
Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Trabajo Fin de Grado

Navegación de robots manipuladores en el

entorno de ROS

Navigation of mobile manipulators in the ROS

environment

Autor/es

Jorge Playán Garai

Director/es

Gonzalo López

Rosario Aragües

Escuela de ingeniería y arquitectura

2019

Resumen

La robótica se ha extendido en las últimas décadas en entornos industriales, y en la

actualidad genera grandes expectativas en multitud de campos. En este Trabajo de Fin

de Grado se pretende que el alumno se familiarice con la interacción entre “Robot

Operating System” (ROS) y dos robots diferentes (uno comercial, Turtlebot, y otro en

desarrollo, Campero). Los objetivos incluyen comprender la herramienta ROS aplicada

a la navegación de robots, desarrollar capacidades para la instalación del software ROS

en un ordenador con el sistema operativo Ubuntu, aplicar el software a los robots

Turtlebot y Campero realizando simulaciones de navegación y analizar críticamente los

resultados obtenidos. De esta manera, se puede usar la experiencia ganada en Turtlebot

para manejar Campero y hacer algunas contribuciones al mismo.

Se estudió el software del robot Turtlebot Waffle Pi, un pequeño robot con cuatro

ruedas, dos de ellas motrices, que incluye un paquete de navegación. Se realizaron

simulaciones de mapeo de entorno y de navegación autónoma sorteando obstáculos.

Los archivos de navegación de Turtlebot se modificaron y aplicaron a la navegación del

robot Campero. Este robot es mucho más grande que Turtlebot, dispone de cuatro

ruedas y un brazo robótico. Se realizaron simulaciones de navegación en dos entornos

desarrollados para Campero, usando los dos tipos de ruedas que incluye el robot:

diferenciales y omnidireccionales. Se usó la rutina SLAM para realizar mapas del entorno

y después poder emplearlos para una navegación más eficiente.

El Software de Turtlebot para ROS está disponible como código abierto, y ha permitido

realizar simulaciones complejas esquivando obstáculos y actualizando la ruta en tiempo

real. A pesar del rápido progreso actual del software para Campero, este robot se halla

en una fase inicial de su desarrollo. Puesto que Campero no tiene rutinas propias de

navegación, se aplicaron las usadas en Turtlebot realizando las modificaciones y

empleando los parámetros propios de Campero. Esto permitió hacer una variedad de

experimentos de simulación de navegación en los que se alcanzaron los puntos

propuestos.

Se han encontrado problemas con la navegación de Campero, que parecen relacionados

con su parametrización, con el uso de sus sensores y con la especificación del objetivo

de la navegación. Estos son aspectos que deben de recibir atención en el futuro para

poder hacer de Campero un robot fiable y operativo en entornos reales.

2

Índice

1. Introducción ... 4

1.1. Contexto y Motivación ... 4

1.2. Objetivos.. 5

1.3. Alcance y entorno de trabajo.. 5

2. ROS, Robot Operating System .. 8

2.1. Introducción a ROS ... 8

2.2. Instalación de Linux y ROS ... 10

2.2.1. Instalación del sistema operativo Linux ... 10

2.2.2. Instalación de ROS ... 11

2.2.3. Instalación de Turtlebot 3 ... 11

2.3. Conceptos básicos de ROS .. 11

2.4. Herramientas incluidas en ROS ... 13

2.5. Un problema de navegación para resolver con ROS .. 13

2.6. Navegación del robot Turtlebot ... 13

3. Archivos de navegación ... 21

3.1. Adaptative Monte-Carlo Localization (AMCL) .. 21

3.2. Move_Base ... 23

3.3. Global launch file ... 25

4. Robot Campero .. 27

4.1. Versión del software .. 28

4.2. Archivos proporcionados ... 28

4.3. Instalación y ejecución ... 30

5. Navegación sobre el robot Campero .. 34

5.1. Preparación Inicial ... 34

5.1.1. Modelo inicial ... 34

3

5.1.2. Versión con navegación ... 35

5.2. Archivos finales .. 35

5.2.1. AMCL .. 35

5.2.2. Move_base ... 36

5.2.3. One_robot ... 36

5.2.4. Global .. 37

6. Experimentación con el robot Campero .. 39

6.1. Reconocimiento del entorno ... 39

6.2. Navegación en exterior con ruedas diferenciales ... 41

6.3. Navegación en interior con ruedas omnidireccionales 45

7. Discusión general .. 49

7.1. Simulación con el robot Turtlebot ... 49

7.2. Simulación con el robot Campero .. 49

8. Conclusiones ... 51

9. Recomendaciones para trabajos futuros con el robot Campero 52

10. Anexos .. 53

10.1. Archivo de especificaciones del robot Waffle Pi por la empresa Robotis ... 53

10.2. Archivo de código amcl.launch para el robot Campero 55

10.3. Archivo de código move_base.launch para el robot Campero 58

10.4. Archivo de código campero_one_robot_nav.launch para el robot

Campero .. 61

10.5. Archivo de código campero_nav.launch para el robot Campero 63

10.6. Archivo de mapa del entorno exterior mymap.pgm .. 66

10.7. Archivo de mapa del entorno interior mapaInt.pgm .. 67

11. Bibliografía .. 68

4

1. Introducción

1.1. Contexto y Motivación

El intenso desarrollo actual de la robótica está basado en el progreso de áreas de

conocimiento complementarias como la informática, la mecánica, la electrónica, los

sensores o la inteligencia artificial. La popularización de la robótica en los entornos

industriales e incluso en la vida diaria está generando grandes expectativas en la sociedad.

Los ingenieros electrónicos y automáticos (junto a otros profesionales) tienen una

responsabilidad directa sobre el desarrollo de la robótica.

En España son muchos los ámbitos en los que la robótica puede en las próximas décadas

ayudar a que la sociedad sea sostenible. Un país muy envejecido, con la población

concentrándose en las ciudades y con una baja densidad de población en la mayoría del

territorio presenta retos muy importantes para la robótica. Entre ellos, la fabricación, la

asistencia a personas dependientes, la seguridad, las ciudades inteligentes, el cuidado del

medio ambiente o la agricultura.

En este contexto, la robótica es un campo de trabajo de clara importancia tanto en el

presente como en el futuro. Este Trabajo Fin de Grado (TFG) trata de un aspecto

horizontal de la robótica: el software que gobierna los distintos aspectos de un robot.

El software usado es ROS (Open Source Robotics Foundation, 2019a), una plataforma

de código abierto, genérica (cualquier robot puede ser diseñado para usarlo) y de

desarrollo cooperativo. Esta plataforma de software se aplica a aspectos como el

mapeado del entorno del robot, el uso de mapas y sensores para la navegación terrestre,

la manipulación con brazos robóticos o la interacción con el robot físico.

En este TFG el software se aplica al robot comercial Turtlebot waffle Pi (Robotis, 2019)

y al robot Campero, que está actualmente en sus fases iniciales de desarrollo por la

empresa Robotnik. De todas las capacidades del software ROS, el TFG se orienta a la

navegación de los robots. Esta aplicación es muy interesante para comprender cómo se

programa esta navegación en dos robots diferentes y en dos momentos muy diferentes

de su desarrollo.

El TFG se enmarca dentro de las actividades del proyecto COMMANDIA, Robótica

móvil colaborativa de objetos deformables en aplicaciones industriales (COMMANDIA,

2019). Este proyecto está cofinanciado por el Programa Interreg Sudoe y por el Fondo

5

Europeo de Desarrollo Regional (FEDER). El proyecto está orientado a la manipulación

y el procesamiento de objetos deformables tales como alimentos, ropa, juguetes o

artículos de cuero. El objetivo es “mejorar la competitividad y las condiciones de trabajo

de las industrias donde los objetos deformables deben ser manipulados directamente

por los operadores humanos para controlar su forma durante la producción”. El

proyecto cuenta con la participación de socios de Francia, Portugal y España, entre los

que se cuenta la Universidad de Zaragoza.

1.2. Objetivos

El objetivo docente de este TFG es comprender la interacción entre ROS y dos robots

diferentes, analizando sus posibilidades y sus limitaciones actuales. Este objetivo docente

se concreta en cuatro objetivos específicos:

1. Comprender la herramienta ROS, particularmente su aplicación a la navegación

autónoma de robots.

2. Desarrollar las capacidades para la instalación y puesta a punto del software ROS en

un ordenador, y para su aplicación a los robots Turtlebot y Campero mediante el

uso del software específico de los robots.

3. Contribuir al desarrollo de software para la navegación del robot Campero.

4. Probar y analizar la navegación de los dos robots en los aspectos de mapeo del

territorio y de simulación de la navegación a tiempo real.

1.3. Alcance y entorno de trabajo

Al tratarse ROS de una plataforma de software genérica, el alcance de este TFG es

global: cualquier robot puede ser diseñado para utilizar ROS. En este documento se

analizan dos robots en particular, pero el software es adaptable a otros robots.

Es preciso recordar en este punto que el alcance del TFG no incluye la manipulación de

los robots a nivel físico, ni su control por ROS. Se han utilizado modelos informáticos y

simulaciones de los dos robots, que han sido controlados por ROS. En una fase posterior

a este trabajo, se podría analizar el resultado del control del robot físico por ROS.

El uso de un modelo informático de los robots permite acelerar el desarrollo de nuevas

utilidades de control o la explotación de nuevos sensores en los robots. Las simulaciones

6

realizadas con ROS permiten identificar problemas de diseño o de compatibilidad de

datos.

Finalmente, los elementos utilizados en este trabajo fin de grado se especifican a

continuación (Tabla 1.1).

Tabla 1.1 Listado de los elementos del trabajo con una descripción e ilustración.

NOMBRE DESCRIPCIÓN ILUSTRACIÓN

ROS

Sistema operativo gratuito

de código libre que

proporciona herramientas

relacionadas con robótica.

CAMPERO

Robot de gran envergadura

sobre el que se trabaja la

navegación.

TURTLEBOT

Robot de código libre con

un sistema de navegación

integrado.

SENSORES

Elementos del robot para

recibir información del

entorno. Varían con el

robot empleado.

ENTORNO GAZEBO

Escenario dónde se

realizan las simulaciones

del robot.

MAPA RVIZ

Mapa del escenario para

ayudar con el guiado del

robot durante la

navegación.

7

Se añade un diagrama de alto que muestra el funcionamiento conjunto de estos

elementos (Figura 1.1).

Figura 1.1. Diagrama de alto nivel que conecta a nivel lógico los elementos que

componen este trabajo.

8

2. ROS, Robot Operating System

2.1. Introducción a ROS

Robot Operating System (ROS) es un sistema operativo gratuito de código libre1 que

proporciona funciones flexibles para el manejo y control de robots como la abstracción

de hardware, control de dispositivos, comunicación entre procesos y manejo de

paquetes, entre otros. Los desarrolladores de ROS lo definen como “una colección de

herramientas, librerías y convenciones que simplifican la tarea de crear

comportamientos robóticos complejos y robustos en una variedad de plataformas

robóticas” (Open Source Robotics Foundation, 2019a). ROS incluye herramientas y

librerías para obtener, construir, escribir y ejecutar código en uno o varios ordenadores

simultáneamente. Desde el punto de vista informático, ROS es un middleware

(Wikipedia contributors, 2019a), situándose entre el sistema operativo y las aplicaciones

que ejecuta. Por lo tanto, facilita y acelera el trabajo de los desarrolladores. En definitiva,

ROS no es un sistema operativo en sentido estricto, sino que se ejecuta sobre uno:

Linux.

