacio

de trabajo 3D.

3. TFM de R. Boada: este método presenta una variacion al de AprilCal. La
ubicacién seleccionada es la que maximiza el parametro denominado como
MaxERE; es decir, aquella con la que se maximiza el error entre las coordena-
das de las esquinas detectadas en la imagen y las calculadas con la estimacién

actual de los parametros intrinsecos.

Como se puede apreciar, estos métodos presentan un coste computacional mayor
que el método que estamos proponiendo, ya que todos ellos tienen que realizar
sucesivas calibraciones por cada imagen a la vez que los calculos asociados al computo

de la siguiente mejor ubicacion del patréon de calibracion.

Con el método que se esta proponiendo, inicamente se necesitaria una calibracién
inicial con 1 6 2 imdgenes para tener una estimacién de la distancia focal (fc;)
y poder estimar asi el angulo de visién de la camara. De esta forma se evitaria
la necesidad de realizar una calibracién por cada imagen y ademas los calculos
asociados a determinar la mejor ubicacion del patron se realizarian nada mas conocer

el angulo de vision.

Para comparar con todos los métodos, en vez de considerar 60 patrones tinica-
mente como en 1) y 3), se consideraron en torno a 1.400 patrones creados mediante
el algoritmo [I] con un Aang = 40°, siendo asi mas exhaustivos en la comparacion
con estos dos métodos. Sin embargo, en cuanto al método 2) esto supone una apro-

ximacién, ya que no se estan utilizando todas las posibles ubicaciones 3D.

De esta forma, al utilizar un mismo ntmero de patrones de calibracién en la

evaluacion de los 3 métodos, se junté a los métodos 1) y 2) en uno sélo al ser esa la
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principal diferencia entre ellos.

Una tultima consideracion realizada, fue el hecho de considerar que en la deteccién
de las esquinas todos los métodos con sus respectivas colocaciones de patrones de

calibracién elegidas presentaban una misma desviacion tipica de o = 0, 1 pixeles.

Los modelos de cdmara evaluados fueron los de la tabla[.3] la cual se considerd
como una buena muestra debido a la gran variacién de los pardmetros. Los resul-
tados de la comparacién en cuanto a error e incertidumbre en la estimacién de los

parametros se muestran en la Figura y de manera esquemadtica en la tabla [4.4]

fe(1) ce(1) 3 ke(1
__08 - 25 25 x10 (1)
z I Nuestro metodo 7 Ml Nuestro metodo| | o~ I N uestro metodo
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£ 06 [CMasERE a2 2 [ IMaxERE £ 2 L NaERE
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(a) Incertidumbre en la estimacién.
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(b) Error absoluto en la estimacion.

Figura 4.19: Comparacién. De izquierda a derecha los parametros son: fc¢;, cc; v ke;.

El eje x representa el AOV de cada cdmara.
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Mejoras en los 8 modelos de camara evaluados

Con respecto a los métodos:

Parametros Minim. Covarianza MaxEre Eleccién

(AprilCal y Calib. Wizard) (TFM) aleatoria

Incertidumbre Error Incertidumbre Error | Incertidumbre Error
fa 2/8 4/8 8/8 6/8 8/8 6/8
feo 2/8 4/8 8/8 7/8 8/8 7/8
ccy 6/8 7/8 8/8 7/8 8/8 8/8
ccy 5/8 2/8 8/8 6/8 8/8 8/8
kcy 4/8 4/8 8/8 6/8 8/8 8/8
kco 4/8 4/8 8/8 6/8 8/8 6/8
TOTAL 23/48 25/48 48/48 38/48 48/48 43/48

Tabla 4.4: Comparacién con el estado del arte en la que se muestra la cantidad de
mejoras en la estimacién con respecto al total de cdmaras (8) y en la dltima fila con

respecto al total de evaluaciones (48).

A partir de estos resultados podemos observar que el método que se esta propo-
niendo produce unos resultados similares a los métodos 1) y 2) denominados como
“Minim. Cov.” tanto en la grafica como en la tabla ya que en torno al 50%

se consiguen ofrecer unos resultados mejores.

