Trabajo Fin de Grado

Navegacion de robots manipuladores en el
entorno de ROS
Navigation of mobile manipulators in the ROS
environment

Autor/es

Jorge Playan Garai

Director/es

Gonzalo Lopez
Rosario Aragues

Escuela de ingenieria y arquitectura
2019

Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es

Resumen

La robdtica se ha extendido en las Gltimas décadas en entornos industriales, y en la
actualidad genera grandes expectativas en multitud de campos. En este Trabajo de Fin
de Grado se pretende que el alumno se familiarice con la interaccidon entre “Robot
Operating System” (ROS) y dos robots diferentes (uno comercial, Turtlebot, y otro en
desarrollo, Campero). Los objetivos incluyen comprender la herramienta ROS aplicada
a la navegacion de robots, desarrollar capacidades para la instalacion del software ROS
en un ordenador con el sistema operativo Ubuntu, aplicar el software a los robots
Turtlebot y Campero realizando simulaciones de navegacion y analizar criticamente los
resultados obtenidos. De esta manera, se puede usar la experiencia ganada en Turtlebot

para manejar Campero y hacer algunas contribuciones al mismo.

Se estudio el software del robot Turtlebot Waffle Pi, un pequeio robot con cuatro
ruedas, dos de ellas motrices, que incluye un paquete de navegacion. Se realizaron
simulaciones de mapeo de entorno y de navegacion autonoma sorteando obstaculos.
Los archivos de navegacion de Turtlebot se modificaron y aplicaron a la navegacion del
robot Campero. Este robot es mucho mas grande que Turtlebot, dispone de cuatro
ruedas y un brazo robético. Se realizaron simulaciones de navegacion en dos entornos
desarrollados para Campero, usando los dos tipos de ruedas que incluye el robot:
diferenciales y omnidireccionales. Se uso la rutina SLAM para realizar mapas del entorno

y después poder emplearlos para una navegacion mas eficiente.

El Software de Turtlebot para ROS esta disponible como cédigo abierto, y ha permitido
realizar simulaciones complejas esquivando obstaculos y actualizando la ruta en tiempo
real. A pesar del rapido progreso actual del software para Campero, este robot se halla
en una fase inicial de su desarrollo. Puesto que Campero no tiene rutinas propias de
navegacion, se aplicaron las usadas en Turtlebot realizando las modificaciones y
empleando los parametros propios de Campero. Esto permitié hacer una variedad de
experimentos de simulacidon de navegacion en los que se alcanzaron los puntos

propuestos.

Se han encontrado problemas con la navegacion de Campero, que parecen relacionados
con su parametrizacion, con el uso de sus sensores y con la especificacion del objetivo
de la navegacion. Estos son aspectos que deben de recibir atencion en el futuro para

poder hacer de Campero un robot fiable y operativo en entornos reales.

indice
Lo INErOAUCCION. ...ttt sttt ne 4
[.1. CoNLEXLO Y MOLIVACION.....ceueeencueireccieirieee ittt sseseeses et ssatesessataenenns 4
[.2. ODJELIVOS. ...ttt sttt sttt sttt setae e 5
l.3. Alcance y entorno de trabajo...........ccecureecurecurercunencereserresesneesseesseesseessesessesesees 5
2. ROS, Robot Operating SySteM..........c.cccciiueuimiecieneiiieseiesesiesesssssssssssesssssssssssnns 8
2.1. INtroduccion @ ROS.......c ettt ettt saeaene 8
2.2. Instalacion de Linux y ROS ... eccrtecisseeeisiseeesseseeessaseeseseees 10
2.2.1. Instalacion del sistema operativo LinUX.......cccccceueeecvceenenenceenencnccinincccereenee 10
22.2. Instalacion de ROS ... I
2.2.3. Instalacion de Turtlebot 3. I
2.3. Conceptos basicos de ROS ...t I
2.4. Herramientas incluidas en ROS ... 13
2.5. Un problema de navegacion para resolver con ROS...........cooivvcnnenccnnene. 13
2.6. Navegacion del robot Turtlebot ... 13
3. Archivos de NaVEZACION......c.cccccueurereucucireeeretreeeiere et ssaseaesesnanes 21
3.1. Adaptative Monte-Carlo Localization (AMCL)cccccerrvevcurenenccerreecereresenenne 21
3.2. MOVE BASE ...ttt sttt sttt 23
3.3. GIlobal 1aUNCH il ...ttt 25
4. RODOt CAMPEIO ...ttt tese s tae s astaese s astaesessessaesessessacnenns 27
4.1. Version del SOftWAre ... ssesssessaes 28
4.2. Archivos proporcionadosc.c.ceccceereecceneneneceneneseenneseeessesesesessesesesessesesesenne 28
4.3. INStAlacion Y €JECUCIONeeieuueieccirtecie ettt 30
5. Navegacion sobre el robot Campero.........ccverrinenceenineneciriseeeesiseeessaseseesseseens 34
5.1. Preparacion INICIal...... ...ttt 34
5.1.1. Modelo iNiCial. ... 34

