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Resumen 

La robótica se ha extendido en las últimas décadas en entornos industriales, y en la 

actualidad genera grandes expectativas en multitud de campos. En este Trabajo de Fin 

de Grado se pretende que el alumno se familiarice con la interacción entre “Robot 

Operating System” (ROS) y dos robots diferentes (uno comercial, Turtlebot, y otro en 

desarrollo, Campero). Los objetivos incluyen comprender la herramienta ROS aplicada 

a la navegación de robots, desarrollar capacidades para la instalación del software ROS 

en un ordenador con el sistema operativo Ubuntu, aplicar el software a los robots 

Turtlebot y Campero realizando simulaciones de navegación y analizar críticamente los 

resultados obtenidos. De esta manera, se puede usar la experiencia ganada en Turtlebot 

para manejar Campero y hacer algunas contribuciones al mismo. 

Se estudió el software del robot Turtlebot Waffle Pi, un pequeño robot con cuatro 

ruedas, dos de ellas motrices, que incluye un paquete de navegación. Se realizaron 

simulaciones de mapeo de entorno y de navegación autónoma sorteando obstáculos. 

Los archivos de navegación de Turtlebot se modificaron y aplicaron a la navegación del 

robot Campero. Este robot es mucho más grande que Turtlebot, dispone de cuatro 

ruedas y un brazo robótico. Se realizaron simulaciones de navegación en dos entornos 

desarrollados para Campero, usando los dos tipos de ruedas que incluye el robot: 

diferenciales y omnidireccionales. Se usó la rutina SLAM para realizar mapas del entorno 

y después poder emplearlos para una navegación más eficiente. 

El Software de Turtlebot para ROS está disponible como código abierto, y ha permitido 

realizar simulaciones complejas esquivando obstáculos y actualizando la ruta en tiempo 

real. A pesar del rápido progreso actual del software para Campero, este robot se halla 

en una fase inicial de su desarrollo. Puesto que Campero no tiene rutinas propias de 

navegación, se aplicaron las usadas en Turtlebot realizando las modificaciones y 

empleando los parámetros propios de Campero. Esto permitió hacer una variedad de 

experimentos de simulación de navegación en los que se alcanzaron los puntos 

propuestos. 

Se han encontrado problemas con la navegación de Campero, que parecen relacionados 

con su parametrización, con el uso de sus sensores y con la especificación del objetivo 

de la navegación. Estos son aspectos que deben de recibir atención en el futuro para 

poder hacer de Campero un robot fiable y operativo en entornos reales. 



2 

 

Índice 

 
1. Introducción ............................................................................................................................. 4 

1.1. Contexto y Motivación ............................................................................................... 4 

1.2. Objetivos........................................................................................................................ 5 

1.3. Alcance y entorno de trabajo.................................................................................... 5 

2. ROS, Robot Operating System ............................................................................................ 8 

2.1. Introducción a ROS ..................................................................................................... 8 

2.2. Instalación de Linux y ROS ..................................................................................... 10 

2.2.1. Instalación del sistema operativo Linux ........................................................... 10 

2.2.2. Instalación de ROS ............................................................................................... 11 

2.2.3. Instalación de Turtlebot 3 ................................................................................... 11 

2.3. Conceptos básicos de ROS .................................................................................... 11 

2.4. Herramientas incluidas en ROS ............................................................................. 13 

2.5. Un problema de navegación para resolver con ROS ........................................ 13 

2.6. Navegación del robot Turtlebot ........................................................................... 13 

3. Archivos de navegación ....................................................................................................... 21 

3.1. Adaptative Monte-Carlo Localization (AMCL) .................................................. 21 

3.2. Move_Base ................................................................................................................. 23 

3.3. Global launch file ....................................................................................................... 25 

4. Robot Campero .................................................................................................................... 27 

4.1. Versión del software ................................................................................................ 28 

4.2. Archivos proporcionados ....................................................................................... 28 

4.3. Instalación y ejecución ............................................................................................. 30 

5. Navegación sobre el robot Campero .............................................................................. 34 

5.1. Preparación Inicial ..................................................................................................... 34 

5.1.1. Modelo inicial ......................................................................................................... 34 



3 

 

5.1.2. Versión con navegación ....................................................................................... 35 

5.2. Archivos finales .......................................................................................................... 35 

5.2.1. AMCL ...................................................................................................................... 35 

5.2.2. Move_base ............................................................................................................. 36 

5.2.3. One_robot ............................................................................................................. 36 

5.2.4. Global ...................................................................................................................... 37 

6. Experimentación con el robot Campero ........................................................................ 39 

6.1. Reconocimiento del entorno ................................................................................. 39 

6.2. Navegación en exterior con ruedas diferenciales ............................................. 41 

6.3. Navegación en interior con ruedas omnidireccionales .................................... 45 

7. Discusión general .................................................................................................................. 49 

7.1. Simulación con el robot Turtlebot ....................................................................... 49 

7.2. Simulación con el robot Campero ........................................................................ 49 

8. Conclusiones ......................................................................................................................... 51 

9. Recomendaciones para trabajos futuros con el robot Campero .............................. 52 

10. Anexos .................................................................................................................................... 53 

10.1. Archivo de especificaciones del robot Waffle Pi por la empresa Robotis ... 53 

10.2. Archivo de código amcl.launch para el robot Campero ............................ 55 

10.3. Archivo de código move_base.launch para el robot Campero ............... 58 

10.4. Archivo de código campero_one_robot_nav.launch para el robot 

Campero .................................................................................................................... 61 

10.5. Archivo de código campero_nav.launch para el robot Campero .......... 63 

10.6. Archivo de mapa del entorno exterior mymap.pgm ........................................ 66 

10.7. Archivo de mapa del entorno interior mapaInt.pgm ........................................ 67 

11. Bibliografía .............................................................................................................................. 68 

 

  



4 

 

1. Introducción 

1.1. Contexto y Motivación 

El intenso desarrollo actual de la robótica está basado en el progreso de áreas de 

conocimiento complementarias como la informática, la mecánica, la electrónica, los 

sensores o la inteligencia artificial. La popularización de la robótica en los entornos 

industriales e incluso en la vida diaria está generando grandes expectativas en la sociedad. 

Los ingenieros electrónicos y automáticos (junto a otros profesionales) tienen una 

responsabilidad directa sobre el desarrollo de la robótica. 

En España son muchos los ámbitos en los que la robótica puede en las próximas décadas 

ayudar a que la sociedad sea sostenible. Un país muy envejecido, con la población 

concentrándose en las ciudades y con una baja densidad de población en la mayoría del 

territorio presenta retos muy importantes para la robótica. Entre ellos, la fabricación, la 

asistencia a personas dependientes, la seguridad, las ciudades inteligentes, el cuidado del 

medio ambiente o la agricultura. 

En este contexto, la robótica es un campo de trabajo de clara importancia tanto en el 

presente como en el futuro. Este Trabajo Fin de Grado (TFG) trata de un aspecto 

horizontal de la robótica: el software que gobierna los distintos aspectos de un robot. 

El software usado es ROS (Open Source Robotics Foundation, 2019a), una plataforma 

de código abierto, genérica (cualquier robot puede ser diseñado para usarlo) y de 

desarrollo cooperativo. Esta plataforma de software se aplica a aspectos como el 

mapeado del entorno del robot, el uso de mapas y sensores para la navegación terrestre, 

la manipulación con brazos robóticos o la interacción con el robot físico. 

En este TFG el software se aplica al robot comercial Turtlebot waffle Pi (Robotis, 2019) 

y al robot Campero, que está actualmente en sus fases iniciales de desarrollo por la 

empresa Robotnik. De todas las capacidades del software ROS, el TFG se orienta a la 

navegación de los robots. Esta aplicación es muy interesante para comprender cómo se 

programa esta navegación en dos robots diferentes y en dos momentos muy diferentes 

de su desarrollo. 

El TFG se enmarca dentro de las actividades del proyecto COMMANDIA, Robótica 

móvil colaborativa de objetos deformables en aplicaciones industriales (COMMANDIA, 

2019). Este proyecto está cofinanciado por el Programa Interreg Sudoe y por el Fondo 
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Europeo de Desarrollo Regional (FEDER). El proyecto está orientado a la manipulación 

y el procesamiento de objetos deformables tales como alimentos, ropa, juguetes o 

artículos de cuero. El objetivo es “mejorar la competitividad y las condiciones de trabajo 

de las industrias donde los objetos deformables deben ser manipulados directamente 

por los operadores humanos para controlar su forma durante la producción”. El 

proyecto cuenta con la participación de socios de Francia, Portugal y España, entre los 

que se cuenta la Universidad de Zaragoza. 

 

1.2. Objetivos 

El objetivo docente de este TFG es comprender la interacción entre ROS y dos robots 

diferentes, analizando sus posibilidades y sus limitaciones actuales. Este objetivo docente 

se concreta en cuatro objetivos específicos: 

1. Comprender la herramienta ROS, particularmente su aplicación a la navegación 

autónoma de robots. 

2. Desarrollar las capacidades para la instalación y puesta a punto del software ROS en 

un ordenador, y para su aplicación a los robots Turtlebot y Campero mediante el 

uso del software específico de los robots. 

3. Contribuir al desarrollo de software para la navegación del robot Campero. 

4. Probar y analizar la navegación de los dos robots en los aspectos de mapeo del 

territorio y de simulación de la navegación a tiempo real. 

1.3. Alcance y entorno de trabajo 

Al tratarse ROS de una plataforma de software genérica, el alcance de este TFG es 

global: cualquier robot puede ser diseñado para utilizar ROS. En este documento se 

analizan dos robots en particular, pero el software es adaptable a otros robots. 

Es preciso recordar en este punto que el alcance del TFG no incluye la manipulación de 

los robots a nivel físico, ni su control por ROS. Se han utilizado modelos informáticos y 

simulaciones de los dos robots, que han sido controlados por ROS. En una fase posterior 

a este trabajo, se podría analizar el resultado del control del robot físico por ROS. 

El uso de un modelo informático de los robots permite acelerar el desarrollo de nuevas 

utilidades de control o la explotación de nuevos sensores en los robots. Las simulaciones 
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realizadas con ROS permiten identificar problemas de diseño o de compatibilidad de 

datos. 

Finalmente, los elementos utilizados en este trabajo fin de grado se especifican a 

continuación (Tabla 1.1). 

Tabla 1.1 Listado de los elementos del trabajo con una descripción e ilustración. 

NOMBRE DESCRIPCIÓN ILUSTRACIÓN 

 

ROS 

Sistema operativo gratuito 

de código libre que 

proporciona herramientas 

relacionadas con robótica. 

 

 

 

 

CAMPERO 

Robot de gran envergadura 

sobre el que se trabaja la 

navegación. 

 

 

 

TURTLEBOT 

Robot de código libre con 

un sistema de navegación 

integrado.  

 

 

SENSORES 

Elementos del robot para 

recibir información del 

entorno. Varían con el 

robot empleado. 

 

 

 

 

ENTORNO GAZEBO 

Escenario dónde se 

realizan las simulaciones 

del robot. 

 

 

MAPA RVIZ 

Mapa del escenario para 

ayudar con el guiado del 

robot durante la 

navegación. 

 

 

 



7 

 

Se añade un diagrama de alto que muestra el funcionamiento conjunto de estos 

elementos (Figura 1.1). 