Uno de los aspectos más importantes de ROS es su filosofía de “desarrollo colaborativo

de software robótico” (Open Source Robotics Foundation, 2019a). El objetivo es facilitar

que laboratorios especializados en distintos aspectos de la robótica puedan colaborar y

apoyarse entre ellos para construir una herramienta de gran valor añadido. De esta

manera, la web de ROS actualmente cita a 79 desarrolladores de distintas

organizaciones. A pesar de este esfuerzo colaborativo, ROS tiene dos autores

principales, Eric Berger y Keenan Wyrobek, que en torno a 2007 comenzaron a trabajar

en el proyecto mientras hacían la tesis doctoral en la Universidad de Stanford

(Wyrobek, 2017). En este artículo se presenta un comic (Figura 2.1) en el que se explica

la necesidad de ROS, como una forma de evitar la pérdida de tiempo de los

desarrolladores.

1 ROS se distribuye bajo una licencia del tipo BSD, que se caracteriza por imponer restricciones mínimas

en su uso y distribución.

9

Figura 2.1. Comic explicando la necesidad de ROS o la pérdida de tiempo reinventando

la rueda en la robótica. Autoría: (Wyrobek, 2017).

El comic muestra como alguien hace un desarrollo innovador en robótica. Otro

laboratorio quiere seguir esa línea, pero no tiene los detalles que hacen falta. Finalmente,

decide hacer un programa para que otros puedan usarlo. Se consigue algo que funciona,

lo publica, otros lo leen y la rueda comienza de nuevo. ROS se creó para romper este

círculo, evitando la pérdida de tiempo, integrando esfuerzos y asegurando una

continuidad en el desarrollo. Los autores iniciales consiguieron dinero para el desarrollo,

implicaron a otros profesionales y trabajaron en un garaje. Diez años después, muchos

jóvenes se han formado en el programa y muchas empresas han comenzado a usarlo

10

para sus nuevos productos y negocios. Al mismo tiempo, la Open Source Robotics

Foundation se hizo cargo del desarrollo de ROS en 2013 (Wyrobek, 2017).

En 2012 comenzó el desarrollo de ROS-Industrial, otro proyecto de código abierto con

licencia BSD que tiene el objetivo de ampliar ROS al mundo de la fabricación automática

y robótica (Wikipedia Contributors, 2019b). Esta rama tiene tres nodos activos: uno en

Texas (EE.UU.), otro en Alemania (Europa) y el último en Singapur (Asia). Se ocupa de

la interacción entre la robótica y los equipos de fabricación, con aplicaciones industriales

y actividades formativas.

A lo largo de estos doce años de desarrollo, se han ido creando en ROS capacidades

para un buen número de aplicaciones. Algunas de las muchas capacidades actualmente

disponibles en ROS son:

• Detectar las características del medio mediante el uso de sensores. Se puede usar

una variedad de ellos, siendo típicos los sensores LIDAR2 y las cámaras de visión

óptica.

• Navegar en un espacio que puede estar registrado de antemano en un mapa. No es

obligatorio que exista este mapa, pero ayuda con la navegación. El Propio ROS puede

fabricar estos mapas usando los sensores del robot, y algoritmos SLAM3.

• Gestionar entornos multi-robot. De esta manera, una flota de robots puede

colaborar para hacer una tarea conjuntamente.

• Manejar brazos robóticos para tareas de manipulación o fabricación.

2.2. Instalación de Linux y ROS

Actualmente, ROS únicamente está disponible, de forma estable, en Linux. ROS está

disponible de forma experimental en MacOS y Windows 10. Este trabajo se ha realizado

sobre Linux debido a su estabilidad.

2.2.1. Instalación del sistema operativo Linux

Para la realización de este trabajo se ha empleado el sistema operativo Linux, en

particular la distribución Ubuntu 16.04.6 LTS Xenial Xerus. En esta instalación se

comenzó por la descarga de la versión siguiendo las instrucciones de la página oficial

(Ubuntu releases, 2019). Dependiendo del ordenador que se usará se necesitará la

2 Light Detection and Ranging o Laser Imaging Detection and Ranging.
3 Simultaneous localization and mapping.

11

versión de 32 bits o la de 64 bits. Ya con la descarga completada se procede a la

instalación del software Rufus (Batard, 2019), que permite colocar esta imagen del

sistema en un dispositivo USB para instalarlo desde éste. Una vez la imagen del sistema

está lista, es necesario hacer una partición del sistema para tener espacio sobre el que

alojar Ubuntu.

Cuando todo está preparado, se reinicia el ordenador sobre el que queramos realizar la

instalación para acceder a la BIOS y ejecutar el USB. Se siguen los pasos expuestos en la

pantalla para finalizar la instalación.

2.2.2. Instalación de ROS

Una vez tenemos Ubuntu 16.04.6 Xenial Xerus instalado procedemos a la instalación de

ROS. En este TFG se ha empleado la versión de ROS “Kinetic Kame”, la cual esta

específicamente diseñada para la versión de Ubuntu 16.04.6 LTS Xenial Xerus. Para ello

se sigue el tutorial que se presenta en la propia página de ROS (Open Source Robotics

Foundation, 2019d).

2.2.3. Instalación de Turtlebot 3

Una vez instalados Ubuntu y ROS, pasamos a la instalación del robot Turtlebot y todos

los paquetes necesarios para su funcionamiento. Estas instrucciones están disponibles en

la página web del robot Turtlebot (Robotis, 2019b).

2.3. Conceptos básicos de ROS

El funcionamiento de ROS consiste en un modelo gráfico de procesos. Los procesos

generados son llamados nodos, como los nodos de un diagrama, y están conectados por

tópicos. Estos se representan como líneas que conectan nodos. Los tópicos permiten a

los nodos pasarse mensajes con información. Todos los nodos dependen de un maestro

que los registra y ordena, roscore. Este maestro establece comunicación “peer-to-

peer” entre los nodos, por lo cual los mensajes o llamadas entre nodos no necesitan

pasar por el maestro.

A continuación, se proporcionan definiciones más completas de los elementos que

componen ROS.

• Nodos: Los nodos son el centro de la programación en ROS, ya que la mayoría del

código ejecuta nodos, comunicación entre nodos u otras acciones relacionadas con

nodos.

12

• Tópicos: Para poder enviar mensajes a un tópico, primero el nodo debe publicar en

dicho tópico y si queremos que un nodo reciba la información enviada deberá

subscribirse al tópico. Ningún nodo puede saber quién está publicando en qué tópico

ni quién lo está recibiendo: es completamente anónimo.

• Servicios: Un servicio es una acción que un nodo puede ejecutar con un solo

resultado. Los nodos publican sus servicios y otros nodos pueden requerirlos.

En los siguientes párrafos se presentan ejemplos de cómo establecer un entorno de

trabajo y cómo crear sobre éste un paquete.

El entorno más simple sobre el que se puede trabajar consiste en crear un paquete con

su carpeta source (src). Esto se hace de la siguiente forma:

mkdir -p ~/catkin_ws/src

cd ~/catkin_ws

catkin_make

Al hacer este último paso habremos compilado el paquete y se deberían haber creado

las carpetas devel y build junto a la src previamente mencionada.

Se finaliza la creación del paquete de la siguiente forma:

 source devel/setup.bash

Esto permite utilizar el espacio de trabajo como nuestro entorno actual.

Ahora procedemos a la creación de un paquete en el interior de este espacio. La forma

más sencilla sería:

catkin_create_pkg <nombre_paquete> [dependencia1]

[dependencia2]

Por ejemplo, podría ser así:

 catkin_create_pkg paquete_prueba std_msgs rospy roscpp

Esto crea un paquete llamado paquete_prueba y dice que este paquete va a depender

de std_msgs, rospy, y roscpp (librerías incluidas en ROS para comunicación, código

Python y código c++)

Una vez creados, volvemos a compilar con:

 cd ~/catkin_ws/

13

 catkin_make

 source devel/setup.bash

2.4. Herramientas incluidas en ROS

La funcionalidad de ROS se ve altamente potenciada por la inclusión de herramientas

que ayudan a los desarrolladores a visualizar y guardar información, navegar la estructura

de paquetes de ROS y crear “scripts” para automatizar o configurar procesos. Entre

ellas cabe destacar:

• rviz (Open Source Robotics Foundation, 2019e): Visualizador 3D que forma parte

de ROS y que se usa para representar robots, los escenarios en los que trabajan y

los datos de los sensores. Este programa es altamente configurable con diferentes

formas de visualizar y extensiones.

• Gazebo (Open Soure Robotics Foundation, 2019f): Aunque no está incluido en la

instalación, sí que se incluyen paquetes para poder ejecutarlo junto con ROS y poder

emplearlo para obtener simulaciones de nuestros robots y de escenarios en 3D.

• Roslaunch: Es una herramienta clave en ROS, que ejecuta varios nodos de forma

local o remota y les proporciona parámetros para ejecutarse correctamente.

2.5. Un problema de navegación para resolver con ROS

Tal como se ha visto antes, ROS puede resolver una gran cantidad de problemas

generales sobre el uso de robots. Estos problemas van desde el análisis del medio que

rodea al robot mediante sensores, el movimiento del robot, el uso de un brazo robótico

o la fabricación en entornos industriales. Sin embargo, este Trabajo Fin de Grado se

refiere a aplicaciones de navegación de un solo robot con ruedas en entornos mapeados

apoyado por sensores que caracterizan el medio. Se quiere que el robot sea capaz de

navegar de un punto inicial a un punto destino sorteando los obstáculos presentes. En

este trabajo, ROS resuelve este problema en una simulación en el ordenador, que podría

posteriormente trasladarse a un robot físico que navega en un entorno físico.

2.6. Navegación del robot Turtlebot

En estas simulaciones vamos a trabajar con el robot comercial Turtlebot Waffle Pi

(Robotis, 2019) (Anexo 10.1). Como se aprecia en el anexo, este robot es ligero y tiene

reducidas dimensiones (1,8 kg, 281 x 306 x 141 mm). Además, viene con paquetes de

14

navegación (entre otras funcionalidades) que lo hacen muy adecuado para este trabajo.

El robot se muestra en la figura 2.2.

Figura 2.2. El robot Turtlebot3 Waffle Pi. Autoría: (Robotis, 2019).

La instalación de Ubuntu con ROS y con todos los paquetes necesarios deja el sistema

preparado para el uso del robot Turtlebot. Los paquetes disponibles incluyen utilidades

de navegación, entorno multirobot, gmapping, y SLAM, entre otros. Para poder

comprender cómo funciona la navegación ya incluida en este robot y poder aplicarla

posteriormente al robot Campero, es necesario examinar el funcionamiento en el

Turtlebot y analizar los archivos que lo forman.

Los archivos del Turtlebot están diseñados de tal forma que ROS comprueba con qué

versión de éste está trabajando (Burger, Waffle o Waffle Pi). En función de la versión se

aplican unas físicas y unos parámetros diferentes.