5.1.2. Version CON NAVEZACION......ccruveeueerenecueereeeneereseesesreeesesseseesesseseesessassacsessenes 35

5.2. AFChiVOS fINAIES......eeceeee ettt 35
5.2.10 AMOCL ottt ettt 35
522, MOVE _DASE ...ttt ettt s e 36
5.2.3. ONE_IFODOT .ttt a s se s tenes 36
5214, GIODAL ..ttt 37

6. Experimentacion con el robot Camperoccoeeevccereneccereneceeseneeeeseseesesseseaene 39
6.1. Reconocimiento del €NTOrNOcccceevecerinenccenireecieee e seseeesseseeseseenes 39
6.2. Navegacion en exterior con ruedas diferencialescccooeeeevcureececcererceccnnenee 4|
6.3. Navegacion en interior con ruedas omnidireccionales...........ccocececeeurueeecucunenee 45
7. DiSCUSION ZENEIAL......ooiiiiicceecccc et s et taens 49
7.1. Simulacion con el robot TUrtlebot ... 49
7.2. Simulacion con el robot Campero...........coerevceirncncerrecereeereee e 49
8. CONCIUSIONES ...t 51
9. Recomendaciones para trabajos futuros con el robot Campero.........ccccoceeeeeuuncce. 52
[0, ANEXOS ...t 53
10.1. Archivo de especificaciones del robot Waffle Pi por la empresa Robotis... 53
10.2. Archivo de cédigo amcl.launch para el robot Campero.........cccceeveueuruncee 55
10.3. Archivo de cédigo move_base.launch para el robot Campero............... 58
10.4. Archivo de cédigo campero_one_robot_nav.launch para el robot
CAMPEIO ..ttt as s ataenenes 61

10.5. Archivo de cédigo campero_nav.launch para el robot Campero.......... 63
10.6. Archivo de mapa del entorno exterior Mymap . PEM......ccccceererercmcerereereerereaene 66
10.7. Archivo de mapa del entorno interior mapalnt.pgmccccceeeveeererercucerenencne 67

1. BIbHOZrafiaccuieiieiiciiciiciicicticiiccic s sssaessnaes 68

. Introduccion

I.I. Contexto y Motivacion

El intenso desarrollo actual de la robdtica estd basado en el progreso de areas de
conocimiento complementarias como la informatica, la mecanica, la electronica, los
sensores o la inteligencia artificial. La popularizacion de la robética en los entornos
industriales e incluso en la vida diaria esta generando grandes expectativas en la sociedad.
Los ingenieros electrénicos y automaticos (junto a otros profesionales) tienen una

responsabilidad directa sobre el desarrollo de la robédtica.

En Espana son muchos los ambitos en los que la robdtica puede en las proximas décadas
ayudar a que la sociedad sea sostenible. Un pais muy envejecido, con la poblacion
concentrandose en las ciudades y con una baja densidad de poblacion en la mayoria del
territorio presenta retos muy importantes para la robética. Entre ellos, la fabricacion, la
asistencia a personas dependientes, la seguridad, las ciudades inteligentes, el cuidado del

medio ambiente o la agricultura.

En este contexto, la robdtica es un campo de trabajo de clara importancia tanto en el
presente como en el futuro. Este Trabajo Fin de Grado (TFG) trata de un aspecto
horizontal de la robética: el software que gobierna los distintos aspectos de un robot.
El software usado es ROS (Open Source Robotics Foundation, 2019a), una plataforma
de codigo abierto, genérica (cualquier robot puede ser disehado para usarlo) y de
desarrollo cooperativo. Esta plataforma de software se aplica a aspectos como el
mapeado del entorno del robot, el uso de mapas y sensores para la navegacion terrestre,

la manipulacion con brazos robéticos o la interaccion con el robot fisico.