Por otro lado, en cuanto al método 3) y a la eleccién aleatoria de la ubicacién de
los patrones de calibracion, denominados como “MaxERE” y “Elecc. Aleatoria”, el
método que se esta proponiendo consigue ofrecer unos resultados mejores el 100%
de las veces en cuanto a incertidumbre y el 79% y 89% de las veces en cuanto a error

absoluto respectivamente.

Teniendo en cuenta el mayor coste computacional asociado a los métodos 1) y 2),
se puede concluir que el método presentado tiene ventajas sobre el estado del arte.
Por ello, se decidi6 desarrollar en MATLAB una herramienta que permitiese validar

con imagenes reales estas conclusiones y que se presenta en el siguiente capitulo.



Capitulo 5

IMPLEMENTACION EN
IMAGENES REALES

Para llevar a la préctica el método propuesto, y que consiste en establecer el
patrén de calibracion lo més cerca posible de la camara a la vez que situarlo con
el angulo 0 calculado a partir del dangulo de visién de la camara, se desarrollé en
MATLAB una herramienta que permite mostrar en la grabacién en vivo la proyec-

cion del patrén de calibraciéon con la posicion adecuada.

En la Figura [5.1] se muestran varios ejemplos de esto. Nétese el hecho de que
el patrén de calibracién real utilizado es de 9 x 13 cuadrados; sin embargo, por
costumbre, las calibraciones con ese patrén se realizaron como si fuese uno de 7 x 11;

es decir, sin considerar a los cuadrados de los bordes méas extremos.

El modelo de camara que se evaliio en este parte fue una webcam logitech C920,
a la que se le sometié una calibracion con el método propuesto y una calibracion
con iméagenes “estandar”; es decir, intentando distribuir el patrén por todo el plano

imagen para tener un resultados honestos con los que comparar.

Como tltima consideracién, la métrica que se utilizd en esta parte para comparar
los métodos fue la de la incertidumbre, dado que no se es conocedor de los verdaderos
valores de los parametros de la cAmara que calibramos. De esta forma, métricas como
las del error relativo o absoluto, que pudimos llevar a cabo en la simulacién, no es

posible utilizarlas en esta fase.

71
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(c) Imégenes en blanco y negro con las esquinas del patrén de calibracién detectadas.

Figura 5.1

Tal y como se puede ver en la tabla los resultados de esta comparacion
fueron negativos, al ofrecer nuestro método mayor incertidumbre en la estimacion
de los parametros. Tras ello, realizamos un andlisis para explorar las causas de esta

aparente contradiccién entre los resultados de simulacion y las imégenes reales.

Gracias a un analisis exhaustivo, se observé que la causa que provocaba unos peo-
res resultados era el hecho de que nuestro método presentaba una mayor desviaciéon

tipica del error de reproyeccion (oay,), tal y como se ve en la tabla |5.1]

oam se puede asociar a la desviacién tipica en la deteccién de las esquinas [5]
y es tal y como estd implementado en [4]. De esta forma la expresién asociada al
calculo de la matriz de covarianza, tratada en la seccién |3.3.1], se puede expresar de

la siguiente forma:
Cov=H '~ J"WhHt=wJrNHtt=wrJrn!

Donde recordemos que W es la matriz de pesos semi-definida positiva y diagonal,
donde los elementos de su traza se corresponden con el inverso de la varianza asociada

a la deteccion de las esquinas y que se considera igual para todas. Es decir, los
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Nuestro método (15 imdgenes) | Calibracién “estdndar” (15 imégenes)
Parametros
Incertidumbre; 30; Incertidumbre; 30;
fer 0,982 pix. 9.47 0,645 pix. 438
fes 1,01 pix. 2,54 0,564 px. 3.84
ccy 2,06 pix. 5,18 1,15 pix. 7,82
ccy 1,99 pix. 5.00 1,11 pix. 755
ke 0,00970 mm 2 0,0244 mo= 0,00740 mm =2 0,0503 ==
kes 0,0279 mm—* 0,0701 ™2~ 0,0407 mm—* 0,277 M2
OAm 0,398 pix. 0,147 pix.