Una vez instalado el robot Turtlebot y su paquete de navegación, se pasa a comprobar

el funcionamiento de éste. Para esto se abre en una terminal un maestro:

 roscore

Se abre entonces otra terminal sobre la que se carga el mapa del entorno. En principio

debería ejecutarlo el archivo de navegación del Turtlebot, pero en las condiciones de

trabajo descritas provoca errores y no consigue cargarlo bien. Es preciso pues ejecutarlo

con antelación para un correcto funcionamiento.

rosrun map_server map_server

catkin_ws/src/turtlebot3/turtlebot3_navigation/maps/map.yaml

15

Ahora podemos ejecutar el código con normalidad. Sobre otra terminal, elegimos el

modelo de Turtlebot de Robotis que deseamos utilizar. En este ejemplo se emplea el

waffle_pi (Robotis, 2019),

Este robot incorpora un “360 Laser Distance Sensor LDS-01” se trata de un escáner

LIDAR 2D que puede medir en 360º y recoge datos alrededor del robot para usarlos

para SLAM.

Procedemos a ejecutar el mundo sobre el que simular el robot elegido:

 export TURTLEBOT3_MODEL=waffle_pi

roslaunch turtlebot3_gazebo turtlebot3_world.launch

Finalmente, en una última terminal, entramos en el directorio en el que se aloja el fichero

a ejecutar y lo activamos. Para poder disponer de una guía del mapa en rviz es necesario

completar el comando con el nombre y localización del mapa a emplear.

cd catkin_ws/src/turtlebot3/turtlebot3_navigation

roslaunch turtlebot3_navigation

turtlebot3_navigation.launch map_file:=maps/map.yaml

Una vez completado este proceso deberíamos de tener una ventana de Gazebo y otra

de rviz que deberían de tener el aspecto que se muestra en las figuras 2.3 y 2.4.

Figura 2.3. Contenido gráfico de la ventana de Gazebo para el caso de estudio del

robot Turtlebot.

file:///C:/Users/rosario/=maps/map.yaml

16

Figura 2.4. Contenido gráfico de la ventana de rviz para el caso de estudio del robot

Turtlebot.

La ventana de Gazebo es únicamente una visualización en 3D de nuestro robot en el

entorno simulado. En este caso, el entorno está compuesto por un recinto hexagonal

con nueve obstáculos cilíndricos en su interior. El robot se representa por el pequeño

rectángulo negro dentro del hexágono.

La ventana de rviz es de mucho mayor interés puesto que presenta los valores de todos

los sensores del robot. En la imagen vemos el mapa de fondo del entorno. Superpuesto

a éste, se ve la imagen del escáner incluido en el robot que detecta los obstáculos del

entorno y el entorno en sí (las columnas y el recinto). Originalmente, al activar este

proceso, en la ventana de rviz el mapa y el radar de nuestro robot no deberían de

solaparse: debería de haber un desplazamiento. Esto se debe a que el origen del robot

en el mapa no se corresponde con el origen del robot en Gazebo. Este desplazamiento

puede modificarse manualmente. En la barra superior al mapa de rviz se pueden

encontrar varios comandos útiles para la simulación, tal como se muestra en la figura 2.5:

Figura 2.5. Barra de navegación de rviz, con comandos útiles para la navegación del

robot.

Los dos comandos más importantes para esta aplicación son “2D Pose Estimate” y “2D

Nav Goal”. El primero de estos permite solucionar el problema en cuestión.

Seleccionándolo y seleccionando posteriormente la localización aproximada de nuestro

17

robot (visible en Gazebo) sobre el mapa, el escáner y el mapa deberían solaparse. Este

proceso se puede repetir hasta conseguir un solapamiento satisfactorio.

Una vez tenemos el robot listo y en posición podemos simular la navegación.

Seleccionamos la segunda opción mencionada, “2D Nav Goal”, que permite seleccionar

un destino para nuestro robot. A modo de demostración seleccionamos un destino que

obligue al robot a esquivar algunos pilares. Partiendo de la posición vista en las figuras

2.3 y 2.4, marcamos un destino en la esquina superior derecha (figura 2.6). Si

mantenemos pulsado el ratón se puede además indicar la orientación del robot en el

punto de destino. Al finalizar la selección el robot traza una primera ruta, que se puede

ver sobre el mapa, y empieza a avanzar. La ruta se recalcula en cada momento de la

trayectoria en función de lo que detecten los sensores. Esto puede dar lugar a cambios

en el recorrido.

Figura 2.6. Especificación del destino de la navegación (la flecha roja indica el punto y

la orientación final del robot). ROS ha calculado la primera ruta a seguir por el robot,

que se muestra como una línea.

En la figura 2.7 se aprecia que, a pesar de que el recorrido inicial indicaba un movimiento

entre los pilares de la fila central, el recorrido final ha preferido rodear los pilares por

el exterior.

18

Figura 2.7. Robot llegando al punto de destino, mostrando una ruta diferente de la

primera.

Rviz no es la única forma de indicar un destino para nuestro robot. Podemos indicar un

destino directamente sobre el tópico correspondiente en la navegación. Para esto

aplicamos el siguiente comando sobre una terminal:

rostopic pub /move_base_simple/goal

geometry_msgs/PoseStamped '{header: {stamp: now,

frame_id: "map"}, pose: {position: {x: 1.0, y: 0.5, z:

0.0}, orientation: {w: 1.0}}}'

El comando “rostopic pub (nombre del tópico) (elemento a

publicar)” nos permite publicar sobre el tópico que deseemos. En este caso,

“move_base_simple/goal” es un tópico que indica el destino del robot. Es muy

importante publicar en un formato que sea compatible con el del tópico. Este tópico

acepta el destino en el formato PoseStamped, pero esto no ocurre para todos los

tópicos, sino que cada uno requiere un formato determinado (Open Source Robotics

Foundation, 2019g). Una vez indicado el formato se procede a escribir el mensaje a

transmitir siguiendo la sintaxis adecuada. En nuestro caso, las partes más importantes

son “map” que indica el tópico sobre el que está el mapa sobre el que indicaremos el

destino, “position” y “orientation”.

La posición en coordenadas (x, y, z) podemos obtenerla de rviz. Sobre rviz empleamos

la herramienta “Publish Point” (Figura 2.5). Es posible que esta herramienta no esté

visible en el menú al principio de la ejecución. Para verla necesitamos hacer click en el

19

símbolo “+” de la barra de menús de rviz y añadirlo desde ahí. Una vez seleccionada

esta herramienta, al mover el cursor por el mapa sin necesidad de hacer click, en la

esquina inferior izquierda de la ventana se pueden ver las tres coordenadas (x, y, z).

Aunque la coordenada z no esté exactamente en cero, podemos mantenerla en cero

para la navegación. Una vez localizado el punto al que queremos mover el robot,

escribimos las coordenadas en el comando anterior. Con esto transmitimos al robot la

posición. Para la orientación se usa un cuaternio:

Cuaternio = { cos (
𝜃

2
) , 𝑋 ∗ sin (

𝜃

2
) , 𝑌 ∗ sin (

𝜃

2
) , 𝑍 ∗ sin (

𝜃

2
) }

En esta ecuación, X, Y, Z representan el eje unitario sobre el que se realiza el giro y 𝜃

el giro en sí. En el comando establecemos el primer valor a 1, indicando que se trata

de un giro de cero radianes (No presenta giro).

Para comprender el funcionamiento del paquete de navegación, se aplica una

herramienta proporcionada por ROS que permite observar la dinámica interna. Mientras

el algoritmo de navegación está en simulación, la herramienta ejecuta un comando que

permite ver las comunicaciones entre nodos, quién está publicando y quién está suscrito

a qué tópicos.

Esta herramienta consiste en el comando rqtgraph, que devuelve un diagrama con los

tópicos y nodos actualmente en ejecución (figura 2.8).

Figura 2.8. Diagrama del módulo de navegación Turtlebot generado con rqtgraph.

Los nodos están indicados por óvalos, mientras que los tópicos están escritos sobre

las flechas. Autoría: (Robotis, 2019) Robotis (2019).

Sobre este diagrama se observa que el nodo move_base es el principal encargado de la

navegación, ya que es la piedra angular del diagrama que recibe todos los datos y los

20

procesa y como salida envía la velocidad necesaria. También se aprecia que está

utilizando el nodo AMCL como localización, junto con la ejecución del mapa por

map_server y la ejecución virtual del robot (nodo gazebo).

21

3. Archivos de navegación

Procedemos a examinar los archivos incluidos en la navegación de ROS y a comprender

su funcionamiento. Estos archivos son usados por roslaunch para poder ejecutar los

nodos necesarios, que están escritos en formato .launch. Los archivos que componen

la navegación de un robot en ROS son: Adaptative Monte-Carlo Localization (AMCL),

Move-Base y el archivo global de ejecución.

3.1. Adaptative Monte-Carlo Localization (AMCL)

AMCL es un filtro de partículas que permite a los robots localizarse en un entorno.

Consiste en encajar las lecturas de los escáneres del robot con su posición en el mapa,

en un proceso paralelo a la localización por odometría. Esto se ve claramente en la figura

3.1.

Figura 3.1. Imagen que relaciona ambas formas de localización (AMCL y odometría).

Autoría: ROS.

Desde un nivel técnico, AMCL se encarga de proporcionar unas posiciones estimadas

que pueden verse afectadas con el tiempo por ruido en el sistema de odometría. Tras el

movimiento del robot las posibles variaciones de posición se ven amplificadas, por lo

22

que el algoritmo compara las posiciones con el cambio en la medición del sensor y busca

cuales se ajustan más. Esto mejora la localización del robot y consigue una mayor

precisión a lo largo del tiempo.

En ROS ya viene implementado un nodo que, configurándolo adecuadamente, permite

aplicar AMCL a nuestro robot. El nodo que viene instalado en el Turtlebot se presenta

en la Figura 3.1, en la que se reproduce código del archivo amcl.launch.

Figura 3.1. Líneas de código del archivo amcl.launch para el robot Turtlebot.

Autoría: (Robotis, 2019b).

Sobre este código diferenciamos dos partes: por un lado, los argumentos de entrada al

fichero en sí, y por otro, la ejecución del nodo AMCL. Este nodo ya viene implementado

en ROS junto a Turtlebot, en el paquete del mismo nombre, y permite modificar los

23

valores de los parámetros para adaptarlo a las necesidades y permitir su funcionamiento

en una amplia gama de robots.

Entre los argumentos de entrada se encuentran el nombre del escáner que permite la

localización y la posición inicial del robot. Los valores por defecto que se muestran en

la figura 4.1 están establecidos para poder comunicarse con el sensor del Turtlebot.

Para poder ejecutar el nodo AMCL es necesario además pasarle multitud de parámetros

para que se ajuste correctamente a nuestro robot. Entre todos los parámetros

necesarios, los más importantes son los relacionados con la odometría y con el sensor

del robot. Los parámetros que hacen referencia al láser en el nombre están directamente

relacionados con el escáner. Es necesario conocer las especificaciones de nuestro

escáner para poder establecer valores como el número máximo de haces empleado o la

distancia máxima del láser, entre otros. La odometría también es fundamental para

permitir una correcta localización del robot. El parámetro más importante es el

relacionado con el tipo de movimiento en función de las ruedas (odom_model_type),

que puede variar en función de unas ruedas diferenciales4 u omnidireccionales. En el caso

del Turtlebot, únicamente tiene ruedas diferenciales, de ahí que este esté establecido

cómo valor por defecto.