 

 

 

 

 

 

 

 

 

 

 

Figura 1.1. Diagrama de alto nivel que conecta a nivel lógico los elementos que 

componen este trabajo.  
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2. ROS, Robot Operating System 

2.1. Introducción a ROS 

Robot Operating System (ROS) es un sistema operativo gratuito de código libre1 que 

proporciona funciones flexibles para el manejo y control de robots como la abstracción 

de hardware, control de dispositivos, comunicación entre procesos y manejo de 

paquetes, entre otros. Los desarrolladores de ROS lo definen como “una colección de 

herramientas, librerías y convenciones que simplifican la tarea de crear 

comportamientos robóticos complejos y robustos en una variedad de plataformas 

robóticas” (Open Source Robotics Foundation, 2019a). ROS incluye herramientas y 

librerías para obtener, construir, escribir y ejecutar código en uno o varios ordenadores 

simultáneamente. Desde el punto de vista informático, ROS es un middleware 

(Wikipedia contributors, 2019a), situándose entre el sistema operativo y las aplicaciones 

que ejecuta. Por lo tanto, facilita y acelera el trabajo de los desarrolladores. En definitiva, 

ROS no es un sistema operativo en sentido estricto, sino que se ejecuta sobre uno: 

Linux. 

Uno de los aspectos más importantes de ROS es su filosofía de “desarrollo colaborativo 

de software robótico” (Open Source Robotics Foundation, 2019a). El objetivo es facilitar 

que laboratorios especializados en distintos aspectos de la robótica puedan colaborar y 

apoyarse entre ellos para construir una herramienta de gran valor añadido. De esta 

manera, la web de ROS actualmente cita a 79 desarrolladores de distintas 

organizaciones. A pesar de este esfuerzo colaborativo, ROS tiene dos autores 

principales, Eric Berger y Keenan Wyrobek, que en torno a 2007 comenzaron a trabajar 

en el proyecto mientras hacían la tesis doctoral en la Universidad de Stanford  

(Wyrobek, 2017). En este artículo se presenta un comic (Figura 2.1) en el que se explica 

la necesidad de ROS, como una forma de evitar la pérdida de tiempo de los 

desarrolladores. 

 
1 ROS se distribuye bajo una licencia del tipo BSD, que se caracteriza por imponer restricciones mínimas 

en su uso y distribución. 
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Figura 2.1. Comic explicando la necesidad de ROS o la pérdida de tiempo reinventando 

la rueda en la robótica. Autoría: (Wyrobek, 2017).  

El comic muestra como alguien hace un desarrollo innovador en robótica. Otro 

laboratorio quiere seguir esa línea, pero no tiene los detalles que hacen falta. Finalmente, 

decide hacer un programa para que otros puedan usarlo. Se consigue algo que funciona, 

lo publica, otros lo leen y la rueda comienza de nuevo. ROS se creó para romper este 

círculo, evitando la pérdida de tiempo, integrando esfuerzos y asegurando una 

continuidad en el desarrollo. Los autores iniciales consiguieron dinero para el desarrollo, 

implicaron a otros profesionales y trabajaron en un garaje. Diez años después, muchos 

jóvenes se han formado en el programa y muchas empresas han comenzado a usarlo 
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para sus nuevos productos y negocios. Al mismo tiempo, la Open Source Robotics 

Foundation se hizo cargo del desarrollo de ROS en 2013 (Wyrobek, 2017). 

En 2012 comenzó el desarrollo de ROS-Industrial, otro proyecto de código abierto con 

licencia BSD que tiene el objetivo de ampliar ROS al mundo de la fabricación automática 

y robótica (Wikipedia Contributors, 2019b). Esta rama tiene tres nodos activos: uno en 

Texas (EE.UU.), otro en Alemania (Europa) y el último en Singapur (Asia). Se ocupa de 

la interacción entre la robótica y los equipos de fabricación, con aplicaciones industriales 

y actividades formativas.  

A lo largo de estos doce años de desarrollo, se han ido creando en ROS capacidades 

para un buen número de aplicaciones. Algunas de las muchas capacidades actualmente 

disponibles en ROS son: 

• Detectar las características del medio mediante el uso de sensores. Se puede usar 

una variedad de ellos, siendo típicos los sensores LIDAR2 y las cámaras de visión 

óptica. 

• Navegar en un espacio que puede estar registrado de antemano en un mapa. No es 

obligatorio que exista este mapa, pero ayuda con la navegación. El Propio ROS puede 

fabricar estos mapas usando los sensores del robot, y algoritmos SLAM3. 

• Gestionar entornos multi-robot. De esta manera, una flota de robots puede 

colaborar para hacer una tarea conjuntamente. 

• Manejar brazos robóticos para tareas de manipulación o fabricación. 

2.2. Instalación de Linux y ROS 

Actualmente, ROS únicamente está disponible, de forma estable, en Linux. ROS está 

disponible de forma experimental en MacOS y Windows 10. Este trabajo se ha realizado 

sobre Linux debido a su estabilidad. 

2.2.1. Instalación del sistema operativo Linux 

Para la realización de este trabajo se ha empleado el sistema operativo Linux, en 

particular la distribución Ubuntu 16.04.6 LTS Xenial Xerus. En esta instalación se 

comenzó por la descarga de la versión siguiendo las instrucciones de la página oficial 

(Ubuntu releases, 2019). Dependiendo del ordenador que se usará se necesitará la 

 
2 Light Detection and Ranging o Laser Imaging Detection and Ranging. 
3 Simultaneous localization and mapping. 
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versión de 32 bits o la de 64 bits. Ya con la descarga completada se procede a la 

instalación del software Rufus (Batard, 2019), que permite colocar esta imagen del 

sistema en un dispositivo USB para instalarlo desde éste. Una vez la imagen del sistema 

está lista, es necesario hacer una partición del sistema para tener espacio sobre el que 

alojar Ubuntu. 

Cuando todo está preparado, se reinicia el ordenador sobre el que queramos realizar la 

instalación para acceder a la BIOS y ejecutar el USB. Se siguen los pasos expuestos en la 

pantalla para finalizar la instalación. 

2.2.2. Instalación de ROS 

Una vez tenemos Ubuntu 16.04.6 Xenial Xerus instalado procedemos a la instalación de 

ROS. En este TFG se ha empleado la versión de ROS “Kinetic Kame”, la cual esta 

específicamente diseñada para la versión de Ubuntu 16.04.6 LTS Xenial Xerus. Para ello 

se sigue el tutorial que se presenta en la propia página de ROS (Open Source Robotics 

Foundation, 2019d). 

2.2.3. Instalación de Turtlebot 3 

Una vez instalados Ubuntu y ROS, pasamos a la instalación del robot Turtlebot y todos 

los paquetes necesarios para su funcionamiento. Estas instrucciones están disponibles en 

la página web del robot Turtlebot (Robotis, 2019b). 

2.3. Conceptos básicos de ROS 

El funcionamiento de ROS consiste en un modelo gráfico de procesos. Los procesos 

generados son llamados nodos, como los nodos de un diagrama, y están conectados por 

tópicos. Estos se representan como líneas que conectan nodos. Los tópicos permiten a 

los nodos pasarse mensajes con información. Todos los nodos dependen de un maestro 

que los registra y ordena, roscore. Este maestro establece comunicación “peer-to-

peer” entre los nodos, por lo cual los mensajes o llamadas entre nodos no necesitan 

pasar por el maestro.  

A continuación, se proporcionan definiciones más completas de los elementos que 

componen ROS. 

• Nodos: Los nodos son el centro de la programación en ROS, ya que la mayoría del 

código ejecuta nodos, comunicación entre nodos u otras acciones relacionadas con 

nodos. 
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• Tópicos: Para poder enviar mensajes a un tópico, primero el nodo debe publicar en 

dicho tópico y si queremos que un nodo reciba la información enviada deberá 

subscribirse al tópico. Ningún nodo puede saber quién está publicando en qué tópico 

ni quién lo está recibiendo: es completamente anónimo. 

• Servicios: Un servicio es una acción que un nodo puede ejecutar con un solo 

resultado. Los nodos publican sus servicios y otros nodos pueden requerirlos. 

En los siguientes párrafos se presentan ejemplos de cómo establecer un entorno de 

trabajo y cómo crear sobre éste un paquete. 

El entorno más simple sobre el que se puede trabajar consiste en crear un paquete con 

su carpeta source (src). Esto se hace de la siguiente forma: 

mkdir -p ~/catkin_ws/src 

cd ~/catkin_ws 

catkin_make 

Al hacer este último paso habremos compilado el paquete y se deberían haber creado 

las carpetas devel y build junto a la src previamente mencionada. 

Se finaliza la creación del paquete de la siguiente forma: 

 source devel/setup.bash 

Esto permite utilizar el espacio de trabajo como nuestro entorno actual. 

Ahora procedemos a la creación de un paquete en el interior de este espacio. La forma 

más sencilla sería: 

catkin_create_pkg <nombre_paquete> [dependencia1] 

[dependencia2] 

Por ejemplo, podría ser así: 

 catkin_create_pkg paquete_prueba std_msgs rospy roscpp 

Esto crea un paquete llamado paquete_prueba y dice que este paquete va a depender 

de std_msgs, rospy, y roscpp (librerías incluidas en ROS para comunicación, código 

Python y código c++) 

Una vez creados, volvemos a compilar con: 

 cd ~/catkin_ws/ 
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 catkin_make 

 source devel/setup.bash 

2.4. Herramientas incluidas en ROS 

La funcionalidad de ROS se ve altamente potenciada por la inclusión de herramientas 

que ayudan a los desarrolladores a visualizar y guardar información, navegar la estructura 

de paquetes de ROS y crear “scripts” para automatizar o configurar procesos. Entre 

ellas cabe destacar: 

• rviz (Open Source Robotics Foundation, 2019e): Visualizador 3D que forma parte 

de ROS y que se usa para representar robots, los escenarios en los que trabajan y 

los datos de los sensores. Este programa es altamente configurable con diferentes 

formas de visualizar y extensiones. 

• Gazebo (Open Soure Robotics Foundation, 2019f): Aunque no está incluido en la 

instalación, sí que se incluyen paquetes para poder ejecutarlo junto con ROS y poder 

emplearlo para obtener simulaciones de nuestros robots y de escenarios en 3D. 

• Roslaunch: Es una herramienta clave en ROS, que ejecuta varios nodos de forma 

local o remota y les proporciona parámetros para ejecutarse correctamente. 

2.5. Un problema de navegación para resolver con ROS 

Tal como se ha visto antes, ROS puede resolver una gran cantidad de problemas 

generales sobre el uso de robots. Estos problemas van desde el análisis del medio que 

rodea al robot mediante sensores, el movimiento del robot, el uso de un brazo robótico 

o la fabricación en entornos industriales. Sin embargo, este Trabajo Fin de Grado se 

refiere a aplicaciones de navegación de un solo robot con ruedas en entornos mapeados 

apoyado por sensores que caracterizan el medio. Se quiere que el robot sea capaz de 

navegar de un punto inicial a un punto destino sorteando los obstáculos presentes. En 

este trabajo, ROS resuelve este problema en una simulación en el ordenador, que podría 

posteriormente trasladarse a un robot físico que navega en un entorno físico. 

2.6. Navegación del robot Turtlebot 

En estas simulaciones vamos a trabajar con el robot comercial Turtlebot Waffle Pi 

(Robotis, 2019) (Anexo 10.1). Como se aprecia en el anexo, este robot es ligero y tiene 

reducidas dimensiones (1,8 kg, 281 x 306 x 141 mm). Además, viene con paquetes de 
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navegación (entre otras funcionalidades) que lo hacen muy adecuado para este trabajo. 