Tabla 5.1: Primera comparacion con imagenes reales. Modelo: webcam logitech C920.

2
elementos de su traza vienen dados por diag(W) = <L> .

TAm

Si consideramos el pardmetro con el elemento asociado (J7J(i,4))""/? y lo de-
nominamos como o;, la incertidumbre asociada al parametro es posible calcularla
como =+ 30;0a,,. En la tabla se observa como nuestro método en todos los casos
ofrece un menor valor de 30;, lo que resulta algo positivo pero que se ve perjudicado

por la desviacion en la deteccién en las esquinas oa,,.

Por ello se pensé en analizar si existia una influencia entre el angulo 6 calculado
para nuestro método, con la precision o desviacion tipica existente en la detecciéon
de las esquinas. Trabajos como [21] han mostrado que la precisién en la deteccién
de esquinas de Harris [9], método que estd implementado en [4], empeora cuando
aumenta el angulo entre el eje éptico y la normal de la superficie en la que esta la

esquina.

Para este andlisis, se realizaron un total de 10 calibraciones de 15 iméagenes reales
cada una, con distintos valores de # y utilizando la misma webcam. Esto fue posible

mediante la herramienta visual desarrollada en el TFG (Figura [5.1f).

En cada calibracién se recogié el valor de oa,, observandose la tendencia mos-
trada en la gréfica[5.2] Dicha tendencia se decidié aproximar por un valor constante

de oam ~ 0,28 pixeles entre los valores de 6 € [5°,40°] y por una tendencia lineal

Los valores de 6 < 5° y § > 65° no fueron tenidos en cuenta. En el primer caso la calibracién
no convergia por aproximarse a rotaciones degeneradas (ocurren cuando # = 0° como ya se ha
explicado). En el segundo caso el elevado escorzo con el que el patrén es observado dificultaba

considerablemente la deteccién de las esquinas.
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Figura 5.2: Desviacién tipica en la deteccion de las esquinas (oa,,) en funcion de 6.

con 0 > 40°. Lo que nos sirvié para confirmar que en efecto, el ruido en la detecciéon

de las esquinas variaba con 6.

Sabiendo esto, lo siguiente que se hizo fue llevar a cabo de nuevo el algoritmo
incluyendo la relacion que se acaba de mostrar. Es decir, se calculé de nuevo cual
era el valor de 6 6ptimo en funcién del angulo de vision. Los resultados se pueden
ver en la Figura y tal como se observa el valor de # 6ptimo pasa a ser uno

practicamente constante e igual a 40°.

De nuevo, para poder confirmar si estd estimacion es valida de acuerdo a las
suposiciones realizadas, se llevé a cabo una simulacion con los modelos de camara
de la tabla [4.3] para verificar asf si la estimacién de 40° se aproxima al valor de 6

que conlleva una menor incertidumbre. Los resultados aparecen en la Figura [5.3b]

De esta forma se ve que efectivamente la estimacion se cumple ain variando, no
solo la distancia focal, sino todos los demés parametros ya que como mucho el error

en la estimacién del valor 6ptimo es de 1°.

Con los resultados de este andlisis, se realizaron de nuevo los experimentos con
imagenes reales. Esto solo tendria sentido si se utilizase una camara distinta a la
que se uso para extraer los datos de ruido en la deteccion de las esquinas, ya que

sino se estaria predisponiendo que los resultados saliesen éptimos para esa camara.

Es por esto por lo que se utilizo la otra camara que se disponia con adaptabilidad
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(b) Incertidumbre en funcién del valor de 6 con el que se lleva a cabo la calibracién para
las cdmaras de la tabla 1.3l El valor de # asociado a un menor valor de incertidumbre
aparece marcado en rojo, mientras que el § que ha sido considerado como éptimo, aparece

marcado en verde. Se observa una correcta estimacion.