3.2. Move_Base

El archivo move_base.launch, que ejecuta el nodo del mismo nombre, es fundamental

para la navegación del robot. Ejecutar este nodo en un robot correctamente configurado

da lugar a que el robot intente conseguir llegar a su posición de destino con la base del

robot dentro de una tolerancia especificada o hasta que indique un error al intentar

llegar. Si el robot detecta que se ha atascado, este nodo también intentará recuperarlo.

En la figura 3.2 se presentan las líneas de código de este archivo.

4 Diferenciales: Ruedas diferenciales son aquellas que incluyen un mecanismo diferencial. Este
permite que, al girar hacia un lado con ruedas en paralelo, giren a diferentes velocidades (La del
interior de la curva más lento que la del exterior).

24

Figura 3.2. Líneas de código del archivo move_base.launch para el robot Turtlebot.

Autoría: (Robotis, 2019b).

Al igual que en el AMCL, aquí también hay dos partes claras, los argumentos de entrada

al fichero y la ejecución del nodo.

Los parámetros necesarios son: el nombre de los tópicos necesarios para navegación,

cmd_vel, y odom (velocidad y odometría del robot); y el tipo de robot Turtlebot. Estos

valores son después empleados como parámetros de entrada sobre el nodo para

ajustarlo a los mensajes que emite el robot.

Para la ejecución del nodo es necesario proporcionar varios parámetros. Entre ellos se

encuentran la localización en carpetas de los mapas de características tanto global como

local. Estos archivos ya estaban disponibles en la segunda versión de Campero. En la

sección 4.1 se explica el progreso de las versiones de Campero. Anteriormente a esta

segunda versión, se empleaban los archivos pertenecientes a Turtlebot con ligeras

modificaciones. Finalmente se utiliza el comando remap para cambiar el nombre de los

tópicos a algo que encaje con la nomenclatura empleada por los otros nodos.

25

3.3. Global launch file

Este archivo, Turtlebot3_navigation.launch, ejecuta todos los elementos que

componen la navegación, incluidos los archivos de las secciones 3.1 y 3.2,, el mapa y el

software necesario (figura 3.3).

Figura 3.3. Líneas de código del archivo Turtlebot3_navigation.launch para el

robot Turtlebot. Autoría: (Robotis, 2019b).

Este documento está estructurado en varias partes para una comprensión clara del

mismo. Primero se especifican los argumentos de entrada. En este caso, los más

importantes son el modelo de robot Turtlebot y la localización del mapa a abrir.

Posteriormente se procede a la ejecución del robot. El archivo

Turtlebot3_remote.launch ejecuta únicamente el robot de forma virtual. No

ejecuta ningún otro software de visualización o de control, como podrían ser procesos

de navegación o software como Gazebo o rviz.

El nodo map_server es específico para cargar un mapa y trabajar sobre él en entornos

virtuales, en este caso, colocar el robot en dicho escenario.

Ahora, desde dentro de este archivo, se llama a los otros dos ficheros previamente

descritos amcl.launch y move_base.launch, que se ejecutarán con sus valores por

defecto.

26

Finalmente, para poder ver el desarrollo de la simulación realizada con el software, es

necesario ejecutar alguna forma de visualización. Para ello ejecutamos el archivo

Turtlebot3_navigation.rviz.

Estos archivos que hemos descrito son los encargados de las ejecuciones realizadas en

el apartado 2.6. En la siguiente sección se aplican estos conceptos a la navegación de

nuestro robot móvil manipulador.

27

4. Robot Campero

En este Trabajo Fin de Grado se requería trabajar sobre el modelo de robot Campero.

Este robot está siendo diseñado por la empresa Robotnik5.

Campero es un robot de cuatro ruedas que tiene un brazo robótico de seis ejes. El

brazo robótico está situado en la superficie del robot, y se puede programar para dos o

tres dedos, dependiendo de la aplicación que se desee ejecutar (figura 4.1).

Figura 4.1. Primer plano de Campero en el entorno de simulación Gazebo.

El robot cuenta con dos escáneres láser, uno frontal y uno trasero. Cada uno es capaz

de observar 270º, y están colocados en esquinas opuestas del vehículo. El robot también

incluye una cámara óptica frontal. También se dispone de dos tipos de ruedas,

omnidireccionales y direccionales.

Para este robot no está disponible una hoja de especificaciones como en el caso de

Turtlebot. Sin embargo, el software incluye algunas medidas del robot, que dan cuenta

de su magnitud. Así, el robot emplea ruedas de aproximadamente 40 cm de diámetro,

que contrastan claramente con las ruedas de 6,6 cm de diámetro presentes en Turtlebot

Waffle Pi. Se trata de un robot mucho más grande que el Turtlebot Waffle Pi, que parece

estar diseñado para utilidades en las que se precisa fuerza y capacidad de transporte.

5 Robotnik: Empresa de robótica española. C/ Ciudad de Barcelona, 3-A, Valencia (España)

28

4.1. Versión del software

Al estar el proyecto Campero en desarrollo durante la realización de este TFG, se han

ido actualizando los archivos proporcionados por la empresa. Todas las versiones

recibidas están firmadas como la versión 0.0.0, lo que determina que todavía es un

proyecto relativamente nuevo.

La versión original de Campero fue proporcionada el 10 de abril de 2019. Ésta incluía

una primera versión del robot que simulaba su manejo en dos entornos. En esta versión

no había ninguna mención sobre la navegación del robot, por lo que se desarrollaron

archivos de código específicos para este uso.

Posteriormente se recibió una actualización el 22 de mayo de 2019 que incluye, entre

otras modificaciones, un paquete de navegación no operativo en el interior del software

del robot. A pesar de no estar operativo incluye archivos de configuración sobre el

robot Campero necesarios para la navegación. Después de probar los cambios incluidos

en el robot, se instalaron los archivos generados hasta el momento en el TFG en el

nuevo destino especificado por el fabricante.

Finalmente se recibió una última versión el 5 de agosto de 2019 que contenía gran

cantidad de paquetes, pero no aportaba ninguna mejora significativa sobre el paquete de

navegación. Tras probar esta versión se decidió continuar con la versión anterior.

4.2. Archivos proporcionados

Tal como se ha descrito. el sistema operativo ROS está basado en un funcionamiento

por carpetas. Se comienza por establecer un espacio de trabajo (work space) en el que

se generan las carpetas necesarias de nuestro robot. En los siguientes párrafos se

describe el esquema de las carpetas de Campero, principalmente el primer nivel y

cuando sea relevante el segundo.

campero_ws: Esta es la carpeta madre de definición de Campero, que contiene a todas

las demás:

• Build: Carpeta obtenida al compilar el work space en nuestro espacio de trabajo.

• Devel: Carpeta obtenida al compilar el work space en nuestro espacio de trabajo.

• src/campero: Carpeta source y subcarpeta campero, que tiene los siguientes

componentes:

29

o Campero_common: Contiene los paquetes desarrollados o en desarrollo

disponibles para ejecutar por el robot.

▪ Campero_control: Paquete encargado del movimiento y control

del robot Campero. Una vez proporcionados los parámetros

principales del robot (tipo de ruedas, tipo de brazo…), se encarga del

control de los ejes del robot y de establecer el control de la base del

robot.

▪ Campero_description: Proporciona las distintas configuraciones

que puede tener el robot (Ruedas omnidireccionales o direccionales

y brazo con tres dedos o dos… cuatro posibles combinaciones en

total). También contiene las descripciones de las estructuras dentro

del robot, como las ruedas o los sensores.

▪ Campero_localization: Paquete fundamental de localización del

robot. Contiene el fichero AMCL y mapas de prueba sobre los que

ejecutar el robot.

o Campero_robot: Archivos de configuración del robot. Fundamentalmente

para el inicio y el control.

o Campero_sim: Ficheros para la simulación del robot y sus escenarios.

▪ Campero_gazebo: Archivos principales de ejecución. Contiene la

ejecución del software Gazebo (solo, junto con el robot campero, o

junto a rviz). También incluye los escenarios sobre los que ejecutar

Gazebo.

▪ Campero_sim_bringup: Contiene el archivo de ejecución principal.

Está diseñado para ejecutar el robot campero en un escenario

exterior junto con Gazebo y rviz para conseguir una primera toma de

contacto con el robot y manejarlo libremente por la escena.

o Openrave_catkin: Paquete de instalación necesario para el funcionamiento

del robot. Para poder ejecutarlo correctamente es necesario instalarlo desde

la terminal de Linux, al instalarse con ROS. OpenRAVE es un software de

simulación de robots para desarrollo, simulación y aplicación de algoritmos

de motion planning6

6 Motion planning: Se emplea para encontrar una secuencia de movimientos válidos que muevan el robot

desde su posición de origen hasta su destino evitando obstáculos. (Wikipedia Contributors, 2019c)

30

o Robotnik_msgs: Paquete de mensajes para los robots de la empresa

Robotnik.

o Robotnik_sensors: Paquete de los sensores de robots de la empresa

Robotnik.

4.3. Instalación y ejecución

A continuación, se explica la instalación del robot Campero a partir de los ficheros

pertinentes.

El primer paso consiste en colocar el espacio de trabajo campero_ws junto al espacio

catkin_ws instalado por defecto con Turtlebot. Una vez colocado debemos eliminar

los archivos devel y build para poder compilarlo en el ordenador de trabajo. Sobre

la terminal de Linux se ejecutan los siguientes comandos:

cd campero_ws/

catkin_make

Esto compilará el espacio de trabajo para poder operar en él. Es posible que en este

punto aparezcan mensajes de error o de advertencia diciendo que falta algún paquete

necesario de ROS. Algunos estos paquetes son:

ros-kinetic-mavros

ros-kinetic-localization

ros-kinetic-costmap-prohibition-layer

ros-kinetic-teb-local-planner

ros-kinetic-twist-mux

ros-kinetic-teleop-tools

ros-kinetic-openrave

ros-kinetic-universal-robot

Para poder instalar los paquetes es necesario ejecutar comandos de este tipo:

 sudo apt-get install [nombre del paquete]

31

Al tratarse de un comando “sudo”, el sistema pedirá la contraseña de administrador.

Una vez instalados todos los paquetes necesarios y compilado el espacio debemos añadir

un plugin de teleoperación:

 cd campero_ws/src

 git clone https://github.com/RobotnikAutomation/teleop_panel.git

 cd..

 catkin_make

Una vez añadido este plugin y compilado todo el espacio adecuadamente procedemos a

declaralo entorno de trabajo:

 rosws init campero_ws

 source devel/setup.bash

Ahora debería estar correctamente instalado el robot Campero. Para comprobar su

correcto funcionamiento probamos a ejecutar un entorno de prueba proporcionado por

Robotnik para el manejo de Campero:

 roslaunch campero_sim_bringup campero_complete.launch

Una vez ejecutado correctamente y estando además Gazebo y rviz en ejecución, se

puede probar a manejar el robot desde la pantalla de rviz.

Con estos pasos el robot debería proporcionar un correcto funcionamiento y

deberíamos observar las siguientes pantallas de Gazebo (Figura 4.2) y rviz (Figura 4.3).

32

Figura 4.2. Simulación del robot Campero en el entorno Gazebo, en el escenario por

defecto exterior.