El robot se muestra en la figura 2.2. 

 

Figura 2.2. El robot Turtlebot3 Waffle Pi. Autoría: (Robotis, 2019). 

La instalación de Ubuntu con ROS y con todos los paquetes necesarios deja el sistema 

preparado para el uso del robot Turtlebot. Los paquetes disponibles incluyen utilidades 

de navegación, entorno multirobot, gmapping, y SLAM, entre otros. Para poder 

comprender cómo funciona la navegación ya incluida en este robot y poder aplicarla 

posteriormente al robot Campero, es necesario examinar el funcionamiento en el 

Turtlebot y analizar los archivos que lo forman. 

Los archivos del Turtlebot están diseñados de tal forma que ROS comprueba con qué 

versión de éste está trabajando (Burger, Waffle o Waffle Pi). En función de la versión se 

aplican unas físicas y unos parámetros diferentes. 

Una vez instalado el robot Turtlebot y su paquete de navegación, se pasa a comprobar 

el funcionamiento de éste. Para esto se abre en una terminal un maestro: 

 roscore 

Se abre entonces otra terminal sobre la que se carga el mapa del entorno. En principio 

debería ejecutarlo el archivo de navegación del Turtlebot, pero en las condiciones de 

trabajo descritas provoca errores y no consigue cargarlo bien. Es preciso pues ejecutarlo 

con antelación para un correcto funcionamiento. 

rosrun map_server map_server 

catkin_ws/src/turtlebot3/turtlebot3_navigation/maps/map.yaml 
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Ahora podemos ejecutar el código con normalidad. Sobre otra terminal, elegimos el 

modelo de Turtlebot de Robotis que deseamos utilizar. En este ejemplo se emplea el 

waffle_pi (Robotis, 2019),  

Este robot incorpora un “360 Laser Distance Sensor LDS-01” se trata de un escáner 

LIDAR 2D que puede medir en 360º y recoge datos alrededor del robot para usarlos 

para SLAM. 

Procedemos a ejecutar el mundo sobre el que simular el robot elegido: 

 export TURTLEBOT3_MODEL=waffle_pi 

roslaunch turtlebot3_gazebo turtlebot3_world.launch 

Finalmente, en una última terminal, entramos en el directorio en el que se aloja el fichero 

a ejecutar y lo activamos. Para poder disponer de una guía del mapa en rviz es necesario 

completar el comando con el nombre y localización del mapa a emplear. 

cd catkin_ws/src/turtlebot3/turtlebot3_navigation 

roslaunch turtlebot3_navigation 

turtlebot3_navigation.launch map_file:=maps/map.yaml 

Una vez completado este proceso deberíamos de tener una ventana de Gazebo y otra 

de rviz que deberían de tener el aspecto que se muestra en las figuras 2.3 y 2.4. 

 

Figura 2.3. Contenido gráfico de la ventana de Gazebo para el caso de estudio del 

robot Turtlebot. 

file:///C:/Users/rosario/=maps/map.yaml
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Figura 2.4. Contenido gráfico de la ventana de rviz para el caso de estudio del robot 

Turtlebot. 

La ventana de Gazebo es únicamente una visualización en 3D de nuestro robot en el 

entorno simulado. En este caso, el entorno está compuesto por un recinto hexagonal 

con nueve obstáculos cilíndricos en su interior. El robot se representa por el pequeño 

rectángulo negro dentro del hexágono. 

La ventana de rviz es de mucho mayor interés puesto que presenta los valores de todos 

los sensores del robot. En la imagen vemos el mapa de fondo del entorno. Superpuesto 

a éste, se ve la imagen del escáner incluido en el robot que detecta los obstáculos del 

entorno y el entorno en sí (las columnas y el recinto). Originalmente, al activar este 

proceso, en la ventana de rviz el mapa y el radar de nuestro robot no deberían de 

solaparse: debería de haber un desplazamiento. Esto se debe a que el origen del robot 

en el mapa no se corresponde con el origen del robot en Gazebo. Este desplazamiento 

puede modificarse manualmente. En la barra superior al mapa de rviz se pueden 

encontrar varios comandos útiles para la simulación, tal como se muestra en la figura 2.5: 

 

Figura 2.5. Barra de navegación de rviz, con comandos útiles para la navegación del 

robot. 

Los dos comandos más importantes para esta aplicación son “2D Pose Estimate” y “2D 

Nav Goal”. El primero de estos permite solucionar el problema en cuestión. 

Seleccionándolo y seleccionando posteriormente la localización aproximada de nuestro 
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robot (visible en Gazebo) sobre el mapa, el escáner y el mapa deberían solaparse. Este 

proceso se puede repetir hasta conseguir un solapamiento satisfactorio. 

Una vez tenemos el robot listo y en posición podemos simular la navegación. 

Seleccionamos la segunda opción mencionada, “2D Nav Goal”, que permite seleccionar 

un destino para nuestro robot. A modo de demostración seleccionamos un destino que 

obligue al robot a esquivar algunos pilares. Partiendo de la posición vista en las figuras 

2.3 y 2.4, marcamos un destino en la esquina superior derecha (figura 2.6). Si 

mantenemos pulsado el ratón se puede además indicar la orientación del robot en el 

punto de destino. Al finalizar la selección el robot traza una primera ruta, que se puede 

ver sobre el mapa, y empieza a avanzar. La ruta se recalcula en cada momento de la 

trayectoria en función de lo que detecten los sensores. Esto puede dar lugar a cambios 

en el recorrido. 

 

Figura 2.6. Especificación del destino de la navegación (la flecha roja indica el punto y 

la orientación final del robot). ROS ha calculado la primera ruta a seguir por el robot, 

que se muestra como una línea. 

En la figura 2.7 se aprecia que, a pesar de que el recorrido inicial indicaba un movimiento 

entre los pilares de la fila central, el recorrido final ha preferido rodear los pilares por 

el exterior. 
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Figura 2.7. Robot llegando al punto de destino, mostrando una ruta diferente de la 

primera. 

Rviz no es la única forma de indicar un destino para nuestro robot. Podemos indicar un 

destino directamente sobre el tópico correspondiente en la navegación. Para esto 

aplicamos el siguiente comando sobre una terminal: 

rostopic pub /move_base_simple/goal 

geometry_msgs/PoseStamped '{header: {stamp: now, 

frame_id: "map"}, pose: {position: {x: 1.0, y: 0.5, z: 

0.0}, orientation: {w: 1.0}}}' 

El comando “rostopic pub (nombre del tópico) (elemento a 

publicar)” nos permite publicar sobre el tópico que deseemos. En este caso, 

“move_base_simple/goal” es un tópico que indica el destino del robot. Es muy 

importante publicar en un formato que sea compatible con el del tópico. Este tópico 

acepta el destino en el formato PoseStamped, pero esto no ocurre para todos los 

tópicos, sino que cada uno requiere un formato determinado (Open Source Robotics 

Foundation, 2019g). Una vez indicado el formato se procede a escribir el mensaje a 

transmitir siguiendo la sintaxis adecuada. En nuestro caso, las partes más importantes 

son “map” que indica el tópico sobre el que está el mapa sobre el que indicaremos el 

destino, “position” y “orientation”.  

La posición en coordenadas (x, y, z) podemos obtenerla de rviz. Sobre rviz empleamos 

la herramienta “Publish Point” (Figura 2.5). Es posible que esta herramienta no esté 

visible en el menú al principio de la ejecución. Para verla necesitamos hacer click en el 
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símbolo “+” de la barra de menús de rviz y añadirlo desde ahí. Una vez seleccionada 

esta herramienta, al mover el cursor por el mapa sin necesidad de hacer click, en la 

esquina inferior izquierda de la ventana se pueden ver las tres coordenadas (x, y, z). 

Aunque la coordenada z no esté exactamente en cero, podemos mantenerla en cero 

para la navegación. Una vez localizado el punto al que queremos mover el robot, 

escribimos las coordenadas en el comando anterior. Con esto transmitimos al robot la 

posición. Para la orientación se usa un cuaternio: 

Cuaternio = { cos (
𝜃

2
) , 𝑋 ∗ sin (

𝜃

2
) , 𝑌 ∗ sin (

𝜃

2
) , 𝑍 ∗ sin (

𝜃

2
) } 

En esta ecuación, X, Y, Z representan el eje unitario sobre el que se realiza el giro y 𝜃 

el giro en sí. En el comando establecemos el primer valor a 1, indicando que se trata 

de un giro de cero radianes (No presenta giro). 

Para comprender el funcionamiento del paquete de navegación, se aplica una 

herramienta proporcionada por ROS que permite observar la dinámica interna. Mientras 

el algoritmo de navegación está en simulación, la herramienta ejecuta un comando que 

permite ver las comunicaciones entre nodos, quién está publicando y quién está suscrito 

a qué tópicos. 

Esta herramienta consiste en el comando rqtgraph, que devuelve un diagrama con los 

tópicos y nodos actualmente en ejecución (figura 2.8).  

 

Figura 2.8. Diagrama del módulo de navegación Turtlebot generado con rqtgraph. 

Los nodos están indicados por óvalos, mientras que los tópicos están escritos sobre 

las flechas. Autoría: (Robotis, 2019) Robotis (2019). 

Sobre este diagrama se observa que el nodo move_base es el principal encargado de la 

navegación, ya que es la piedra angular del diagrama que recibe todos los datos y los 
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procesa y como salida envía la velocidad necesaria. También se aprecia que está 

utilizando el nodo AMCL como localización, junto con la ejecución del mapa por 

map_server y la ejecución virtual del robot (nodo gazebo). 

  



21 

 

3. Archivos de navegación 

Procedemos a examinar los archivos incluidos en la navegación de ROS y a comprender 

su funcionamiento. Estos archivos son usados por roslaunch para poder ejecutar los 

nodos necesarios, que están escritos en formato .launch. Los archivos que componen 

la navegación de un robot en ROS son: Adaptative Monte-Carlo Localization (AMCL), 

Move-Base y el archivo global de ejecución. 

3.1. Adaptative Monte-Carlo Localization (AMCL) 

AMCL es un filtro de partículas que permite a los robots localizarse en un entorno. 

Consiste en encajar las lecturas de los escáneres del robot con su posición en el mapa, 

en un proceso paralelo a la localización por odometría. Esto se ve claramente en la figura 

3.1. 

 

Figura 3.1. Imagen que relaciona ambas formas de localización (AMCL y odometría). 

Autoría: ROS. 

Desde un nivel técnico, AMCL se encarga de proporcionar unas posiciones estimadas 

que pueden verse afectadas con el tiempo por ruido en el sistema de odometría. Tras el 

movimiento del robot las posibles variaciones de posición se ven amplificadas, por lo 
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que el algoritmo compara las posiciones con el cambio en la medición del sensor y busca 

cuales se ajustan más. Esto mejora la localización del robot y consigue una mayor 

precisión a lo largo del tiempo. 

En ROS ya viene implementado un nodo que, configurándolo adecuadamente, permite 

aplicar AMCL a nuestro robot. El nodo que viene instalado en el Turtlebot se presenta 

en la Figura 3.1, en la que se reproduce código del archivo amcl.launch.  

 

Figura 3.1. Líneas de código del archivo amcl.launch para el robot Turtlebot. 

Autoría: (Robotis, 2019b). 