Figura 5.3



76 CAPITULO 5. IMPLEMENTACION EN IMAGENES REALES

Nuestro método Con consideraciones Con consideraciones Sin consideraciones

Parametros muy similares similares similares

Incertidumbre; 30; Incertidumbre; 30; Incertidumbre; 30; Incertidumbre; 30;

fa 1,60 pix. 3,07 1,92 pix. 6,48 1,909 pix. 8,37 3,10 pix. 14,83

fes 1,82 pix. 3,49 1,81 pix. 6,10 2,03 pix. 8,90 2,90 pix. 13,88

ccy 2,96 pix. 5,68 2,90 pix. 9,78 3,33 pix. 14,61 3,98 pix. 19,04

ccy 2,51 pix. 4,82 2,75 pix. 9,27 2,62 pix. 11,49 3,30 pix. 15,79

key 0,00550 mm~2  0,0106 ’”:'% 0,00870 mm=2  0,0294 ’"p%; 0,00580 mm~=2  0,0254 "';7’;2 0,0066 mm~2  0,0316 "’;’%

ke 0,00950 mm 10,0182 =22 | 0,0300 mm~t 0,132 =2t | 0,0192 mm ! 0,0842 =2t | 0,015 mm~! 0,0646 mm

Cam 0,521 pix. 0,296 pix. 0,228 pix. 0,209 pix.

Tabla 5.2: Comparacién con iméagenes reales incluyendo la tendencia estimada de
ruido en la deteccion de esquinas. El modelo utilizado es la caAmara integrada en el
portatil Toshiba Qosmio X870. Nuestro método de izquierda a derecha, es compa-
rado con una calibracién en la que 1) se sitian los patrones cerca de la camara y
rotando el patrén por todo el plano imagen, 2) Los patrones se alejan ligeramente y
se sigue rotando por todo el plano imagen, 3) Los patrones se alejan mds, el patrén
se distribuye por todo el plano imagen, pero la rotacién sobre su normal es menor.

Todas las imagenes utilizadas se pueden ver en el anexo H

a MATLAB y es el modelo integrado en el portatil de la marca Toshiba y modelo
Qosmio X870. Con ella se obtuvieron los resultados que se ven en la tabla [5.2]
donde se compara nuestro método con calibraciones llevadas a cabo con distintos
grupos de imagenes que cumplen condiciones diferentes, para un mismo nimero de

15 imagenes.

En ella se observa que nuestro método ofrece una menor incertidumbre en todos
los parametros de todos los conjuntos de imagenes, exceptuando a los parametros cc;
y fea del conjunto de imagenes més similar (situado en la tablaentre las columnas

4-5) aunque esta diferencia es muy pequena (0,06 y 0,01 pixeles respectivamente).

Ademas se observa que el término 3o; es inferior en nuestro método para todos
los parametros de todos los conjuntos de imagenes, lo que nos da entender que si el
ruido en la deteccion de las esquinas fuese igual, nuestro método ofreceria la mitad

de incertidumbre o incluso menos.

Como tultimo analisis del TFG para evaluar la precision ofrecida por nuestro
método, se decidié recoger los valores de incertidumbre de las calibraciones de la
tabla tras cada vez que se anadia una imagen. Como punto de partida se con-
sideraron 5 imagenes al ser una cantidad que permitia obtener resultados estables

para todos los tipos de calibracion de la tabla.
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Los resultados se presentan en las Figuras y b5l En la primera de ellas
aparece el valor de incertidumbre teniendo en cuenta la diferencia existente de error
en la deteccién de las esquinas (oan,) v en la segunda, se muestra el valor de 30;
(recordemos que o; representa la raiz cuadrada de los elementos de la traza de
(JTJ)~! y que cuanto mds bajos sean, se contribuird a una menor incertidumbre o

desviacién tipica en la estimacion).

En cuanto a la primera figura, las conclusiones son similares a las de la tabla|5.2}
ya que que tras un cierto nimero de imégenes, el método que se esta proponiendo
ofrece mejores resultados en los mismos parametros. Igualmente es interesante co-
mentar que, salvo en los pardmetros de distorsion, los 3 métodos que son mejores

en todas las imagenes son aquellos que tienen condiciones similares.