Figura 4.3. Simulación del robot Campero en el entorno rviz, en el escenario por

defecto exterior.

33

34

5. Navegación sobre el robot Campero

Una vez descrito el funcionamiento del paquete de navegación del robot Turtlebot y

documentados los archivos de especificaciones del robot Campero, se describen los

aspectos principales de la navegación de Campero.

5.1. Preparación Inicial

Para comenzar, es preciso especificar dónde se quiere aplicar el paquete de navegación.

En ROS se puede aportar capacidades de navegación a un robot de distintas formas. Las

dos formas que se plantearon en este trabajo fueron: 1) la creación de un nuevo espacio

de trabajo que se encargue de la comunicación y que aloje los ficheros de navegación, y

2) el desarrollo de un nuevo paquete, dentro de los ficheros del robot Campero, que se

encargue de la navegación.

5.1.1. Modelo inicial

La opción de crear un nuevo espacio de trabajo y comunicar el nuevo espacio de trabajo

con el espacio de trabajo catkin_ws, se vio afectada por problemas. Esta opción

únicamente se puede aplicar si el robot está configurado de una forma específica,

compatible con el entorno catkin_ws. Para conseguir esto sería necesario

reestructurar los archivos del robot y renombrar nodos y tópicos para que se adaptaran

a lo preestablecido por ejemplo en el paquete de navegación del robot Turtlebot.

Este problema hizo que se desestimara la primera opción y se optó por el desarrollo de

un paquete de navegación propio para el robot Campero. Para ello se empieza creando

un paquete dentro del espacio de trabajo campero_ws:

cd campero_ws/src/campero

catkin_create_pkg campero_navigation std_msgs rospy roscpp

Con esto creamos el paquete en la localización deseada, pero todavía falta compilarlo:

 cd

 cd campero_ws

 catkin_make

Este proceso debería de haber creado el paquete correctamente con los archivos

packahe.xml y cmakelists.txt.

35

5.1.2. Versión con navegación

Conforme avanzaba con el proyecto e iban llegando nuevas versiones del robot

Campero, llegó una versión que dejaba claro que se estaba trabajando en el desarrollo

de la navegación del robot.

Se observa que se había creado un paquete con el mismo nombre en el sistema, pero

en un nivel inferior, en la subcarpeta campero_common. A pesar de estar creado, el

paquete estaba casi vacío: sólo contenía archivos básicos del paquete. Entre ellos estaban

los archivos de configuración del robot necesarios para poder aplicar la navegación,

archivos que es necesario incluir como argumentos para lanzar el nodo de navegación

del robot. Se tomó la decisión de adaptarse a la nueva localización del paquete y se

movieron los archivos de navegación previamente desarrollados a esta localización,

usando los datos de configuración recibidos en esta versión del software de campero.

5.2. Archivos finales

En esta sección se explican los nuevos ficheros de Campero con detalle. Los ficheros

necesarios para este sistema de navegación son:

• AMCL, encargado de la localización del robot en cada momento.

• move_base, encargado principal de la navegación.

• one_robot, encargado de ejecutar el robot sin ningún software extra (una función

similar a la del fichero Turtlebot3_remote.launch).

• Un fichero de ejecución global.

5.2.1. AMCL

Para poder aplicar el código AMCL sobre nuestro robot es preciso identificar un

conjunto de valores correctos para los parámetros necesarios. Los parámetros más

importantes para el correcto funcionamiento de este algoritmo son los nombres de los

tópicos sobre los que publica nuestro robot. Es necesario localizar los tópicos

responsables para poder incluirlos en el código:

 Scanner: front_laser/scan

 Mapa/global frame: campero_map

 Odometría: campero_odom

 Base frame: campero_base_footprint

36

También es necesario saber qué tipo de rueda emplear para poder aplicarlo como

parámetro en la categoría “odom_model_type”.

El código completo empleado, que incluye comentarios sobre cada parámetro, se

presenta en el Anexo 10.2.

5.2.2. Move_base

Como ya se ha comentado, este archivo es el principal encargado de la navegación de

nuestro robot. En estos archivos se empieza por asignar valores a los parámetros

necesarios para la ejecución, entre ellos los nombres de los tópicos. Los tópicos más

importantes a destacar son el de velocidad de navegación y el que hace referencia a la

odometría de navegación, ambos diferentes a la odometría y velocidad normales. Estos

tópicos de navegación se usan exclusivamente para enviar las velocidades calculadas en

navegación, mientras que los empleados por defecto son de uso exclusivo para un

movimiento manual del robot.

Una vez pasamos los parámetros comienza la ejecución del nodo move_base. Entre los

parámetros necesarios para su ejecución están los parámetros de los costmaps7

necesarios. Cómo nuestro robot dispone de dos tipos de ruedas, ha sido necesario

colocar una cláusula condicional que permita diferenciar sobre cual estamos trabajando.

Ahora encontramos uno de los problemas que enfrentaremos más adelante. El nodo

move_base requiere un tópico cómo el escáner que vamos a emplear, pero nuestro

robot no dispone de un único escáner, sino que dispone de dos para cubrir los 360º.

Por esta razón hemos tenido que elegir cual de ambos le proporcionamos al sistema,

que en este caso fue el frontal.

El código completo empleado está en el Anexo 10.3.

5.2.3. One_robot

El código de este archivo se basa en la ejecución de una instancia del robot sin ningún

otro add on para, posteriormente, ejecutar el software de navegación.

Se empieza estableciendo los argumentos de entrada requeridos en la ejecución. En

primer lugar, se requiere el nombre del robot, ya que podría darse la situación de que

7 Costmap: Mapa de características que indica la posición de obstáculos en el mundo. Aplicado

principalmente en navegación se actualiza conforme recibe información de los sensores. (Open Source

Robotics Foundation, 2019b).

37

se quisieran representar varios robots en un entorno para simular tareas cooperativas

o entornos multi-robot. A continuación, se especifica la posición inicial del robot. Esta

información no tiene mucha relevancia ya que se puede modificar posteriormente en el

software de visualización y el propio algoritmo puede obtenerla de forma detallada. El

archivo xacro permite identificar la configuración en la que se encuentra el robot (tipo

de ruedas y de brazo). Este es un archivo XML en un formato que lo hace más corto y

legible. Lo mismo sucede con el mapa que queremos representar en rviz, en el caso de

que no lo haya creado el software del robot en sí (SLAM). El robot también necesita

otros parámetros dependientes del tipo de ruedas o del tipo de localización empleado

(odometría o AMCL).

El siguiente paso es ejecutar el nodo que conlleva la simulación del robot en Gazebo,

siguiendo el esquema tanto del robot Turtlebot como de los ficheros propios del robot

Campero. También es necesario ejecutar el nodo que permita el control del mismo y

que simule las uniones de sus partes, lo que se especifica en la carpeta

campero_control.

Habiendo cubierto estos apartados, la ejecución de este archivo debería crear un robot

en el entorno de Gazebo para permitir aplicarle el algoritmo deseado, en nuestro caso

la navegación del robot.

El código completo empleado está en el Anexo 10.4.

5.2.4. Global

Finalmente, fue preciso desarrollar un archivo de ejecución global, que deberá ejecutarse

para poner en marcha todo el programa. Esto implica ejecutar los archivos anteriores,

ejecutar el nodo de mapeado y el software empleado, rviz y Gazebo. Empezamos, como

en todos los casos, con los argumentos de entrada para la ejecución del archivo.

Entre estos argumentos, al igual que en el modelo del Turtlebot, están presentes el

nombre del robot, la posición inicial, el xacro y el mapa, y el tipo de movimiento y

brazo.

El argumento del prefijo también debe especificarse en este archivo. Viendo otros

archivos del robot Campero, se pudo observar que el nombre de los tópicos varía en

función del nombre del robot, lo que está preparado para evitar superposiciones en la

emisión de información por tópicos. El nombre del robot se posiciona al principio de

38

todos los tópicos en los que publican los nodos pertinentes al mismo. Por esta razón se

incluye un argumento con ID del robot que pasa a ser el prefijo usado para localizar los

tópicos y acceder a ellos.

Posteriormente, necesitamos ejecutar el algoritmo descrito anteriormente para

posicionar un robot en nuestro entorno de simulación. Para pasarle los parámetros

necesarios basta con referirse a los que le hemos puesto a la entrada, los cuales deberían

ser suficientes para ejecutar correctamente el archivo.

Como dato importante se puede apreciar que, antes de ejecutar el robot, se coloca un

indicador que se encarga de abrir un grupo. Esto dictamina que todos los elementos en

su interior están bajo el mismo nombre. Este paso es fundamental para el

funcionamiento, ya que de otra manera sería imposible localizar los tópicos fácilmente y

no se podrían ejecutar entornos multi-robot en un futuro.

El archivo map_server se encarga de cargar el mapa sobre el que observar la

simulación. En su interior contiene el nodo del mismo nombre que empieza el proceso.

La última parte de este código cierra el grupo, ya que se han ejecutado todos los archivos

necesarios en su interior.

A continuación, de forma opcional se ejecuta un fichero que simula la acción de la

gravedad. Sólo tiene utilidad en el caso de un posible choque, para que el robot en la

simulación vuelva a la posición de reposo. Si este PID8 no estuviera implementado, en el

momento en el que el robot se chocara podría quedar levitando y sería preciso reiniciar

la simulación.

Como parte final de este código se ejecutan Gazebo y rviz para poder observar la

simulación en un visualizador.

El código completo empleado está en el Anexo 10.5.

8 Control Proporcional, Integral y Derivativo

39

6. Experimentación con el robot Campero

En esta sección se explica el funcionamiento del código presentado en la sección 5 y se

aplica a casos de estudio.

6.1. Reconocimiento del entorno

Previo a la ejecución de la navegación es necesario realizar un mapa del entorno en el

caso de que no dispongamos de uno de antemano. Para esto es necesario emplear la

funcionalidad de Gmapping y SLAM introducida en el archivo global de ejecución.

Ejecutamos el siguiente código en una terminal:

Roslauch campero_common campero_navigation

campero_nav.launch gmapping:=true

Con esto deberíamos de ejecutar la navegación del robot junto a un mapeado del

entorno. En rviz debería mostrarse el robot empezando a mapear el entorno, tal como

se aprecia en la figura 6.1.

Figura 6.1. Robot Campero sobre un entorno sin mapear.

40

Aquí se evidencia la problemática de emplear un único escáner: el robot presenta un

punto ciego tanto en navegación cómo en mapeado que le impide ver obstáculos en 90º

de su visión. Ahora podemos mover el robot manualmente por el entorno o aplicar la

navegación para conseguir un mejor resultado en el mapa. Tras enviar el robot por el

mapa deberíamos tener una imagen similar a la figura 6.2.

Figura 6.2. Robot Campero sobre un entorno mapeado.

Una vez explorado el entorno debemos guardar el mapa producido. Sin cerrar la

ejecución anterior abrimos otra terminal:

rosrun map_server map_saver map:=/campero/map -f mymap

Este comando creará dos archivos: mymap.pgm y mymap.yaml.

El archivo mymap.pgm se presenta en el Anexo 10.6.

Ahora es preciso colocar estos archivos en la propia ejecución de la simulación:

Roslaunch campero_common campero_navigation

campero_nav.launch map:=

[Directorio en el que guardemos el mapa]

41

Tras esta ejecución se puede proceder con la navegación.