Sobre este código diferenciamos dos partes: por un lado, los argumentos de entrada al 

fichero en sí, y por otro, la ejecución del nodo AMCL. Este nodo ya viene implementado 

en ROS junto a Turtlebot, en el paquete del mismo nombre, y permite modificar los 
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valores de los parámetros para adaptarlo a las necesidades y permitir su funcionamiento 

en una amplia gama de robots. 

Entre los argumentos de entrada se encuentran el nombre del escáner que permite la 

localización y la posición inicial del robot. Los valores por defecto que se muestran en 

la figura 4.1 están establecidos para poder comunicarse con el sensor del Turtlebot. 

Para poder ejecutar el nodo AMCL es necesario además pasarle multitud de parámetros 

para que se ajuste correctamente a nuestro robot. Entre todos los parámetros 

necesarios, los más importantes son los relacionados con la odometría y con el sensor 

del robot. Los parámetros que hacen referencia al láser en el nombre están directamente 

relacionados con el escáner. Es necesario conocer las especificaciones de nuestro 

escáner para poder establecer valores como el número máximo de haces empleado o la 

distancia máxima del láser, entre otros. La odometría también es fundamental para 

permitir una correcta localización del robot. El parámetro más importante es el 

relacionado con el tipo de movimiento en función de las ruedas (odom_model_type), 

que puede variar en función de unas ruedas diferenciales4 u omnidireccionales. En el caso 

del Turtlebot, únicamente tiene ruedas diferenciales, de ahí que este esté establecido 

cómo valor por defecto. 

3.2. Move_Base 

El archivo move_base.launch, que ejecuta el nodo del mismo nombre, es fundamental 

para la navegación del robot. Ejecutar este nodo en un robot correctamente configurado 

da lugar a que el robot intente conseguir llegar a su posición de destino con la base del 

robot dentro de una tolerancia especificada o hasta que indique un error al intentar 

llegar. Si el robot detecta que se ha atascado, este nodo también intentará recuperarlo. 

En la figura 3.2 se presentan las líneas de código de este archivo. 

 

 
4 Diferenciales: Ruedas diferenciales son aquellas que incluyen un mecanismo diferencial. Este 
permite que, al girar hacia un lado con ruedas en paralelo, giren a diferentes velocidades (La del 
interior de la curva más lento que la del exterior). 
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Figura 3.2. Líneas de código del archivo move_base.launch para el robot Turtlebot. 

Autoría: (Robotis, 2019b). 

Al igual que en el AMCL, aquí también hay dos partes claras, los argumentos de entrada 

al fichero y la ejecución del nodo. 

Los parámetros necesarios son: el nombre de los tópicos necesarios para navegación, 

cmd_vel, y odom (velocidad y odometría del robot); y el tipo de robot Turtlebot. Estos 

valores son después empleados como parámetros de entrada sobre el nodo para 

ajustarlo a los mensajes que emite el robot. 

Para la ejecución del nodo es necesario proporcionar varios parámetros. Entre ellos se 

encuentran la localización en carpetas de los mapas de características tanto global como 

local. Estos archivos ya estaban disponibles en la segunda versión de Campero. En la 

sección 4.1 se explica el progreso de las versiones de Campero. Anteriormente a esta 

segunda versión, se empleaban los archivos pertenecientes a Turtlebot con ligeras 

modificaciones. Finalmente se utiliza el comando remap para cambiar el nombre de los 

tópicos a algo que encaje con la nomenclatura empleada por los otros nodos. 
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3.3. Global launch file 

Este archivo, Turtlebot3_navigation.launch, ejecuta todos los elementos que 

componen la navegación, incluidos los archivos de las secciones 3.1 y 3.2,, el mapa y el 

software necesario (figura 3.3). 

 

Figura 3.3. Líneas de código del archivo Turtlebot3_navigation.launch para el 

robot Turtlebot. Autoría: (Robotis, 2019b). 

Este documento está estructurado en varias partes para una comprensión clara del 

mismo. Primero se especifican los argumentos de entrada. En este caso, los más 

importantes son el modelo de robot Turtlebot y la localización del mapa a abrir. 

Posteriormente se procede a la ejecución del robot. El archivo 

Turtlebot3_remote.launch ejecuta únicamente el robot de forma virtual. No 

ejecuta ningún otro software de visualización o de control, como podrían ser procesos 

de navegación o software como Gazebo o rviz. 

El nodo map_server es específico para cargar un mapa y trabajar sobre él en entornos 

virtuales, en este caso, colocar el robot en dicho escenario. 

Ahora, desde dentro de este archivo, se llama a los otros dos ficheros previamente 

descritos amcl.launch y move_base.launch, que se ejecutarán con sus valores por 

defecto. 
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Finalmente, para poder ver el desarrollo de la simulación realizada con el software, es 

necesario ejecutar alguna forma de visualización. Para ello ejecutamos el archivo 

Turtlebot3_navigation.rviz. 

Estos archivos que hemos descrito son los encargados de las ejecuciones realizadas en 

el apartado 2.6. En la siguiente sección se aplican estos conceptos a la navegación de 

nuestro robot móvil manipulador. 
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4. Robot Campero 

En este Trabajo Fin de Grado se requería trabajar sobre el modelo de robot Campero. 

Este robot está siendo diseñado por la empresa Robotnik5.  

Campero es un robot de cuatro ruedas que tiene un brazo robótico de seis ejes. El 

brazo robótico está situado en la superficie del robot, y se puede programar para dos o 

tres dedos, dependiendo de la aplicación que se desee ejecutar (figura 4.1). 

 

Figura 4.1. Primer plano de Campero en el entorno de simulación Gazebo. 

El robot cuenta con dos escáneres láser, uno frontal y uno trasero. Cada uno es capaz 

de observar 270º, y están colocados en esquinas opuestas del vehículo. El robot también 

incluye una cámara óptica frontal. También se dispone de dos tipos de ruedas, 

omnidireccionales y direccionales.  

Para este robot no está disponible una hoja de especificaciones como en el caso de 

Turtlebot. Sin embargo, el software incluye algunas medidas del robot, que dan cuenta 

de su magnitud. Así, el robot emplea ruedas de aproximadamente 40 cm de diámetro, 

que contrastan claramente con las ruedas de 6,6 cm de diámetro presentes en Turtlebot 

Waffle Pi. Se trata de un robot mucho más grande que el Turtlebot Waffle Pi, que parece 

estar diseñado para utilidades en las que se precisa fuerza y capacidad de transporte. 

 
5 Robotnik: Empresa de robótica española. C/ Ciudad de Barcelona, 3-A, Valencia (España) 
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4.1. Versión del software 

Al estar el proyecto Campero en desarrollo durante la realización de este TFG, se han 

ido actualizando los archivos proporcionados por la empresa. Todas las versiones 

recibidas están firmadas como la versión 0.0.0, lo que determina que todavía es un 

proyecto relativamente nuevo. 

La versión original de Campero fue proporcionada el 10 de abril de 2019. Ésta incluía 

una primera versión del robot que simulaba su manejo en dos entornos. En esta versión 

no había ninguna mención sobre la navegación del robot, por lo que se desarrollaron 

archivos de código específicos para este uso. 

Posteriormente se recibió una actualización el 22 de mayo de 2019 que incluye, entre 

otras modificaciones, un paquete de navegación no operativo en el interior del software 

del robot. A pesar de no estar operativo incluye archivos de configuración sobre el 

robot Campero necesarios para la navegación. Después de probar los cambios incluidos 

en el robot, se instalaron los archivos generados hasta el momento en el TFG en el 

nuevo destino especificado por el fabricante. 

Finalmente se recibió una última versión el 5 de agosto de 2019 que contenía gran 

cantidad de paquetes, pero no aportaba ninguna mejora significativa sobre el paquete de 

navegación. Tras probar esta versión se decidió continuar con la versión anterior. 

4.2. Archivos proporcionados 

Tal como se ha descrito. el sistema operativo ROS está basado en un funcionamiento 

por carpetas. Se comienza por establecer un espacio de trabajo (work space) en el que 

se generan las carpetas necesarias de nuestro robot. En los siguientes párrafos se 

describe el esquema de las carpetas de Campero, principalmente el primer nivel y 

cuando sea relevante el segundo. 

campero_ws: Esta es la carpeta madre de definición de Campero, que contiene a todas 

las demás: 

• Build: Carpeta obtenida al compilar el work space en nuestro espacio de trabajo. 

• Devel: Carpeta obtenida al compilar el work space en nuestro espacio de trabajo. 

• src/campero: Carpeta source y subcarpeta campero, que tiene los siguientes 

componentes:  
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o Campero_common: Contiene los paquetes desarrollados o en desarrollo 

disponibles para ejecutar por el robot. 

▪ Campero_control: Paquete encargado del movimiento y control 

del robot Campero. Una vez proporcionados los parámetros 

principales del robot (tipo de ruedas, tipo de brazo…), se encarga del 

control de los ejes del robot y de establecer el control de la base del 

robot. 

▪ Campero_description: Proporciona las distintas configuraciones 

que puede tener el robot (Ruedas omnidireccionales o direccionales 

y brazo con tres dedos o dos… cuatro posibles combinaciones en 

total). También contiene las descripciones de las estructuras dentro 

del robot, como las ruedas o los sensores. 

▪ Campero_localization: Paquete fundamental de localización del 

robot. Contiene el fichero AMCL y mapas de prueba sobre los que 

ejecutar el robot.  

o Campero_robot: Archivos de configuración del robot. Fundamentalmente 

para el inicio y el control.  

o Campero_sim: Ficheros para la simulación del robot y sus escenarios. 

▪ Campero_gazebo: Archivos principales de ejecución. Contiene la 

ejecución del software Gazebo (solo, junto con el robot campero, o 

junto a rviz). También incluye los escenarios sobre los que ejecutar 

Gazebo. 

▪ Campero_sim_bringup: Contiene el archivo de ejecución principal. 

Está diseñado para ejecutar el robot campero en un escenario 

exterior junto con Gazebo y rviz para conseguir una primera toma de 

contacto con el robot y manejarlo libremente por la escena. 

o Openrave_catkin: Paquete de instalación necesario para el funcionamiento 

del robot. Para poder ejecutarlo correctamente es necesario instalarlo desde 

la terminal de Linux, al instalarse con ROS. OpenRAVE es un software de 

simulación de robots para desarrollo, simulación y aplicación de algoritmos 

de motion planning6 

 
6 Motion planning: Se emplea para encontrar una secuencia de movimientos válidos que muevan el robot 

desde su posición de origen hasta su destino evitando obstáculos. (Wikipedia Contributors, 2019c) 
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o Robotnik_msgs: Paquete de mensajes para los robots de la empresa 

Robotnik. 

o Robotnik_sensors: Paquete de los sensores de robots de la empresa 

Robotnik. 

4.3. Instalación y ejecución 

A continuación, se explica la instalación del robot Campero a partir de los ficheros 

pertinentes. 

El primer paso consiste en colocar el espacio de trabajo campero_ws junto al espacio 

catkin_ws instalado por defecto con Turtlebot. Una vez colocado debemos eliminar 

los archivos devel y build para poder compilarlo en el ordenador de trabajo. Sobre 

la terminal de Linux se ejecutan los siguientes comandos: 

cd campero_ws/ 

catkin_make  

Esto compilará el espacio de trabajo para poder operar en él. Es posible que en este 

punto aparezcan mensajes de error o de advertencia diciendo que falta algún paquete 

necesario de ROS. Algunos estos paquetes son: 

ros-kinetic-mavros 

ros-kinetic-localization 

ros-kinetic-costmap-prohibition-layer 

ros-kinetic-teb-local-planner 

ros-kinetic-twist-mux 

ros-kinetic-teleop-tools 

ros-kinetic-openrave 

ros-kinetic-universal-robot 

Para poder instalar los paquetes es necesario ejecutar comandos de este tipo: 

 sudo apt-get install [nombre del paquete] 
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Al tratarse de un comando “sudo”, el sistema pedirá la contraseña de administrador. 