Por 1ltimo en cuanto a la segunda figura, se observa que nuestro método ofrece
un menor valor en todos los parametros, algo que es positivo y muestra que si no
fuese por el ruido existente en la deteccién de las esquinas, se ofrecerian unos mejores
resultados en general. Aqui ademas se observa que en todos los parametros, las 3
mejores calibraciones son aquellas que comparten condiciones similares al método

propuesto.
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Figura 5.4: Comparacion de la incertidumbre ofrecida por nuestro método con la

ofrecida por calibraciones con consideraciones diferentes. En esta figura se incluye el

hecho de que nuestro método tiene un mayor error en la deteccion de las esquinas.
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Figura 5.5: Comparacién del valor 30; (elementos de la traza de (J7.J)~'/2), ofrecida

por nuestro método con la ofrecida por calibraciones con consideraciones diferentes.

Por tanto, aqui no se incluye el hecho de que nuestro método tiene un mayor error

en la deteccion de las esquinas.
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Capitulo 6

CONCLUSIONES

En este Trabajo de Fin de Grado, se ha planteado un método para la calibracién
de una camara con bajo error. La problematica se ha abordado desde una perspectiva
global, buscando las transformaciones (posicién y orientacién) de las cdmaras que
reducen el error de calibracién. Este trabajo se diferencia asi del estado del arte,
que busca la siguiente mejor transformacion a partir de una calibracion dada. Como
consecuencia de abordar el problema de manera general nuestro analisis concluye
con las posiciones desde las cuales tomar las imagenes antes de la calibracién y

reduce el coste computacional de manera significativa.

Para ello se han analizado cémo influyen aspectos como la distancia entre el
patron de calibracion y la camara y su orientacion con respecto a ésta. El andlisis se
ha realizado desde un punto de vista tedrico y mediante simulacién; determinandose
finalmente la posibilidad de alcanzar una mejora en la precisién si se minimiza la

distancia y se utiliza un cierto angulo entre el patréon y el eje 6ptico de la camara.

El método propuesto se ha evaluado en simulaciéon con respecto al estado del
arte, y se ha mostrado que ante unas mismas condiciones de ruido en la deteccion
de las esquinas, es capaz de ofrecer resultados mejores o similares al estado del arte
y con un coste computacional menor. Es decir, hemos encontrado configuraciones

geométricas que conducen a un error de calibracién bajo.

Se ha evaluado también el método propuesto con imégenes reales, lo que ha per-

mitido observar un mayor error en la deteccién de las esquinas que en una calibraciéon
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realizada sin éste método. El error en la deteccién de las esquinas se propaga a los
resultados de calibracion, y ante errores variables el andlisis anterior de las configu-

raciones geométricas no es totalmente valido.

Ante esto, se ha estudiado la relacién entre el ruido y el angulo entre el patrén y
la cdmara, lo que ha permitido mejorar los resultados e incluso ofrecer una estima-
cion de la mayoria de los parametros con una menor incertidumbre que en el resto
de calibraciones analizadas, utilizando una camara diferente a la utilizada para la

estimacion de dicha relacion.

[gualmente se ha observado que el método seguia teniendo un mayor error en la
deteccion de las esquinas, por lo que una posible linea futura a este trabajo seria
probar distintos algoritmos de deteccién, o si fuese necesario intentar desarrollar uno
propio. Ademas, tal y como se ha mostrado, nuestra propuesta no siempre ofrece una
estimacion con una menor incertidumbre. Por ello, una posible linea futura podria
ser profundizar en el anélisis para buscar posibles configuraciones con errores todavia
mas bajos. Podrian analizarse aspectos como, por ejemplo, conjuntos de imagenes
tomados con distintos angulos, o relajar la condicion de que una de las esquinas del

patron esté muy cercana al borde de la imagen.
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Anexo A

Creacion de las traslaciones

A continuacién se muestra la funcién desarrollada que permitio la colocacion de
los patrones de calibracién dentro del campo de vision de la cdmara para cualquier

rotacion.
Las entradas de este cédigo son:
» Rci: matriz de rotacién asociada al patron.