6.2. Navegación en exterior con ruedas diferenciales

A continuación, se muestra un caso de estudio en el entorno exterior con las ruedas

por defecto de Campero: diferenciales. Antes de ejecutar la navegación, como el

entorno es conocido de antemano, ejecutamos la línea siguiente haciendo referencia a

la localización del mapa del entorno:

Roslaunch campero_common campero_navigation

campero_nav.launch map:=

[Directorio en el que guardemos el mapa]

Una vez ejecutado este comando deberíamos ver que se empiezan a ejecutar Gazebo y

rviz para la visualización de nuestra navegación. Cabe destacar que no es necesario

ejecutar un maestro antes (roscore) debido a que roslaunch ya se encarga de

ejecutarlo por sí mismo.

Al ejecutar este algoritmo deberíamos ver imágenes similares a las que se presentan en

la figura 6.3 (Gazebo) y 6.4 (rviz).

Figura 6.3. Representación en Gazebo de una simulación con el robot Campero usando

ruedas diferenciales en el entorno exterior.

42

Figura 6.4. Representación de una simulación exitosa de Campero en rviz.

De esta manera se puede apreciar en Gazebo que se ha simulado correctamente el

robot junto con el entorno de simulación. Por otro lado, en rviz vemos el robot y los

sensores disponibles, tanto la cámara como el sensor frontal.

Para probar el sistema de navegación, en rviz debemos establecer un objetivo a alcanzar

por el robot.

De la misma forma que en el caso del Turtlebot, es posible indicar a Campero el destino

de la navegación por medio de una terminal. Para ello es preciso realizar una serie de

cambios para adaptar el comando usado en Turtlebot, principalmente sobre el nombre

de los tópicos. El tópico a modificar es el del destino, pero Campero trabaja con varios

tópicos que interactúan con el destino, principalmente:

 /campero/move_base/goal

 /campero/move_base_simple/goal

Tenemos que seleccionar cuál de estos tópicos emplear para comunicarle el destino de

navegación a nuestro robot en función de las ventajas e inconvenientes que incluyan.

El primero consiste en una forma de interacción que prepara el destino para la

introducción de una cadena de diferentes destinos, dándole un ID a cada uno y

posteriormente las coordenadas. Este tópico requiere la introducción de datos en

formato “MoveBaseActionGoal” (Open Source Robotics Foundation, 2019h).

43

El segundo es el más similar al usado en Turtlebot. Requiere el mismo formato de

introducción de datos, “PoseStamped”, y tiene un funcionamiento similar, por lo que

es el que emplearemos.

Una vez elegido el tópico sobre el que publicar, necesitamos cambiar el nombre del

tópico empleado para el mapa. Campero emplea “campero_map”. Una vez modificado

se aplica la posición y la orientación de la misma forma que Turtlebot.

El comando que obtenemos es:

rostopic pub /campero/move_base_simple/goal

geometry_msgs/PoseStamped '{header: {stamp: now,

frame_id: "campero_map"}, pose: {position: {x: 3.0, y:

0.0, z: 0.0}, orientation: {w: 1.0}}}'

Para este trabajo vamos a emplear la opción de menú de rviz “2D Nav Goal”, pero tanto

esta opción como el comando anterior dan los mismos resultados. Hacemos la selección

que se presenta en la figura 6.5.

Figura 6.5. Representación en rviz del destino de la navegación del robot Campero.

Robot Campero en la posición inicial del recorrido.

44

Intencionadamente hemos seleccionado un camino que requiere esquivar obstáculos,

árboles en este caso. Si el robot siguiera un camino recto colisionaría con estos. Tal

como se aprecia en la figura 6.6, el robot localiza el obstáculo y recalcula una ruta para

llegar al destino.

Figura 6.6. El robot Campero durante la navegación, tras esquivar los obstáculos.

Robot Campero en un punto intermedio del recorrido.

Se aprecia cómo el software de navegación y de evitación de obstáculos se ha acoplado

correctamente a Campero y ha sido capaz de esquivar el obstáculo introducido para

llegar al destino. (figura 6.7).

45

Figura 6.7. El robot Campero ha alcanzado su destino.

6.3. Navegación en interior con ruedas omnidireccionales

En esta sección se muestra un caso de estudio que consiste en la navegación en otro

entorno proporcionado por la empresa Robotnik, que incluye ruedas omnidireccionales.

La figura 6.8 muestra en Gazebo este entorno cerrado que se corresponde con el

interior de una construcción. El entorno tiene forma rectangular, y tiene una pared

interior que permite al robot acceder a la parte trasera por los dos lados. Delante de la

pared hay tres obstáculos pegados a ella a modo de mesas. Al igual que en el caso

anterior, en las primeras simulaciones es necesario realizar un mapa del entorno, que se

empleará más adelante para guiar la navegación. El archivo resultante, mapaInt.pgm se

presenta en el Anexo 10.7.

46

Figura 6.8. Representación en Gazebo de una simulación con el robot Campero usando

ruedas omnidireccionales en el entorno interior.

La figura 6.9 muestra en rviz a campero en este mismo entorno. Se puede comprobar

que el robot está equipado con ruedas omnidireccionales realizando una simulación

particular: se establece como destino el mismo punto de origen y se comprueba que

para ejecutarla el robot hace una rotación pura sin desplazarse. Tras hacer otras pruebas

simples y comprobar que la navegación funciona adecuadamente, procedemos a ejecutar

una simulación más compleja. Para ello, establecemos cómo objetivo un punto en la

parte posterior de la pared interior, tal como se muestra en la figura 6.10.

Una vez establecido el objetivo, el software de navegación se encarga de esquivar el

obstáculo principal, la pared interior. La figura 6.11 muestra al robot en tránsito,

rodeando la pared interior. La figura 6.12 muestra al robot detenido en el punto de

destino y con la orientación deseada.

47

Figura 6.9. Representación en rviz del robot Campero usando ruedas

omnidireccionales en el entorno interior.

Figura 6.10. Representación en rviz del robot Campero con un objetivo de navegación

establecido en un punto localizado tras la pared interior.

48

Figura 6.11. Representación en rviz del robot Campero navegando hacia el objetivo,

para lo que debe rodear la pared interior.

Figura 6.12. Representación en rviz del robot Campero detenido en el punto de

destino y con la orientación deseada.

49

7. Discusión general

7.1. Simulación con el robot Turtlebot

Las simulaciones de la navegación de Turtlebot Waffle Pi han funcionado en general de

forma adecuada. Todavía se aprecian algunos problemas que es necesario pulir, como

errores de ejecución y algún error en el mapeado. Sin embargo, la tecnología de

navegación aplicada a este robot ha sido muy eficaz. Sólo es necesario resolver algunos

aspectos para conseguir una ejecución más fluida. Las simulaciones con Turtlebot me

han permitido familiarizarme con los procedimientos de gmapping y SLAM, que pude

luego aplicar al robot Campero con pequeñas adaptaciones.

A pesar de estar muy desarrollado, Turtlebot presentó alguna complicación en relación

con la instalación y la ejecución. Fue necesario instalar algunos paquetes necesarios para

la ejecución de otros. Una vez instalado, seguir los pasos del tutorial no resultó suficiente

para conseguir simulaciones exitosas. El problema resultó estar asociado a la ejecución

del mapa. Pude resolver este problema realizando una ejecución por partes en distintas

terminales, tal como se explica en el apartado 2.6. Tras solucionar esto, la ejecución del

robot seguía provocando errores. Por ello, nuevamente, fue necesario ejecutar el robot

en una nueva terminal. Resueltos estos problemas, se pudo ejecutar las simulaciones. Sin

embargo, en ocasiones aparecían mensajes de errores y advertencias que eran

compatibles con la continuación de la ejecución del programa.

La navegación de Turtlebot en las condiciones experimentales se benefició de disponer

de un solo escáner con cobertura de 360º. De esta manera, no había ángulos muertos y

el robot pudo evitar los obstáculos correctamente. Aunque en este entorno el robot se

haya beneficiado de este sensor único, en otros casos podría ser más práctico usar varios

sensores.

7.2. Simulación con el robot Campero

La instalación de Campero no dio problemas específicos. La guía del robot y la guía

proporcionada por los tutores de este trabajo permitieron progresar de forma rápida y

firme.

Las simulaciones realizadas sobre Campero han sido satisfactorias, pero han puesto de

manifiesto que el robot está una fase inicial de su desarrollo y que todavía necesita

mucho trabajo para llegar a una madurez similar a la de Turtlebot. Las simulaciones han

50

permitido navegar con el robot Campero en dos entornos diferentes, aunque con dos

limitaciones relevantes.

La primera limitación importante es que en ocasiones el planificador de trayectorias no

consigue trazar un camino desde la localización actual hasta el objetivo. Este es el caso

de simulaciones que necesitan esquivar obstáculos con trayectorias complejas. A la vista

de estas situaciones en Gazebo, parece ser físicamente posible llegar, pero el software

no es capaz de trazar el camino. En estos casos, el software de navegación se muestra

demasiado restrictivo. Cabe pensar que haya diferencias entre la geometría real de

Campero y los parámetros geométricos introducidos en move_base.launch. Esto

podría explicar también algunas colisiones durante las maniobras. El hecho de que se

usara la misma rutina de navegación en Turtlebot sin dar lugar a estos problemas me

hace pensar que el error podría localizarse en la parametrización del robot Campero.

La segunda limitación de las simulaciones con Campero consiste en que el software de

navegación (move_base.launch) sólo gestiona una entrada de señal de escáner. En el

caso de Campero, como dispone de dos escáneres, se eligió usar el escáner delantero.

Como consecuencia, nos encontramos con un punto ciego durante la navegación de 90º

(la parte trasera izquierda). Esto es especialmente limitante para la navegación con las

ruedas omnidireccionales, ya que a la hora de girar o de dirigirse hasta el destino el

robot no detecta los obstáculos por su punto ciego y puede sufrir colisiones. Con ruedas

direccionales el problema es menos importante porque el robot siempre se dirige de

cara hacia el destino (el punto ciego está a la espalda del robot). Con las ruedas

direccionales, este problema puede ser importante durante los giros que realiza el robot

al posicionarse antes de moverse o después de llegar al destino.

51

8. Conclusiones

La realización de este TFG ha permitido que el alumno se familiarizara con la herramienta

ROS, habiendo realizado una instalación exitosa de Ubuntu, ROS, Turtlebot 3 y

Campero, habiendo manejado los archivos que implementan SLAM y la navegación

autónoma de ambos robots, y habiendo completado simulaciones en distintos robots,

configuraciones, entornos y modos.

Además, de este TFG se derivan las siguientes conclusiones:

1. El Software de Turtlebot para ROS está ya muy desarrollado y da lugar a simulaciones

de navegación exitosas en situaciones que requieren trayectorias complejas que

cambian durante la propia simulación. Sin embargo, se han encontrado problemas

durante la ejecución, que han necesitado la apertura simultánea de varias terminales

de Ubuntu.

2. El software de Campero para ROS está en una fase de progreso rápido por parte de

la empresa Robotnik, a pesar de que los archivos de código fuente todavía están en

una versión inicial. Entre abril y agosto de 2019 se han recibido tres versiones con

mejoras importantes en cuanto a la parametrización de la navegación y desarrollo

del brazo robótico. Sin embargo, el software de Campero no contiene en este

momento rutinas específicas para la navegación.