Una vez instalados todos los paquetes necesarios y compilado el espacio debemos añadir 

un plugin de teleoperación: 

 cd campero_ws/src 

 git clone https://github.com/RobotnikAutomation/teleop_panel.git  

 cd.. 

 catkin_make 

Una vez añadido este plugin y compilado todo el espacio adecuadamente procedemos a 

declaralo entorno de trabajo: 

 rosws init campero_ws 

 source devel/setup.bash 

Ahora debería estar correctamente instalado el robot Campero. Para comprobar su 

correcto funcionamiento probamos a ejecutar un entorno de prueba proporcionado por 

Robotnik para el manejo de Campero: 

 roslaunch campero_sim_bringup campero_complete.launch 

Una vez ejecutado correctamente y estando además Gazebo y rviz en ejecución, se 

puede probar a manejar el robot desde la pantalla de rviz. 

Con estos pasos el robot debería proporcionar un correcto funcionamiento y 

deberíamos observar las siguientes pantallas de Gazebo (Figura 4.2) y rviz (Figura 4.3). 
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Figura 4.2. Simulación del robot Campero en el entorno Gazebo, en el escenario por 

defecto exterior. 

 

Figura 4.3. Simulación del robot Campero en el entorno rviz, en el escenario por 

defecto exterior. 
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5. Navegación sobre el robot Campero 

Una vez descrito el funcionamiento del paquete de navegación del robot Turtlebot y 

documentados los archivos de especificaciones del robot Campero, se describen los 

aspectos principales de la navegación de Campero. 

5.1. Preparación Inicial 

Para comenzar, es preciso especificar dónde se quiere aplicar el paquete de navegación. 

En ROS se puede aportar capacidades de navegación a un robot de distintas formas. Las 

dos formas que se plantearon en este trabajo fueron: 1) la creación de un nuevo espacio 

de trabajo que se encargue de la comunicación y que aloje los ficheros de navegación, y 

2) el desarrollo de un nuevo paquete, dentro de los ficheros del robot Campero, que se 

encargue de la navegación. 

5.1.1. Modelo inicial 

La opción de crear un nuevo espacio de trabajo y comunicar el nuevo espacio de trabajo 

con el espacio de trabajo catkin_ws, se vio afectada por problemas. Esta opción 

únicamente se puede aplicar si el robot está configurado de una forma específica, 

compatible con el entorno catkin_ws. Para conseguir esto sería necesario 

reestructurar los archivos del robot y renombrar nodos y tópicos para que se adaptaran 

a lo preestablecido por ejemplo en el paquete de navegación del robot Turtlebot. 

Este problema hizo que se desestimara la primera opción y se optó por el desarrollo de 

un paquete de navegación propio para el robot Campero. Para ello se empieza creando 

un paquete dentro del espacio de trabajo campero_ws: 

cd campero_ws/src/campero 

catkin_create_pkg campero_navigation std_msgs rospy roscpp 

Con esto creamos el paquete en la localización deseada, pero todavía falta compilarlo: 

 cd  

 cd campero_ws 

 catkin_make 

Este proceso debería de haber creado el paquete correctamente con los archivos 

packahe.xml y cmakelists.txt. 
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5.1.2. Versión con navegación 

Conforme avanzaba con el proyecto e iban llegando nuevas versiones del robot 

Campero, llegó una versión que dejaba claro que se estaba trabajando en el desarrollo 

de la navegación del robot.  

Se observa que se había creado un paquete con el mismo nombre en el sistema, pero 

en un nivel inferior, en la subcarpeta campero_common. A pesar de estar creado, el 

paquete estaba casi vacío: sólo contenía archivos básicos del paquete. Entre ellos estaban 

los archivos de configuración del robot necesarios para poder aplicar la navegación, 

archivos que es necesario incluir como argumentos para lanzar el nodo de navegación 

del robot. Se tomó la decisión de adaptarse a la nueva localización del paquete y se 

movieron los archivos de navegación previamente desarrollados a esta localización, 

usando los datos de configuración recibidos en esta versión del software de campero. 

5.2. Archivos finales 

En esta sección se explican los nuevos ficheros de Campero con detalle. Los ficheros 

necesarios para este sistema de navegación son:  

• AMCL, encargado de la localización del robot en cada momento. 

• move_base, encargado principal de la navegación. 

• one_robot, encargado de ejecutar el robot sin ningún software extra (una función 

similar a la del fichero Turtlebot3_remote.launch). 

• Un fichero de ejecución global. 

5.2.1. AMCL 

Para poder aplicar el código AMCL sobre nuestro robot es preciso identificar un 

conjunto de valores correctos para los parámetros necesarios. Los parámetros más 

importantes para el correcto funcionamiento de este algoritmo son los nombres de los 

tópicos sobre los que publica nuestro robot. Es necesario localizar los tópicos 

responsables para poder incluirlos en el código: 

 Scanner: front_laser/scan 

 Mapa/global frame: campero_map 

 Odometría: campero_odom 

 Base frame: campero_base_footprint 
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También es necesario saber qué tipo de rueda emplear para poder aplicarlo como 

parámetro en la categoría “odom_model_type”. 

El código completo empleado, que incluye comentarios sobre cada parámetro, se 

presenta en el Anexo 10.2. 

5.2.2. Move_base 

Como ya se ha comentado, este archivo es el principal encargado de la navegación de 

nuestro robot. En estos archivos se empieza por asignar valores a los parámetros 

necesarios para la ejecución, entre ellos los nombres de los tópicos. Los tópicos más 

importantes a destacar son el de velocidad de navegación y el que hace referencia a la 

odometría de navegación, ambos diferentes a la odometría y velocidad normales. Estos 

tópicos de navegación se usan exclusivamente para enviar las velocidades calculadas en 

navegación, mientras que los empleados por defecto son de uso exclusivo para un 

movimiento manual del robot. 

Una vez pasamos los parámetros comienza la ejecución del nodo move_base. Entre los 

parámetros necesarios para su ejecución están los parámetros de los costmaps7 

necesarios. Cómo nuestro robot dispone de dos tipos de ruedas, ha sido necesario 

colocar una cláusula condicional que permita diferenciar sobre cual estamos trabajando. 

Ahora encontramos uno de los problemas que enfrentaremos más adelante. El nodo 

move_base requiere un tópico cómo el escáner que vamos a emplear, pero nuestro 

robot no dispone de un único escáner, sino que dispone de dos para cubrir los 360º. 

Por esta razón hemos tenido que elegir cual de ambos le proporcionamos al sistema, 

que en este caso fue el frontal.  

El código completo empleado está en el Anexo 10.3. 

5.2.3. One_robot 

El código de este archivo se basa en la ejecución de una instancia del robot sin ningún 

otro add on para, posteriormente, ejecutar el software de navegación. 

Se empieza estableciendo los argumentos de entrada requeridos en la ejecución. En 

primer lugar, se requiere el nombre del robot, ya que podría darse la situación de que 

 
7 Costmap: Mapa de características que indica la posición de obstáculos en el mundo. Aplicado 

principalmente en navegación se actualiza conforme recibe información de los sensores. (Open Source 

Robotics Foundation, 2019b). 
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se quisieran representar varios robots en un entorno para simular tareas cooperativas 

o entornos multi-robot. A continuación, se especifica la posición inicial del robot. Esta 

información no tiene mucha relevancia ya que se puede modificar posteriormente en el 

software de visualización y el propio algoritmo puede obtenerla de forma detallada. El 

archivo xacro permite identificar la configuración en la que se encuentra el robot (tipo 

de ruedas y de brazo). Este es un archivo XML en un formato que lo hace más corto y 

legible. Lo mismo sucede con el mapa que queremos representar en rviz, en el caso de 

que no lo haya creado el software del robot en sí (SLAM). El robot también necesita 

otros parámetros dependientes del tipo de ruedas o del tipo de localización empleado 

(odometría o AMCL). 

El siguiente paso es ejecutar el nodo que conlleva la simulación del robot en Gazebo, 

siguiendo el esquema tanto del robot Turtlebot como de los ficheros propios del robot 

Campero. También es necesario ejecutar el nodo que permita el control del mismo y 

que simule las uniones de sus partes, lo que se especifica en la carpeta 

campero_control. 

Habiendo cubierto estos apartados, la ejecución de este archivo debería crear un robot 

en el entorno de Gazebo para permitir aplicarle el algoritmo deseado, en nuestro caso 

la navegación del robot. 

El código completo empleado está en el Anexo 10.4. 

5.2.4. Global 

Finalmente, fue preciso desarrollar un archivo de ejecución global, que deberá ejecutarse 

para poner en marcha todo el programa. Esto implica ejecutar los archivos anteriores, 

ejecutar el nodo de mapeado y el software empleado, rviz y Gazebo. Empezamos, como 

en todos los casos, con los argumentos de entrada para la ejecución del archivo. 

Entre estos argumentos, al igual que en el modelo del Turtlebot, están presentes el 

nombre del robot, la posición inicial, el xacro y el mapa, y el tipo de movimiento y 

brazo.  

El argumento del prefijo también debe especificarse en este archivo. Viendo otros 

archivos del robot Campero, se pudo observar que el nombre de los tópicos varía en 

función del nombre del robot, lo que está preparado para evitar superposiciones en la 

emisión de información por tópicos. El nombre del robot se posiciona al principio de 
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todos los tópicos en los que publican los nodos pertinentes al mismo. Por esta razón se 

incluye un argumento con ID del robot que pasa a ser el prefijo usado para localizar los 

tópicos y acceder a ellos. 

Posteriormente, necesitamos ejecutar el algoritmo descrito anteriormente para 

posicionar un robot en nuestro entorno de simulación. Para pasarle los parámetros 

necesarios basta con referirse a los que le hemos puesto a la entrada, los cuales deberían 

ser suficientes para ejecutar correctamente el archivo. 

Como dato importante se puede apreciar que, antes de ejecutar el robot, se coloca un 

indicador que se encarga de abrir un grupo. Esto dictamina que todos los elementos en 

su interior están bajo el mismo nombre. Este paso es fundamental para el 

funcionamiento, ya que de otra manera sería imposible localizar los tópicos fácilmente y 

no se podrían ejecutar entornos multi-robot en un futuro. 

El archivo map_server se encarga de cargar el mapa sobre el que observar la 

simulación. En su interior contiene el nodo del mismo nombre que empieza el proceso. 

La última parte de este código cierra el grupo, ya que se han ejecutado todos los archivos 

necesarios en su interior. 

A continuación, de forma opcional se ejecuta un fichero que simula la acción de la 

gravedad. Sólo tiene utilidad en el caso de un posible choque, para que el robot en la 

simulación vuelva a la posición de reposo. Si este PID8 no estuviera implementado, en el 

momento en el que el robot se chocara podría quedar levitando y sería preciso reiniciar 

la simulación. 

Como parte final de este código se ejecutan Gazebo y rviz para poder observar la 

simulación en un visualizador. 

El código completo empleado está en el Anexo 10.5. 

  

 
8 Control Proporcional, Integral y Derivativo 
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6. Experimentación con el robot Campero 

En esta sección se explica el funcionamiento del código presentado en la sección 5 y se 

aplica a casos de estudio. 