= Poses_vert: representa las coordenadas, desde la referencia ubicada en el patron,

de los vértices del mismo.

= Fov_vertices: representa las coordendas de los limites del angulo de vision desde

la referencia cdmara para un alejamiento unidad (en este caso 1 mm).

%Vértices en la referencia camara (sin aplicar traslacién):

poses_vertc = Rcixposes_vert;
%Nos creamos a continuacién una variable con los vértices
ordenados de menor a mayor z (alejamiento de la cdmara).

[poses_vertcxyz ,p_vxyz_ind] = sort(poses_vertc ,2);

poses_vertcz = poses_vertc (:,p-vxyz_ind (3,:)); Yorganizamos

los vértices segun Zc (de menor a mayor)
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Y%A continuacién determinamos las diferencias en Xc, Yec y Zc
entre cada pareja de vértices del tablero.

%Primero, creando los indices (poses_ind) que por filas
indica la pareja de vértices correspondientes de la que
se calcula su diferencia.

poses_ind = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4]; %Parejas de vé

rtices analizadas

poses_diff_x = poses_vertc(1,poses_ind(:,1)) — poses_vertc
(1,poses_ind (:,2));

poses_diff_y = poses_vertc(2,poses_ind(:,1)) — poses_vertc
(2,poses_ind (:,2));

poses_diff_z = poses_vertc(3,poses_ind(:,1)) — poses_vertc

(3,poses_ind (:,2));

% En base a qué vértice se encuentra mis a la izda/arriba se
determina un componente de la expresién que mas adelante
determinara la z_-min del tablero con la rotacién
correspondiente:

poses multk x = 1/fc(1)*((poses_diff_ x < 0)xcc(1) + (

) *((nx—1)=cc(1)));

(2)*((poses_diff_.y < 0)xcc(2) + (

poses_diff_y >= 0)*((ny—1)—cc(2)));

poses_diff_x >= 0
poses multk_y = 1/fc

% Calculamos la menor z de cada par de vértices del tablero:
poses_zpair = [poses_vertc(3,poses_ind (:,1)); poses_vertc (3,
poses_ind (:,2))];

poses_min_zpair = min(poses_zpair);

% Calculamos el alejamiento minimo del tablero para la
rotacién dada:

% 1) Se calcula la z_minima para el primero de los vértices
de cada pareja considerada, es decir, se esta tratando a

cada par individualmente:
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55 z.min_x = fc(1)/(nx—1)x(abs(poses_diff_x)—poses_diff_z .x
poses_multk_x);

29

30 % 2) Como el primer vértice entre cada par puede ser el mas
cercano o el mas lejano, referenciamos todo al vértice ma
s cercano de cada par:

51 z.min_x = z_min_x + (poses_diff_.z < 0).*poses_diff_z;

32

a3 % 3) Y a continuacién referenciamos todas las distancias a
un mismo vértice, el vértice numero 1:

30 z_min_x2 = z_min_x — poses_min_zpair + poses_vertcz (3,1);

35

s % 4) Aquel vértice que mnecesite un mayor alejamiento se

elige:
s7 [z-min_x_aux, z_min_x_ind] = max(z-min_x2);
s z.min_.x = z_min_x(z_min_x_ind);
3 poOses_zv_xX = poses_min_zpair(z_min_x_ind);

a % Todo esto ha sido para las distancias horizontales , a
continuacion se hacen para las verticales:

w2 z_min_y = fc(2)/(ny—1)*(abs(poses_diff_y)—poses_diff_z.x
poses _multk_y);

i3 zmin.y = z_min_y + (poses_diff_z < 0).xposes_diff_z;

5 z-min_y2 = z_min_.y — poses_min_zpair + poses_vertcz (3,1);

s [z_min_y_aux, z min_y_ind]| = max(z_min_y2);

s z_min_y = z_min_y(z_min_y_ind);