3. Las rutinas de navegación de ROS usadas en Turtlebot se han aplicado con éxito a

Campero, usando los parámetros del robot recibidos en la versión de 22 de mayo

de 2019. Con esta configuración, Campero ha realizado navegaciones en dos

entornos y dos tipos de ruedas, alcanzando los puntos propuestos.

4. Las simulaciones realizadas con campero han puesto de manifiesto dos limitaciones

del estado actual del software y su parametrización: 1) en algunos casos en que es

necesario esquivar obstáculos, el robot no es capaz de trazar un camino que

visualmente parece posible o bien colisiona en las maniobras; y 2) el software de

navegación sólo acepta la entrada de uno de los dos sensores de Campero, lo que

genera un punto ciego al elegir uno de los dos.

52

9. Recomendaciones para trabajos futuros con el

robot Campero

En relación con las posibles mejoras a implementar en trabajos futuros con Campero,

será preciso abordar la mejora de la navegación. Los parámetros geométricos usados en

la versión con la que está realizado el trabajo parecen no ser completamente adecuados.

El primer paso para resolver este problema sería revisar con detalle la parametrización

de la geometría del robot.

Otras posibles mejoras llevarían a incluir otros paquetes que puedan ser de interés para

el usuario o para mejorar las capacidades del robot. Este sería el caso de otras formas

de localización, de otras rutinas de navegación o de entornos multirobot. Quizás la

mejora más clara podría ser el desarrollo de un software específico para el manejo del

brazo robótico localizado en la superficie del robot Campero, que actualmente no está

operativo. ROS tiene una gran variedad de utilidades para el control de robots

manipuladores, que podrían adaptarse a Campero.

Como ya se ha comentado, a lo largo del trabajo se han ido recibiendo nuevas versiones

con actualizaciones del software de Campero. Cabe esperar que este intenso desarrollo

continuará en un futuro, por lo que dejarán de ser necesarias algunas de las

recomendaciones actuales y aparecerán otras que darán pie a nuevos trabajos. Las

nuevas versiones del software apuntan a mejoras inminentes en los campos de

navegación y de manejo del brazo robótico. Por ello, convendría trabajar en la

introducción de nuevos paquetes o del desarrollo de entornos multirobot. Entre las

funciones que pueden ser interesantes para el usuario, se incluyen la conducción

autónoma (incluyendo, por ejemplo, paquetes similares al “Autonomous Driving” de

Turtlebot) o paquetes para la manipulación de objetos en un entorno multirobot y

colaborativo.

Para finalizar, Campero es todavía un proyecto joven que requiere de mucho trabajo y

dedicación. Existen gran cantidad de mejoras y de correcciones a realizar.

53

10. Anexos

10.1. Archivo de especificaciones del robot Waffle Pi por la empresa Robotis

54

55

10.2. Archivo de código amcl.launch para el robot Campero

Autoría: Código creado por Jorge Playán a partir del fichero de AMCL de Turtlebot. Valores empleados

para los parámetros por la empresa Robotnik.

<?xml version="1.0"?>
<launch>

<!-- Arguments -->

 <arg name="prefix" default="campero_"/>

 <!-- Busca los topics -->
 <arg name="scan_topic" default="front_laser/scan"/>
 <arg name="map_topic" default="$(arg prefix)map"/>
 <arg name="global_frame" default="$(arg prefix)map"/>
 <arg name="odom_frame" default="$(arg prefix)odom"/>
 <arg name="base_frame" default="$(arg prefix)base_footprint"/>

 <arg name="odom_model_type" default="diff"/>

 <!-- Posiciones iniciales -->
 <arg name="x_init_pose" default="0.0"/>
 <arg name="y_init_pose" default="0.0"/>
 <arg name="z_init_pose" default="0.0"/>
 <arg name="a_init_pose" default="0.0"/>

<!-- AMCL -->

 <!-- Ejecutamos el nodo "amcl" con los siguientes parámetros -->
 <node pkg="amcl" type="amcl" name="amcl" output="screen">

 <!--cambiar el nombre en función del de tu sensor-->
 <remap from="scan" to="$(arg scan_topic)"/>
 <remap from="map" to="$(arg map_topic)"/>

 <param name="use_map_topic" value="false"/>

 <!-- Rango de partículas, ajustar el max
 en función de la potencia del pc -->
 <param name="min_particles" value="500"/>
 <param name="max_particles" value="3000"/>

 <!-- Max error entre la distribución estimada y la real -->
 <param name="kld_err" value="0.02"/>
 <param name="kld_z" value="0.99"/>

 <!-- Valores para un filtro? -->

56

 <param name="update_min_d" value="0.20"/>
 <param name="update_min_a" value="0.20"/>

 <!-- Intervalo de re-sampling -->
 <param name="resample_interval" value="1"/>

 <!-- Tiempo de conversión permitido, s -->
 <param name="transform_tolerance" value="0.2"/>

 <!-- Index drop rate, si es 0.0 es que está desactivado -->
 <param name="recovery_alpha_slow" value="0.00"/>
 <param name="recovery_alpha_fast" value="0.00"/>

 <!-- Posición inicial -->

 <param name="initial_pose_x" value="$(arg x_init_pose)"/>
 <param name="initial_pose_y" value="$(arg y_init_pose)"/>
 <param name="initial_pose_z" value="$(arg z_init_pose)"/>
 <param name="initial_pose_a" value="$(arg a_init_pose)"/>

 <!-- Periodo máximo de mostrar la info del scan y el path, en Hz -->
 <param name="gui_publish_rate" value="50.0"/>

 <!-- Parámetros del sensor de distancia -->

 <!-- Valores max de distancia y de rayos usados -->
 <param name="laser_max_range" value="3.5"/>
 <param name="laser_max_beams" value="180"/>

 <!-- ___ mixed weight of sensor model? -->
 <param name="laser_z_hit" value="0.5"/>
 <param name="laser_z_short" value="0.05"/>
 <param name="laser_z_max" value="0.05"/>
 <param name="laser_z_rand" value="0.5"/>

 <!-- Desviación estandar -->
 <param name="laser_sigma_hit" value="0.2"/>

 <!-- Drop rate para z_short -->
 <param name="laser_lambda_short" value="0.1"/>
 <param name="laser_likelihood_max_dist" value="2.0"/>

 <!-- Tipo de sensor ("likelihood_field" o "beam") -->
 <param name="laser_model_type" value="likelihood_field"/>

 <!-- Parámetros de odometría -->

 <!-- Forma de conducción, "diff" o "omni" -->
 <param name="odom_model_type" value="$(arg odom_model_type)"/>

 <!-- Valores estimados de notion noise -->

57

 <param name="odom_alpha1" value="0.1"/>
 <param name="odom_alpha2" value="0.1"/>
 <param name="odom_alpha3" value="0.1"/>
 <param name="odom_alpha4" value="0.1"/>
 <param name="odom_alpha5" value="0.1"/>

 <!-- Odometry frame -->
 <param name="odom_frame_id" value="$(arg odom_frame)"/>

 <!-- Robot base frame -->
 <param name="base_frame_id" value="$(arg base_frame)"/>
 <param name="global_frame_id" value="$(arg global_frame)"/>

 </node>
</launch>

58

10.3. Archivo de código move_base.launch para el robot Campero

Autoría: Código basado en move_base.launch de Turtlebot. Contiene llamadas a ficheros de parámetros

creados por la empresa Robotnik.

<?xml version="1.0"?>
<launch>

<!-- Arguments -->

 <arg name="prefix" default="campero_"/>
 <!-- Busca los topics -->
 <arg name="cmd_vel_topic" default="move_base/cmd_vel"/>
 <!-- Distinto del tópico de velocidad normal -->
 <arg name="odom_topic" default="robotnik_base_control/odom"/>
 <arg name="global_frame" default="$(arg prefix)map"/>
 <arg name="odom_frame" default="$(arg prefix)odom"/>
 <arg name="base_frame" default="$(arg prefix)base_footprint"/>
 <arg name="scan_topic" default="front_laser/scan"/>
 <arg name="omni" default="true"/>

<!-- Ejecutar move_base -->
 <!-- Ejecutamos el nodo -->
 <node pkg="move_base" type="move_base" respawn="false"
 name="move_base" output="screen">

 <!-- Parámetros que le pasamos al nodo -->
 <rosparam file=
 "$(find campero_navigation)/config/move_base_params.yaml"
 command="load" />

 <!-- Parámetros de constmaps local y global -->
 <rosparam file=
 "$(find campero_navigation)/config/costmap_common_params.yaml"
 command="load" ns="global_costmap" />
 <rosparam file=
 "$(find campero_navigation)/config/costmap_common_params.yaml"
 command="load" ns="local_costmap" />
 <rosparam file=
 "$(find campero_navigation)/config/local_costmap_params.yaml"
 command="load" />
 <rosparam file=
 "$(find campero_navigation)/config/global_costmap_params_map.yaml"
 command="load" />

59

 <!-- If para el tipo de ruedas -->
 <rosparam if="$(arg omni)"
 file=
 "$(find campero_navigation)/config/teb_local_planner_omni_params.yaml"
 command="load" />
 <rosparam unless="$(arg omni)"
 file=
 "$(find campero_navigation)/config/teb_local_planner_diff_params.yaml"
 command="load" />

 <!-- Parámetros relativos al sensor láser -->
 <param name=
 "global_costmap/obstacle_layer/scan/sensor_frame"
 value="$(arg prefix)front_laser_link"/>
 <param name=
 "local_costmap/obstacle_layer/scan/sensor_frame"
 value="$(arg prefix)front_laser_link"/>
 <param name=
 "global_costmap/obstacle_layer/scan/topic"
 value="$(arg scan_topic)"/>
 <param name=
 "local_costmap/obstacle_layer/scan/topic"
 value="$(arg scan_topic)"/>

 <!-- Parámetros de los marcos -->
 <param name=
 "local_costmap/global_frame"
 value="$(arg odom_frame)"/>
 <param name=
 "local_costmap/robot_base_frame"
 value="$(arg base_frame)"/>
 <param name=
 "global_costmap/global_frame"
 value="$(arg global_frame)"/>
 <param name=
 "global_costmap/robot_base_frame"
 value="$(arg base_frame)"/>
 <param name=
 "DWAPlannerROS/global_frame_id"
 value="$(arg odom_frame)"/>
 <param name=
 "TebLocalPlannerROS/map_frame"
 value="$(arg global_frame)"/>

 <!-- Específicos de navegación -->
 <param name=
 "base_local_planner"
 value="teb_local_planner/TebLocalPlannerROS" />
 <param name=
 "controller_frequency"
 value="5.0" />
 <param name=

60

 "controller_patience"
 value="15.0" />

 <!-- Renombrar -->
 <remap from="cmd_vel" to="$(arg cmd_vel_topic)" />
 <remap from="odom" to="$(arg odom_topic)" />
 </node>

</launch>

61

10.4. Archivo de código campero_one_robot_nav.launch para el robot Campero

Autoría: Jorge Playán. Basado en la ejecución de navegación del Turtlebot. Creación del robot basada en

“campero_one_robot.launch” por la empresa Robotnik.