6.1. Reconocimiento del entorno 

Previo a la ejecución de la navegación es necesario realizar un mapa del entorno en el 

caso de que no dispongamos de uno de antemano. Para esto es necesario emplear la 

funcionalidad de Gmapping y SLAM introducida en el archivo global de ejecución. 

Ejecutamos el siguiente código en una terminal: 

Roslauch campero_common campero_navigation 

campero_nav.launch gmapping:=true 

Con esto deberíamos de ejecutar la navegación del robot junto a un mapeado del 

entorno. En rviz debería mostrarse el robot empezando a mapear el entorno, tal como 

se aprecia en la figura 6.1. 

 

Figura 6.1. Robot Campero sobre un entorno sin mapear. 
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Aquí se evidencia la problemática de emplear un único escáner: el robot presenta un 

punto ciego tanto en navegación cómo en mapeado que le impide ver obstáculos en 90º 

de su visión. Ahora podemos mover el robot manualmente por el entorno o aplicar la 

navegación para conseguir un mejor resultado en el mapa. Tras enviar el robot por el 

mapa deberíamos tener una imagen similar a la figura 6.2. 

 

Figura 6.2. Robot Campero sobre un entorno mapeado. 

Una vez explorado el entorno debemos guardar el mapa producido. Sin cerrar la 

ejecución anterior abrimos otra terminal: 

rosrun map_server map_saver map:=/campero/map -f mymap  

Este comando creará dos archivos: mymap.pgm y mymap.yaml. 

El archivo mymap.pgm se presenta en el Anexo 10.6. 

Ahora es preciso colocar estos archivos en la propia ejecución de la simulación: 

Roslaunch campero_common campero_navigation 

campero_nav.launch map:= 

[Directorio en el que guardemos el mapa] 
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Tras esta ejecución se puede proceder con la navegación. 

6.2. Navegación en exterior con ruedas diferenciales 

A continuación, se muestra un caso de estudio en el entorno exterior con las ruedas 

por defecto de Campero: diferenciales. Antes de ejecutar la navegación, como el 

entorno es conocido de antemano, ejecutamos la línea siguiente haciendo referencia a 

la localización del mapa del entorno: 

Roslaunch campero_common campero_navigation  

campero_nav.launch map:= 

[Directorio en el que guardemos el mapa] 

Una vez ejecutado este comando deberíamos ver que se empiezan a ejecutar Gazebo y 

rviz para la visualización de nuestra navegación. Cabe destacar que no es necesario 

ejecutar un maestro antes (roscore) debido a que roslaunch ya se encarga de 

ejecutarlo por sí mismo. 

Al ejecutar este algoritmo deberíamos ver imágenes similares a las que se presentan en 

la figura 6.3 (Gazebo) y 6.4 (rviz). 

 

Figura 6.3. Representación en Gazebo de una simulación con el robot Campero usando 

ruedas diferenciales en el entorno exterior. 



42 

 

 

Figura 6.4. Representación de una simulación exitosa de Campero en rviz. 

De esta manera se puede apreciar en Gazebo que se ha simulado correctamente el 

robot junto con el entorno de simulación. Por otro lado, en rviz vemos el robot y los 

sensores disponibles, tanto la cámara como el sensor frontal. 

Para probar el sistema de navegación, en rviz debemos establecer un objetivo a alcanzar 

por el robot.  

De la misma forma que en el caso del Turtlebot, es posible indicar a Campero el destino 

de la navegación por medio de una terminal. Para ello es preciso realizar una serie de 

cambios para adaptar el comando usado en Turtlebot, principalmente sobre el nombre 

de los tópicos. El tópico a modificar es el del destino, pero Campero trabaja con varios 

tópicos que interactúan con el destino, principalmente: 

 /campero/move_base/goal 

 /campero/move_base_simple/goal 

Tenemos que seleccionar cuál de estos tópicos emplear para comunicarle el destino de 

navegación a nuestro robot en función de las ventajas e inconvenientes que incluyan. 

El primero consiste en una forma de interacción que prepara el destino para la 

introducción de una cadena de diferentes destinos, dándole un ID a cada uno y 

posteriormente las coordenadas. Este tópico requiere la introducción de datos en 

formato “MoveBaseActionGoal” (Open Source Robotics Foundation, 2019h). 
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El segundo es el más similar al usado en Turtlebot. Requiere el mismo formato de 

introducción de datos, “PoseStamped”, y tiene un funcionamiento similar, por lo que 

es el que emplearemos. 

Una vez elegido el tópico sobre el que publicar, necesitamos cambiar el nombre del 

tópico empleado para el mapa. Campero emplea “campero_map”. Una vez modificado 

se aplica la posición y la orientación de la misma forma que Turtlebot. 

El comando que obtenemos es: 

rostopic pub /campero/move_base_simple/goal 

geometry_msgs/PoseStamped '{header: {stamp: now, 

frame_id: "campero_map"}, pose: {position: {x: 3.0, y: 

0.0, z: 0.0}, orientation: {w: 1.0}}}' 

Para este trabajo vamos a emplear la opción de menú de rviz “2D Nav Goal”, pero tanto 

esta opción como el comando anterior dan los mismos resultados. Hacemos la selección 

que se presenta en la figura 6.5. 

 

Figura 6.5. Representación en rviz del destino de la navegación del robot Campero. 

Robot Campero en la posición inicial del recorrido. 
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Intencionadamente hemos seleccionado un camino que requiere esquivar obstáculos, 

árboles en este caso. Si el robot siguiera un camino recto colisionaría con estos. Tal 

como se aprecia en la figura 6.6, el robot localiza el obstáculo y recalcula una ruta para 

llegar al destino. 

 

 

Figura 6.6. El robot Campero durante la navegación, tras esquivar los obstáculos. 

Robot Campero en un punto intermedio del recorrido. 

Se aprecia cómo el software de navegación y de evitación de obstáculos se ha acoplado 

correctamente a Campero y ha sido capaz de esquivar el obstáculo introducido para 

llegar al destino. (figura 6.7). 
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Figura 6.7. El robot Campero ha alcanzado su destino. 

6.3. Navegación en interior con ruedas omnidireccionales 

En esta sección se muestra un caso de estudio que consiste en la navegación en otro 

entorno proporcionado por la empresa Robotnik, que incluye ruedas omnidireccionales. 

La figura 6.8 muestra en Gazebo este entorno cerrado que se corresponde con el 

interior de una construcción. El entorno tiene forma rectangular, y tiene una pared 

interior que permite al robot acceder a la parte trasera por los dos lados. Delante de la 

pared hay tres obstáculos pegados a ella a modo de mesas. Al igual que en el caso 

anterior, en las primeras simulaciones es necesario realizar un mapa del entorno, que se 

empleará más adelante para guiar la navegación. El archivo resultante, mapaInt.pgm se 

presenta en el Anexo 10.7. 
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Figura 6.8. Representación en Gazebo de una simulación con el robot Campero usando 

ruedas omnidireccionales en el entorno interior. 

La figura 6.9 muestra en rviz a campero en este mismo entorno. Se puede comprobar 

que el robot está equipado con ruedas omnidireccionales realizando una simulación 

particular: se establece como destino el mismo punto de origen y se comprueba que 

para ejecutarla el robot hace una rotación pura sin desplazarse. Tras hacer otras pruebas 

simples y comprobar que la navegación funciona adecuadamente, procedemos a ejecutar 

una simulación más compleja. Para ello, establecemos cómo objetivo un punto en la 

parte posterior de la pared interior, tal como se muestra en la figura 6.10. 

Una vez establecido el objetivo, el software de navegación se encarga de esquivar el 

obstáculo principal, la pared interior. La figura 6.11 muestra al robot en tránsito, 

rodeando la pared interior. La figura 6.12 muestra al robot detenido en el punto de 

destino y con la orientación deseada. 
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Figura 6.9. Representación en rviz del robot Campero usando ruedas 

omnidireccionales en el entorno interior. 

 

Figura 6.10. Representación en rviz del robot Campero con un objetivo de navegación 

establecido en un punto localizado tras la pared interior. 
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Figura 6.11. Representación en rviz del robot Campero navegando hacia el objetivo, 

para lo que debe rodear la pared interior. 

 

Figura 6.12. Representación en rviz del robot Campero detenido en el punto de 

destino y con la orientación deseada.  
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7. Discusión general 

7.1. Simulación con el robot Turtlebot 

Las simulaciones de la navegación de Turtlebot Waffle Pi han funcionado en general de 

forma adecuada. Todavía se aprecian algunos problemas que es necesario pulir, como 

errores de ejecución y algún error en el mapeado. Sin embargo, la tecnología de 

navegación aplicada a este robot ha sido muy eficaz. Sólo es necesario resolver algunos 

aspectos para conseguir una ejecución más fluida. Las simulaciones con Turtlebot me 

han permitido familiarizarme con los procedimientos de gmapping y SLAM, que pude 

luego aplicar al robot Campero con pequeñas adaptaciones.  

A pesar de estar muy desarrollado, Turtlebot presentó alguna complicación en relación 

con la instalación y la ejecución. Fue necesario instalar algunos paquetes necesarios para 

la ejecución de otros. Una vez instalado, seguir los pasos del tutorial no resultó suficiente 

para conseguir simulaciones exitosas. El problema resultó estar asociado a la ejecución 

del mapa. Pude resolver este problema realizando una ejecución por partes en distintas 

terminales, tal como se explica en el apartado 2.6. Tras solucionar esto, la ejecución del 

robot seguía provocando errores. Por ello, nuevamente, fue necesario ejecutar el robot 

en una nueva terminal. Resueltos estos problemas, se pudo ejecutar las simulaciones. Sin 

embargo, en ocasiones aparecían mensajes de errores y advertencias que eran 

compatibles con la continuación de la ejecución del programa.  

La navegación de Turtlebot en las condiciones experimentales se benefició de disponer 

de un solo escáner con cobertura de 360º. De esta manera, no había ángulos muertos y 

el robot pudo evitar los obstáculos correctamente. Aunque en este entorno el robot se 

haya beneficiado de este sensor único, en otros casos podría ser más práctico usar varios 

sensores.  

7.2. Simulación con el robot Campero 

La instalación de Campero no dio problemas específicos. La guía del robot y la guía 

proporcionada por los tutores de este trabajo permitieron progresar de forma rápida y 

firme.  

Las simulaciones realizadas sobre Campero han sido satisfactorias, pero han puesto de 

manifiesto que el robot está una fase inicial de su desarrollo y que todavía necesita 

mucho trabajo para llegar a una madurez similar a la de Turtlebot. Las simulaciones han 
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permitido navegar con el robot Campero en dos entornos diferentes, aunque con dos 

limitaciones relevantes.  

La primera limitación importante es que en ocasiones el planificador de trayectorias no 

consigue trazar un camino desde la localización actual hasta el objetivo. Este es el caso 

de simulaciones que necesitan esquivar obstáculos con trayectorias complejas. A la vista 

de estas situaciones en Gazebo, parece ser físicamente posible llegar, pero el software 

no es capaz de trazar el camino. En estos casos, el software de navegación se muestra 

demasiado restrictivo. Cabe pensar que haya diferencias entre la geometría real de 

Campero y los parámetros geométricos introducidos en move_base.launch. Esto 

podría explicar también algunas colisiones durante las maniobras. El hecho de que se 

usara la misma rutina de navegación en Turtlebot sin dar lugar a estos problemas me 

hace pensar que el error podría localizarse en la parametrización del robot Campero. 