19 poses_zv_y = poses_min_zpair(z_min_y_ind);

s1 %Ahora, el miximo de z_min_x y z_min_y serd el valor minimo
que se tendrd que alejar el tablero para estar dentro
completamente del campo de visidén de la camara:

52 z_min_poses = max([z_min_x_aux z_min_y_aux]);
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if (z.min_poses = z_min_x_aux)
poses_zZv = pOses_zZV_X;
zZ_min_poses = zZ_min_x;

else
poOses_zZv = pPOses_zV_y;
Z_min_poses = z_min_y;

end

%Como criterio para colocar el origen del tablero, lo
intentaremos colocar lo mas arriba y a la izquierda
posible , por ello nos falta determinar, cual de los
puntos estd mas alejado del campo de vision tanto por
arriba como por la izquierda, ya que estos vértices seran
los que determinaran el desplazamiento necesario del

origen tanto en Xc como en Yc.

%Caculamos primero para ello, las z de todos los vértices:

poses_vertcz2 = z_min_poses + poses_vertc(3,:) — poses_zv;

%Distancia con respecto al limite superior izquierdo del
campo de visidn:

poses_fov_lim = poses_vertcz2 x[—cc(1l)/fc (1) —cc(2)/fc(2)];
%4x2 (limites del fov tanto en x como en y para la z de
cada vértice)

poses_fov_lim_dist = poses_vertc ([l 2],:)’ — poses_fov_lim;

[dist_v1_rel, dist_vl_ind] = min(poses_fov_lim_dist);

%Z’s del vértices de mds a la izda del FOV (z_-1), de mas
arriba (z-2) y la z asociada al origen (z-1)

z_1_tpose = z_min_poses + poses_vertc(3,dist_vl_ind (1)) —
poses_zv;

z_2_tpose = z_min_poses + poses_vertc(3,dist_vl_ind (2)) —
poses_zv;

z_3_tpose = z_min_poses + poses_vertc(3,1) — poses_zv;
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%Las distancias que serd necesario desplazar el origen para
que quepa todo dentro del FOV:

dist_vlx = poses_vertc(1l,1) — poses_vertc(1l,dist_vl_ind(1));

dist_vly = poses_vertc(2,1) — poses_vertc(2,dist_vl_ind(2));

% A continuacién, definimos los pares de vértices (sus Z)
que definen la longitud vertical y horizontal del FOV
necesaria.

% Consideramos la distancia asociada a los vértices que
determinan el alejamiento minimo necesario, ya que por lo
menos hasta un determinado alejamiento se mantendran
como las distancias que mas ocupan dentro del FOV de
todos los pares de vértices posibles.

poses_ind_pairx = poses_ind (z_min_x_ind ,:) ;

poses_ind_pairy = poses_ind (z_min_y_ind ,:) ;

tab_long_x = abs(poses_vertc (1,poses_ind_pairx (1)) —
poses_vertc (1,poses_ind_pairx(2)));

tab_long_.y = abs(poses_vertc(2,poses_ind_pairy (1)) —
poses_vertc (2, poses_ind_pairy (2)));

% La z asociada a estos vértices la calculamos a continuaci6
n. En la primera fila ponemos los vertices asociados al
FOVx y en la segunda los asociados al FOVy:

poses_fov_vz = [poses_vertcz2(poses_ind_pairx (1))
poses_vertcz2 (poses_ind_pairx(2));

poses_vertcz2 (poses_ind_pairy (1))
poses_vertcz2 (poses_ind_pairy (2)) ];

if (poses_diff_x(poses_ind_pairx) < 0)
poses_coef_x = [cc(1)/fc (1), ((nx—1)—cc(1))/fc(1)];
else

poses_coef_ x = [((nx—1)—cc(1))/fc (1), cc(1)/fc(1)];
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end

if (poses_diff_y(poses_ind_pairy) < 0)

poses_coef_y = [cc(2)/fc(2), ((ny—1)—cc(2))/fc(2)];
else

poses_coef_y = [((ny—1)—cc(2))/fc(2), cc(2)/fc(2)];

end

%En funcién de las variables [kl k2 k3 k4] creadas en la
funcién simulaciéon_test_visibility , creamos las
siguientes variables que se utilziardan posteriormente
para condiciones:

paux_.x = —t_lim (2) 4+ t_lim (4); %Nota: posibles valores =
0,1,—1

paux.y = t_lim (1) — t_lim (3);