<?xml version="1.0"?>
<launch>

<!-- Argumentos de entrada -->
 <!-- Nombre del robot -->
 <arg name="id_robot" default="campero"/>

 <!-- Posición inicial -->
 <arg name="x_init_pose" default="0"/>
 <arg name="y_init_pose" default="0"/>
 <arg name="z_init_pose" default="0"/>

 <!-- Xacro utilizada -->
 <arg name="xacro_robot" default="campero_rubber.urdf.xacro"/>

 <!-- Mapa de rviz -->
 <arg name="map_file" default="empty/empty.yaml"/>

 <!-- Tipo de movimiento -->
 <arg name="robot_localization_mode" default="odom"/>
 <arg name="ros_planar_move_plugin" default="false"/>

 <!-- Tipo de brazo -->
 <arg name="3_finger_gripper" default="false"/>

 <!-- Empieza el robot-->

 <!-- Prefijo -->
 <arg name="prefix" value="$(arg id_robot)_"/>

 <!-- Load the URDF into the ROS Parameter Server -->
 <param name="robot_description"
 command="$(find xacro)/xacro
 '$(find campero_description)/robots/$(arg xacro_robot)'
 prefix:=$(arg prefix)
 ros_planar_move_plugin:= $(arg ros_planar_move_plugin)
 --inorder"/>

 <!-- Nodo que publica datos del robot -->
 <node name="robot_state_publisher"
 pkg="robot_state_publisher"
 type="robot_state_publisher"
 respawn="false"

62

 output="screen">
 <remap from="/joint_states" to="joint_states" />
 <!-- Cambio de nombre -->
 </node>

 <!-- Spawn del robot en Gazebo -->
 <node name="urdf_spawner_campero_model"
 pkg="gazebo_ros"
 type="spawn_model"
 respawn="false" output="screen"
 args="-x $(arg x_init_pose)
 -y $(arg y_init_pose)
 -z $(arg z_init_pose)
 -J campero_ur10_elbow_joint -2
 -J campero_ur10_shoulder_lift_joint -0.785
 -J campero_ur10_shoulder_pan_joint -0.785
 -J campero_front_ptz_camera_tilt_joint -2
 -J campero_front_ptz_camera_pan_joint 3.14
 -urdf
 -param robot_description
 -model $(arg id_robot)
 -unpause
 " />

 <!-- Empieza nodos de control del robot campero -->
 <include file="$(find campero_control)/launch/campero_control.launch">
 <arg name="prefix" value="$(arg prefix)"/>
 <arg name="sim" value="true"/>
 <arg if="$(arg ros_planar_move_plugin)"
 name="kinematics" value="steel_omni"/>
 <arg name="ros_planar_move_plugin"
 value="$(arg ros_planar_move_plugin)"/>
 <arg name="launch_robot_localization" value="false"/>
 <arg name="3_finger_gripper" value="$(arg 3_finger_gripper)"/>
 </include>

</launch>

63

10.5. Archivo de código campero_nav.launch para el robot Campero

Autoría: Jorge Playán. Basado en archivos de ejecución global de Turtlebot y de la empresa Robotnik para

Campero.

<?xml version="1.0"?>
<launch>

<!-- Argumentos de entrada -->
 <!-- Nombre del robot -->
 <arg name="id_robot" default="campero"/>

 <!-- Posición inicial -->
 <arg name="x_init_pose" default="0"/>
 <arg name="y_init_pose" default="0"/>
 <arg name="z_init_pose" default="0"/>

 <!-- Ejecución de Gmapping, idealmente deberíamos ejecutarlo al principio
 y manejar manualmente el robot por el entorno para realizar un mapa y,
 posteriormente, añadirlo -->
 <arg name="gmapping" default="false"/>

 <!-- Xacro utilizada -->
 <arg name="xacro_robot" default="campero_mecanum.urdf.xacro"/>

 <!-- Mapa de rviz -->
 <arg name="map_file" default="empty/map_empty.yaml"/>

 <!-- Tipo de movimiento y localización -->
 <arg name="robot_localization_mode" default="odom"/>
 <arg name="ros_planar_move_plugin" default="true"/>

 <!-- Tipo de brazo -->
 <arg name="3_finger_gripper" default="false"/>

 <!-- Prefijo para encontrar topics -->
 <arg name="prefix" value="$(arg id_robot)_"/>

<!-- Ejecutar el robot campero -->
 <!-- Colocamos todos los nodos en el grupo del Robot -->
 <group ns="$(arg id_robot)">

 <!-- El Robot -->
 <include file=
 "$(find campero_gazebo)/launch/campero_one_robot_nav.launch">

 <!-- Argumentos -->
 <!-- Nombre -->

64

 <arg name="id_robot" value="$(arg id_robot)"/>

 <!-- PosiciÃ³n inicial -->
 <arg name="x_init_pose" value="$(arg x_init_pose)"/>
 <arg name="y_init_pose" value="$(arg y_init_pose)"/>
 <arg name="z_init_pose" value="$(arg z_init_pose)"/>

 <!-- Xacro -->
 <arg name="xacro_robot" value="$(arg xacro_robot)"/>

 <!-- Mapa -->
 <arg name="map_file" value="$(arg map_file)"/>

 <!-- Movimiento específico para ruedas "omni" -->
 <arg name="ros_planar_move_plugin"
 value= "$(arg ros_planar_move_plugin)"/>

 <!-- Brazo -->
 <arg name="3_finger_gripper"
 value="$(arg 3_finger_gripper)"/>
 </include>

 <!-- Ejecutar MapServer-->
 <include file="$(find campero_localization)/launch/map_server.launch">

 <!-- Para poder buscar topics -->
 <arg name="prefix" value="$(arg prefix)"/>

 <!-- Mapa -->
 <arg name="map_file" value="$(arg map_file)"/>
 </include>

 <!-- Ejecutar AMCL-->
 <include file="$(find campero_localization)/launch/mi_amcl.launch">

 <!-- Para poder buscar topics -->
 <arg name="prefix" value="$(arg prefix)"/>

 <!-- Tipo ruedas (diff o omni) en función
 del tipo de movimiento -->
 <arg if="$(arg ros_planar_move_plugin)"
 name="odom_model_type" value="omni"/>
 <arg unless="$(arg ros_planar_move_plugin)"
 name="odom_model_type" value="diff"/>

 <!-- Posicion inicial -->
 <arg name="x_init_pose" value="$(arg x_init_pose)"/>
 <arg name="y_init_pose" value="$(arg y_init_pose)"/>
 <arg name="z_init_pose" value="$(arg z_init_pose)"/>
 </include>

 <!-- Ejecutar MoveBase -->

65

 <include file="$(find campero_navigation)/launch/move_base.launch">

 <!-- Para poder buscar topics -->
 <arg name="prefix" value="$(arg prefix)"/>

 <!-- Tipo de ruedas -->
 <arg name="omni" value="$(arg ros_planar_move_plugin)"/>
 </include>

 <!-- Ejecutar gmapping -->
 <include if="$(arg gmapping)"
 file="$(find campero_localization)/launch/slam_gmapping.launch">

 <arg name="prefix" value="$(arg prefix)"/>
 </include>

 <!-- Fin del grupo -->
 </group>

 <!-- Activa un PID que simula la gravedad-->
 <rosparam command="load"
 file=
 "$(find campero_control)/config/gazebo/gazebo_controller_omni.yaml"/>

 <!-- Ejecutar Gazebo y rviz-->
 <include file="$(find campero_gazebo)/launch/gazebo_rviz.launch">

 <!-- Ejecutar rviz -->
 <arg name="launch_rviz" value="true"/>

 <!-- Mundo de Gazebo-->
 <arg name="world"
 value="$(find campero_gazebo)/worlds/campero_outside.world"/>

 <!-- Setting debug-->
 <arg name="debug" value="false"/>
 </include>
</launch>

66

10.6. Archivo de mapa del entorno exterior mymap.pgm

Autoría: Jorge Playán creó el mapa. El entorno de simulación fue creado por la empresa Robotnik.

67

10.7. Archivo de mapa del entorno interior mapaInt.pgm

Autoría: Jorge Playán creó el mapa. El entorno de simulación fue creado por la empresa Robotnik.

68

11. Bibliografía

Batard, P. (5 de Agosto de 2019). Rufus. Obtenido de https://rufus.ie/

COMMANDIA. (15 de septiembre de 2019). Robótica móvil colaborativa de objetos

deformables en aplicaciones industriales. Obtenido de

http://commandia.unizar.es/es/lo-basico-de-commandia/

Open Source Robotics Foundation. (4 de agosto de 2019a). ROS. Obtenido de

https://www.ros.org/

Open Source Robotics Foundation. (5 de Agosto de 2019b). Costmap_2d. Obtenido de

http://wiki.ros.org/costmap_2d

Open Source Robotics Foundation. (5 de Agosto de 2019c). TurtleBot. Obtenido de

http://wiki.ros.org/Robots/TurtleBot

Open Source Robotics Foundation. (5 de Agosto de 2019d). Kinetic Installation Ubuntu.

Obtenido de http://wiki.ros.org/kinetic/Installation/Ubuntu

Open Source Robotics Foundation. (5 de agosto de 2019e). rviz. Obtenido de

http://wiki.ros.org/rviz

Open Source Robotics Foundation. (28 de Agosto de 2019g).

geometry_msgs/PoseStamped Message. Obtenido de

http://docs.ros.org/melodic/api/geometry_msgs/html/msg/PoseStamped.html

Open Source Robotics Foundation. (28 de Agosto de 2019h).

move_base_msgs/MoveActionGoal Message. Obtenido de

http://docs.ros.org/fuerte/api/move_base_msgs/html/msg/MoveBaseActionGoal.

html

Open Soure Robotics Foundation. (5 de agosto de 2019f). Gazebo. Robot Simulation Made

Easy. Obtenido de http://gazebosim.org/

Robotis. (4 de agosto de 2019). Turtlebot 3 Waffle Pi. Obtenido de

http://www.robotis.us/turtlebot-3-waffle-pi/

Robotis. (5 de Agosto de 2019b). Turtlebot 3 PC Setup. Obtenido de

http://emanual.robotis.com/docs/en/platform/turtlebot3/pc_setup/#pc-setup

69

Ubuntu releases. (5 de Agosto de 2019). Ubuntu 16.04.06 LTS (Xenial Xersus). Obtenido

de http://releases.ubuntu.com/16.04/

Wikipedia contributors. (4 de agosto de 2019a). Wikipedia, the free encyclopedia.

Obtenido de Middleware:

https://en.wikipedia.org/w/index.php?title=Middleware&oldid=902648688

Wikipedia Contributors. (4 de agosto de 2019b). Wikipedia, The Free Encyclopedia.

Obtenido de Robot Operating System:

https://en.wikipedia.org/w/index.php?title=Robot_Operating_System&oldid=90

4579289

Wikipedia Contributors. (5 de Agosto de 2019c). Wikipedia, The Free Encyclopedia.

Obtenido de Motion Planning: https://en.wikipedia.org/wiki/Motion_planning

Wyrobek, K. (31 de octubre de 2017). The Origin Story of ROS, the Linux of Robotics.

IEEE Spectrum. Obtenido de

https://spectrum.ieee.org/automaton/robotics/robotics-software/the-origin-

story-of-ros-the-linux-of-robotics