La segunda limitación de las simulaciones con Campero consiste en que el software de 

navegación (move_base.launch) sólo gestiona una entrada de señal de escáner. En el 

caso de Campero, como dispone de dos escáneres, se eligió usar el escáner delantero. 

Como consecuencia, nos encontramos con un punto ciego durante la navegación de 90º 

(la parte trasera izquierda). Esto es especialmente limitante para la navegación con las 

ruedas omnidireccionales, ya que a la hora de girar o de dirigirse hasta el destino el 

robot no detecta los obstáculos por su punto ciego y puede sufrir colisiones. Con ruedas 

direccionales el problema es menos importante porque el robot siempre se dirige de 

cara hacia el destino (el punto ciego está a la espalda del robot). Con las ruedas 

direccionales, este problema puede ser importante durante los giros que realiza el robot 

al posicionarse antes de moverse o después de llegar al destino.  
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8. Conclusiones 

La realización de este TFG ha permitido que el alumno se familiarizara con la herramienta 

ROS, habiendo realizado una instalación exitosa de Ubuntu, ROS, Turtlebot 3 y 

Campero, habiendo manejado los archivos que implementan SLAM y la navegación 

autónoma de ambos robots, y habiendo completado simulaciones en distintos robots, 

configuraciones, entornos y modos.  

Además, de este TFG se derivan las siguientes conclusiones: 

1. El Software de Turtlebot para ROS está ya muy desarrollado y da lugar a simulaciones 

de navegación exitosas en situaciones que requieren trayectorias complejas que 

cambian durante la propia simulación. Sin embargo, se han encontrado problemas 

durante la ejecución, que han necesitado la apertura simultánea de varias terminales 

de Ubuntu. 

2. El software de Campero para ROS está en una fase de progreso rápido por parte de 

la empresa Robotnik, a pesar de que los archivos de código fuente todavía están en 

una versión inicial. Entre abril y agosto de 2019 se han recibido tres versiones con 

mejoras importantes en cuanto a la parametrización de la navegación y desarrollo 

del brazo robótico. Sin embargo, el software de Campero no contiene en este 

momento rutinas específicas para la navegación. 

3. Las rutinas de navegación de ROS usadas en Turtlebot se han aplicado con éxito a 

Campero, usando los parámetros del robot recibidos en la versión de 22 de mayo 

de 2019. Con esta configuración, Campero ha realizado navegaciones en dos 

entornos y dos tipos de ruedas, alcanzando los puntos propuestos. 

4. Las simulaciones realizadas con campero han puesto de manifiesto dos limitaciones 

del estado actual del software y su parametrización: 1) en algunos casos en que es 

necesario esquivar obstáculos, el robot no es capaz de trazar un camino que 

visualmente parece posible o bien colisiona en las maniobras; y 2) el software de 

navegación sólo acepta la entrada de uno de los dos sensores de Campero, lo que 

genera un punto ciego al elegir uno de los dos. 
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9. Recomendaciones para trabajos futuros con el 

robot Campero 

En relación con las posibles mejoras a implementar en trabajos futuros con Campero, 

será preciso abordar la mejora de la navegación. Los parámetros geométricos usados en 

la versión con la que está realizado el trabajo parecen no ser completamente adecuados. 

El primer paso para resolver este problema sería revisar con detalle la parametrización 

de la geometría del robot.  

Otras posibles mejoras llevarían a incluir otros paquetes que puedan ser de interés para 

el usuario o para mejorar las capacidades del robot. Este sería el caso de otras formas 

de localización, de otras rutinas de navegación o de entornos multirobot. Quizás la 

mejora más clara podría ser el desarrollo de un software específico para el manejo del 

brazo robótico localizado en la superficie del robot Campero, que actualmente no está 

operativo. ROS tiene una gran variedad de utilidades para el control de robots 

manipuladores, que podrían adaptarse a Campero. 

Como ya se ha comentado, a lo largo del trabajo se han ido recibiendo nuevas versiones 

con actualizaciones del software de Campero. Cabe esperar que este intenso desarrollo 

continuará en un futuro, por lo que dejarán de ser necesarias algunas de las 

recomendaciones actuales y aparecerán otras que darán pie a nuevos trabajos. Las 

nuevas versiones del software apuntan a mejoras inminentes en los campos de 

navegación y de manejo del brazo robótico. Por ello, convendría trabajar en la 

introducción de nuevos paquetes o del desarrollo de entornos multirobot. Entre las 

funciones que pueden ser interesantes para el usuario, se incluyen la conducción 

autónoma (incluyendo, por ejemplo, paquetes similares al “Autonomous Driving” de 

Turtlebot) o paquetes para la manipulación de objetos en un entorno multirobot y 

colaborativo.  

Para finalizar, Campero es todavía un proyecto joven que requiere de mucho trabajo y 

dedicación. Existen gran cantidad de mejoras y de correcciones a realizar. 
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10. Anexos 

10.1. Archivo de especificaciones del robot Waffle Pi por la empresa Robotis 
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10.2. Archivo de código amcl.launch para el robot Campero 

 

Autoría: Código creado por Jorge Playán a partir del fichero de AMCL de Turtlebot. Valores empleados 

para los parámetros por la empresa Robotnik. 

 

<?xml version="1.0"?> 
<launch> 
 
<!-- Arguments --> 
 
    <arg name="prefix" default="campero_"/> 
 
    <!-- Busca los topics --> 
    <arg name="scan_topic"       default="front_laser/scan"/> 
    <arg name="map_topic"        default="$(arg prefix)map"/> 
    <arg name="global_frame"     default="$(arg prefix)map"/> 
    <arg name="odom_frame"       default="$(arg prefix)odom"/> 
    <arg name="base_frame"       default="$(arg prefix)base_footprint"/> 
 
    <arg name="odom_model_type"  default="diff"/> 
 
    <!-- Posiciones iniciales --> 
    <arg name="x_init_pose"    default="0.0"/> 
    <arg name="y_init_pose"    default="0.0"/> 
    <arg name="z_init_pose"    default="0.0"/> 
    <arg name="a_init_pose"    default="0.0"/> 
 
<!-- AMCL --> 
 
    <!-- Ejecutamos el nodo "amcl" con los siguientes parámetros --> 
    <node pkg="amcl" type="amcl" name="amcl" output="screen"> 
 
        <!--cambiar el nombre en función del de tu sensor--> 
        <remap from="scan" to="$(arg scan_topic)"/> 
        <remap from="map" to="$(arg map_topic)"/> 
 
        <param name="use_map_topic" value="false"/> 
 
        <!-- Rango de partículas, ajustar el max  
             en función de la potencia del pc --> 
        <param name="min_particles"             value="500"/> 
        <param name="max_particles"             value="3000"/> 
 
        <!-- Max error entre la distribución estimada y la real --> 
        <param name="kld_err" value="0.02"/> 
        <param name="kld_z"                     value="0.99"/> 
 
        <!-- Valores para un filtro? --> 
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        <param name="update_min_d"              value="0.20"/> 
        <param name="update_min_a"              value="0.20"/> 
 
        <!-- Intervalo de re-sampling --> 
        <param name="resample_interval"         value="1"/> 
 
        <!-- Tiempo de conversión permitido, s  --> 
        <param name="transform_tolerance"       value="0.2"/> 
 
        <!-- Index drop rate, si es 0.0 es que está desactivado --> 
        <param name="recovery_alpha_slow"       value="0.00"/> 
        <param name="recovery_alpha_fast"       value="0.00"/> 
 
        <!-- Posición inicial --> 
 
        <param name="initial_pose_x"            value="$(arg x_init_pose)"/> 
        <param name="initial_pose_y"            value="$(arg y_init_pose)"/> 
        <param name="initial_pose_z"            value="$(arg z_init_pose)"/> 
        <param name="initial_pose_a"            value="$(arg a_init_pose)"/> 
 
        <!-- Periodo máximo de mostrar la info del scan y el path, en Hz --> 
        <param name="gui_publish_rate"          value="50.0"/> 
 
 
    <!-- Parámetros del sensor de distancia --> 
 
        <!-- Valores max de distancia y de rayos usados -->   
        <param name="laser_max_range"           value="3.5"/> 
        <param name="laser_max_beams"           value="180"/> 
 
        <!-- ___ mixed weight of sensor model? --> 
        <param name="laser_z_hit"               value="0.5"/> 
        <param name="laser_z_short"             value="0.05"/> 
        <param name="laser_z_max"               value="0.05"/> 
        <param name="laser_z_rand"              value="0.5"/> 
 
        <!-- Desviación estandar --> 
        <param name="laser_sigma_hit"           value="0.2"/> 
 
        <!-- Drop rate para z_short --> 
        <param name="laser_lambda_short"        value="0.1"/> 
        <param name="laser_likelihood_max_dist" value="2.0"/> 
 
        <!-- Tipo de sensor ("likelihood_field" o "beam") --> 
        <param name="laser_model_type"          value="likelihood_field"/> 
 
    <!-- Parámetros de odometría --> 
 
        <!-- Forma de conducción, "diff" o "omni" --> 
        <param name="odom_model_type"           value="$(arg odom_model_type)"/> 
 
        <!-- Valores estimados de notion noise --> 
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        <param name="odom_alpha1"               value="0.1"/> 
        <param name="odom_alpha2"               value="0.1"/> 
        <param name="odom_alpha3"               value="0.1"/> 
        <param name="odom_alpha4"               value="0.1"/> 
        <param name="odom_alpha5"               value="0.1"/> 
 
        <!-- Odometry frame --> 
        <param name="odom_frame_id"             value="$(arg odom_frame)"/> 
 
        <!-- Robot base frame --> 
        <param name="base_frame_id"             value="$(arg base_frame)"/> 
        <param name="global_frame_id"           value="$(arg global_frame)"/> 
 
    </node> 
</launch> 
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10.3. Archivo de código move_base.launch para el robot Campero 

 

Autoría: Código basado en move_base.launch de Turtlebot. Contiene llamadas a ficheros de parámetros 

creados por la empresa Robotnik. 