% Con esto, ya podemos calcular la posicién de todos los

tableros:
z_actual = poses_fov_vz;
z1l _tpose_actual = z_1_tpose;
z2_tpose_actual = z_2_tpose;
z3_tpose_actual = z_3_tpose;

%Para las condiciones

pdiff_visib_x = mean ([min(poses_vertc (1,:)) max(poses_vertc

(1,:))]) — poses_vertc(1,1); %Diferencia entre el punto

medio y el origen en Xc

pdiff_visib_y = mean ([min(poses_vertc (2,:)) max(poses_vertc

(2,:))]) — poses_vertc(2,1); %Diferencia entre el punto

medio y el origen en Yc

aux = 0;

%while (z3_tpose_actual < alejam_zlim) && (" flag_cp)
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while aux < 6

Y%aux = kk+1;

kkx = floor(1/diff_tpose x(poses_coef_x(1)*z_actual(1,1)
+ poses_coef_x(2)xz_actual (1,2) — tab_long_-x) +
1.001) ;

kky = floor(1/diff_tpose x(poses_coef_y(1)*z_actual(2,1)
+ poses_coef_y (2)xz_actual (2,2) — tab_long_y) +
1.001) ;

%kk = kk + kkxskky:

%Colocacién de los checkerboards en los planos

considerados:

for aux2 = 1:kky
for aux3 = 1:kkx
compl = zl_tpose_actualsxfov_vertices (1,1)+
dist_vlx +(aux3—1)xdiff_tpose;
comp2 = z2_tpose_actual*fov_vertices (1,2)+

dist_vly + (aux2—1)xdiff_tpose;

if ((compl + pdiff_visib_x) % paux_x >= 0) && ((
comp2 + pdiff_visib_y) * paux.y >= 0) %

Comprobaciones de visibilidad

aux = aux—+1;
Tci = [compl,comp2, z3_tpose_actual]’;
Kk = kk+1;
simulacion_obtener_x;
if (aux_safe = 0)
eval ([ "cam_’ num2str(n_cam) ’.tab_1.rot._
num2str (rcont) ".tr.tr.’ num2str(
aux) = = Tci;’])
else

aux = aux—1;
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end
end
end

% if flag_cp
% break ;
%o end

end

z_actual = z_actual 4+ diffz_tpose;

z1l_tpose_actual = zl_tpose_actual + diffz_tpose;
z2_tpose_actual = z2_tpose_actual + diffz_tpose;
z3_tpose_actual = z3_tpose_actual + diffz_tpose;

end

nRc_creadas = kk;



Anexo B

Imagenes utilizadas en la

evaluacion experimental

A continuacién, en las Figuras [B.1], [B.2] [B.3| y [B.4] y con motivo de ilustrar los

experimentos realizados, se presentan las fotos que se utilizaron en los 4 diferentes
métodos de llevar a cabo la calibracion y que fueron usadas en la comparacion final

del capitulo 5| Estas fotos dieron como resultado a los datos de la tabla y alas
Figuras [5.4] y
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Figura B.1: Conjunto de imégenes realizadas con el método propuesto: situar lo mas
cerca posible los patrones de calibracién y con un angulo entre normal y eje éptico

de 0 = 40°.

Figura B.2: Conjunto de imagenes realizadas con condiciones muy similares en cuan-

to a cercania, distribucion por el plano imagen del patrén y rotacion sobre la normal

del mismo.
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Figura B.3: Conjunto de imagenes realizadas con condiciones similares en cuanto a
cercania, distribucion por el plano imagen del patrén y rotacion sobre la normal del

mismo.

Figura B.4: Conjunto de imagenes realizadas sin condiciones similares en cuanto a

cercania y rotacion sobre la normal del mismo; aunque la condicién de distribuir el

patrén por el plano imagen se mantiene.
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