 

<?xml version="1.0"?> 
<launch> 
 
<!-- Arguments --> 
 
    <arg name="prefix" default="campero_"/> 
        <!-- Busca los topics --> 
    <arg name="cmd_vel_topic" default="move_base/cmd_vel"/>  
        <!-- Distinto del tópico de velocidad normal --> 
    <arg name="odom_topic" default="robotnik_base_control/odom"/> 
    <arg name="global_frame" default="$(arg prefix)map"/> 
    <arg name="odom_frame" default="$(arg prefix)odom"/> 
    <arg name="base_frame" default="$(arg prefix)base_footprint"/> 
    <arg name="scan_topic" default="front_laser/scan"/> 
    <arg name="omni" default="true"/> 
 
<!-- Ejecutar move_base --> 
    <!-- Ejecutamos el nodo --> 
    <node pkg="move_base" type="move_base" respawn="false"  
          name="move_base" output="screen"> 
 
        <!-- Parámetros que le pasamos al nodo  --> 
        <rosparam file= 
         "$(find campero_navigation)/config/move_base_params.yaml"  
         command="load" /> 
 
        <!-- Parámetros de constmaps local y global --> 
        <rosparam file= 
         "$(find campero_navigation)/config/costmap_common_params.yaml" 
         command="load" ns="global_costmap" /> 
        <rosparam file= 
         "$(find campero_navigation)/config/costmap_common_params.yaml" 
         command="load" ns="local_costmap" /> 
        <rosparam file= 
         "$(find campero_navigation)/config/local_costmap_params.yaml"  
         command="load" /> 
        <rosparam file= 
         "$(find campero_navigation)/config/global_costmap_params_map.yaml"  
         command="load" /> 
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        <!-- If para el tipo de ruedas --> 
        <rosparam if="$(arg omni)"  
         file= 
         "$(find campero_navigation)/config/teb_local_planner_omni_params.yaml"  
         command="load" /> 
        <rosparam unless="$(arg omni)"  
         file= 
         "$(find campero_navigation)/config/teb_local_planner_diff_params.yaml"  
         command="load" /> 
 
        <!-- Parámetros relativos al sensor láser --> 
        <param name= 
         "global_costmap/obstacle_layer/scan/sensor_frame"  
         value="$(arg prefix)front_laser_link"/> 
        <param name= 
         "local_costmap/obstacle_layer/scan/sensor_frame"  
         value="$(arg prefix)front_laser_link"/> 
        <param name= 
         "global_costmap/obstacle_layer/scan/topic"  
         value="$(arg scan_topic)"/> 
        <param name= 
         "local_costmap/obstacle_layer/scan/topic"  
         value="$(arg scan_topic)"/> 
 
        <!-- Parámetros de los marcos --> 
        <param name= 
        "local_costmap/global_frame"  
        value="$(arg odom_frame)"/> 
        <param name= 
        "local_costmap/robot_base_frame"  
        value="$(arg base_frame)"/> 
        <param name= 
        "global_costmap/global_frame"  
        value="$(arg global_frame)"/> 
        <param name= 
        "global_costmap/robot_base_frame"  
        value="$(arg base_frame)"/> 
        <param name= 
        "DWAPlannerROS/global_frame_id"  
        value="$(arg odom_frame)"/> 
        <param name= 
        "TebLocalPlannerROS/map_frame"  
        value="$(arg global_frame)"/> 
 
        <!-- Específicos de navegación --> 
        <param name= 
        "base_local_planner"  
        value="teb_local_planner/TebLocalPlannerROS" /> 
        <param name= 
        "controller_frequency"  
        value="5.0" /> 
        <param name= 
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        "controller_patience"  
        value="15.0" /> 
 
        <!-- Renombrar --> 
        <remap from="cmd_vel" to="$(arg cmd_vel_topic)" /> 
        <remap from="odom" to="$(arg odom_topic)" /> 
    </node> 
 
</launch> 
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10.4. Archivo de código campero_one_robot_nav.launch para el robot Campero 

 

Autoría: Jorge Playán. Basado en la ejecución de navegación del Turtlebot. Creación del robot basada en 

“campero_one_robot.launch” por la empresa Robotnik. 

 

<?xml version="1.0"?> 
<launch> 
 
<!-- Argumentos de entrada --> 
    <!-- Nombre del robot --> 
    <arg name="id_robot" default="campero"/> 
 
    <!-- Posición inicial --> 
    <arg name="x_init_pose" default="0"/> 
    <arg name="y_init_pose" default="0"/> 
    <arg name="z_init_pose" default="0"/> 
 
    <!-- Xacro utilizada --> 
    <arg name="xacro_robot" default="campero_rubber.urdf.xacro"/> 
 
    <!-- Mapa de rviz --> 
    <arg name="map_file" default="empty/empty.yaml"/> 
 
    <!-- Tipo de movimiento --> 
    <arg name="robot_localization_mode" default="odom"/> 
    <arg name="ros_planar_move_plugin" default="false"/> 
 
    <!-- Tipo de brazo --> 
    <arg name="3_finger_gripper" default="false"/> 
 
    <!-- Empieza el robot--> 
 
        <!-- Prefijo --> 
        <arg name="prefix" value="$(arg id_robot)_"/> 
 
        <!-- Load the URDF into the ROS Parameter Server --> 
        <param name="robot_description" 
        command="$(find xacro)/xacro  
            '$(find campero_description)/robots/$(arg xacro_robot)'  
            prefix:=$(arg prefix)  
            ros_planar_move_plugin:= $(arg ros_planar_move_plugin)  
            --inorder"/> 
 
        <!-- Nodo que publica datos del robot --> 
        <node name="robot_state_publisher"  
            pkg="robot_state_publisher"  
            type="robot_state_publisher"  
            respawn="false"  
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            output="screen"> 
        <remap from="/joint_states" to="joint_states" />  
            <!-- Cambio de nombre --> 
        </node> 
 
        <!-- Spawn del robot en Gazebo --> 
        <node name="urdf_spawner_campero_model"  
           pkg="gazebo_ros"  
           type="spawn_model"  
           respawn="false" output="screen" 
           args="-x $(arg x_init_pose)  
                 -y $(arg y_init_pose)  
                 -z $(arg z_init_pose) 
                 -J campero_ur10_elbow_joint -2 
                 -J campero_ur10_shoulder_lift_joint -0.785 
                 -J campero_ur10_shoulder_pan_joint -0.785 
                 -J campero_front_ptz_camera_tilt_joint -2 
                 -J campero_front_ptz_camera_pan_joint 3.14 
                 -urdf  
                 -param robot_description  
                 -model $(arg id_robot) 
                 -unpause 
                 " /> 
 
        <!-- Empieza nodos de control del robot campero --> 
        <include file="$(find campero_control)/launch/campero_control.launch"> 
            <arg name="prefix" value="$(arg prefix)"/> 
            <arg name="sim" value="true"/> 
            <arg if="$(arg ros_planar_move_plugin)"  
             name="kinematics" value="steel_omni"/> 
            <arg name="ros_planar_move_plugin"  
             value="$(arg ros_planar_move_plugin)"/> 
            <arg name="launch_robot_localization" value="false"/> 
            <arg name="3_finger_gripper" value="$(arg 3_finger_gripper)"/> 
        </include> 
 
</launch> 
 

  



63 

 

10.5. Archivo de código campero_nav.launch para el robot Campero 

 

Autoría: Jorge Playán. Basado en archivos de ejecución global de Turtlebot y de la empresa Robotnik para 

Campero. 

 

<?xml version="1.0"?> 
<launch> 
 
<!-- Argumentos de entrada --> 
    <!-- Nombre del robot --> 
    <arg name="id_robot" default="campero"/> 
     
    <!-- Posición inicial --> 
    <arg name="x_init_pose" default="0"/> 
    <arg name="y_init_pose" default="0"/> 
    <arg name="z_init_pose" default="0"/> 
 
    <!-- Ejecución de Gmapping, idealmente deberíamos ejecutarlo al principio 
         y manejar manualmente el robot por el entorno para realizar un mapa y, 
         posteriormente, añadirlo --> 
    <arg name="gmapping"        default="false"/> 
 
    <!-- Xacro utilizada --> 
    <arg name="xacro_robot" default="campero_mecanum.urdf.xacro"/> 
 
    <!-- Mapa de rviz --> 
    <arg name="map_file" default="empty/map_empty.yaml"/> 
 
    <!-- Tipo de movimiento y localización --> 
    <arg name="robot_localization_mode" default="odom"/> 
    <arg name="ros_planar_move_plugin" default="true"/> 
 
    <!-- Tipo de brazo --> 
    <arg name="3_finger_gripper" default="false"/> 
 
    <!-- Prefijo para encontrar topics --> 
    <arg name="prefix" value="$(arg id_robot)_"/> 
 
<!-- Ejecutar el robot campero --> 
    <!-- Colocamos todos los nodos en el grupo del Robot --> 
    <group ns="$(arg id_robot)"> 
 
        <!-- El Robot --> 
        <include file= 
         "$(find campero_gazebo)/launch/campero_one_robot_nav.launch"> 
 
            <!-- Argumentos --> 
                <!-- Nombre --> 
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                <arg name="id_robot" value="$(arg id_robot)"/> 
 
                <!-- PosiciÃ³n inicial --> 
                <arg name="x_init_pose" value="$(arg x_init_pose)"/> 
                <arg name="y_init_pose" value="$(arg y_init_pose)"/> 
                <arg name="z_init_pose" value="$(arg z_init_pose)"/> 
 
                <!-- Xacro --> 
                <arg name="xacro_robot" value="$(arg xacro_robot)"/> 
                 
                <!-- Mapa --> 
                <arg name="map_file" value="$(arg map_file)"/> 
 
                <!-- Movimiento específico para ruedas "omni" --> 
                     <arg name="ros_planar_move_plugin"  
                     value= "$(arg ros_planar_move_plugin)"/> 
                 
                <!-- Brazo --> 
                     <arg name="3_finger_gripper"  
                     value="$(arg 3_finger_gripper)"/> 
        </include> 
 
        <!-- Ejecutar MapServer--> 
        <include file="$(find campero_localization)/launch/map_server.launch"> 
             
            <!-- Para poder buscar topics --> 
            <arg name="prefix" value="$(arg prefix)"/> 
 
            <!-- Mapa --> 
            <arg name="map_file" value="$(arg map_file)"/> 
        </include> 
 
        <!-- Ejecutar AMCL--> 
        <include file="$(find campero_localization)/launch/mi_amcl.launch"> 
 
            <!-- Para poder buscar topics --> 
            <arg name="prefix" value="$(arg prefix)"/> 
 
            <!-- Tipo ruedas (diff o omni) en función  
                 del tipo de movimiento --> 
            <arg if="$(arg ros_planar_move_plugin)"  
                    name="odom_model_type" value="omni"/> 
            <arg unless="$(arg ros_planar_move_plugin)"  
                    name="odom_model_type" value="diff"/> 
 
            <!-- Posicion inicial --> 
            <arg name="x_init_pose" value="$(arg x_init_pose)"/> 
            <arg name="y_init_pose" value="$(arg y_init_pose)"/> 
            <arg name="z_init_pose" value="$(arg z_init_pose)"/> 
        </include> 
 
        <!-- Ejecutar MoveBase --> 
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        <include file="$(find campero_navigation)/launch/move_base.launch"> 
 
            <!-- Para poder buscar topics --> 
            <arg name="prefix" value="$(arg prefix)"/> 
 
            <!-- Tipo de ruedas --> 
            <arg name="omni" value="$(arg ros_planar_move_plugin)"/> 
        </include> 
     
        <!-- Ejecutar gmapping --> 
        <include if="$(arg gmapping)"  
            file="$(find campero_localization)/launch/slam_gmapping.launch"> 
 
            <arg name="prefix" value="$(arg prefix)"/> 
        </include> 
 
 
    <!-- Fin del grupo --> 
    </group> 
 
    <!-- Activa un PID que simula la gravedad--> 
    <rosparam command="load"  
        file= 
        "$(find campero_control)/config/gazebo/gazebo_controller_omni.yaml"/> 
 
    <!-- Ejecutar Gazebo y rviz--> 
    <include file="$(find campero_gazebo)/launch/gazebo_rviz.launch"> 
 
        <!-- Ejecutar rviz --> 
        <arg name="launch_rviz" value="true"/> 
 
        <!-- Mundo de Gazebo--> 
        <arg name="world"  
            value="$(find campero_gazebo)/worlds/campero_outside.world"/> 
 
        <!-- Setting debug--> 
        <arg name="debug" value="false"/> 
    </include> 
</launch> 
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10.6. Archivo de mapa del entorno exterior mymap.pgm 

 

Autoría: Jorge Playán creó el mapa. El entorno de simulación fue creado por la empresa Robotnik. 
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10.7. Archivo de mapa del entorno interior mapaInt.pgm 

 

Autoría: Jorge Playán creó el mapa. El entorno de simulación fue creado por la empresa Robotnik. 
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