En este TFG el software se aplica al robot comercial Turtlebot waffle Pi (Robotis, 2019)
y al robot Campero, que esta actualmente en sus fases iniciales de desarrollo por la
empresa Robotnik. De todas las capacidades del software ROS, el TFG se orienta a la
navegacion de los robots. Esta aplicacion es muy interesante para comprender como se
programa esta navegacion en dos robots diferentes y en dos momentos muy diferentes

de su desarrollo.

El TFG se enmarca dentro de las actividades del proyecto COMMANDIA, Robética
movil colaborativa de objetos deformables en aplicaciones industriales (COMMANDIA,

2019). Este proyecto esta cofinanciado por el Programa Interreg Sudoe y por el Fondo

Europeo de Desarrollo Regional (FEDER). El proyecto esta orientado a la manipulacion
y el procesamiento de objetos deformables tales como alimentos, ropa, juguetes o
articulos de cuero. El objetivo es “mejorar la competitividad y las condiciones de trabajo
de las industrias donde los objetos deformables deben ser manipulados directamente
por los operadores humanos para controlar su forma durante la produccion”. El
proyecto cuenta con la participacion de socios de Francia, Portugal y Espana, entre los

que se cuenta la Universidad de Zaragoza.

1.2. Objetivos

El objetivo docente de este TFG es comprender la interaccion entre ROS y dos robots
diferentes, analizando sus posibilidades y sus limitaciones actuales. Este objetivo docente

se concreta en cuatro objetivos especificos:

I. Comprender la herramienta ROS, particularmente su aplicacién a la navegacion
autonoma de robots.

2. Desarrollar las capacidades para la instalacion y puesta a punto del software ROS en
un ordenador, y para su aplicacién a los robots Turtlebot y Campero mediante el
uso del software especifico de los robots.

3. Contribuir al desarrollo de software para la navegacion del robot Campero.

4. Probar y analizar la navegacion de los dos robots en los aspectos de mapeo del

territorio y de simulacion de la navegacion a tiempo real.

1.3. Alcance y entorno de trabajo

Al tratarse ROS de una plataforma de software genérica, el alcance de este TFG es
global: cualquier robot puede ser disenado para utilizar ROS. En este documento se

analizan dos robots en particular, pero el software es adaptable a otros robots.

Es preciso recordar en este punto que el alcance del TFG no incluye la manipulacion de
los robots a nivel fisico, ni su control por ROS. Se han utilizado modelos informaticos y
simulaciones de los dos robots, que han sido controlados por ROS. En una fase posterior

a este trabajo, se podria analizar el resultado del control del robot fisico por ROS.

El uso de un modelo informatico de los robots permite acelerar el desarrollo de nuevas

utilidades de control o la explotacidn de nuevos sensores en los robots. Las simulaciones

realizadas con ROS permiten identificar problemas de disefo o de compatibilidad de

datos.

Finalmente, los elementos utilizados en este trabajo fin de grado se especifican a

continuacion (Tabla 1.1).

Tabla 1.1 Listado de los elementos del trabajo con una descripcion e ilustracion.

NOMBRE DESCRIPCION ILUSTRACION

Sistema operativo gratuito
ROS de codigo libre que
proporciona herramientas

relacionadas con robdtica.

Robot de gran envergadura
CAMPERO sobre el que se trabaja la

navegacion.

Robot de codigo libre con

TURTLEBOT un sistema de navegacion

integrado.

Elementos del robot para

-—
SENSORES recibir informacién del (

entorno. Varian con el

robot empleado.

Escenario donde se

ENTORNO GAZEBO realizan las simulaciones
del robot.

Mapa del escenario para

MAPA RVIZ ayudar con el guiado del

robot durante la ' ' [,

navegacion.

Se anade un diagrama de alto que muestra el funcionamiento conjunto de estos

elementos (Figura 1.1).
Representacion
Gazebo
Navegacion del Robot Sensores
rviz Turtlebot - Campero Escaner,camara, ...

Middleware Roboético
ROS

Sistema Operativo
Ubuntu

Figura 1.1. Diagrama de alto nivel que conecta a nivel légico los elementos que
componen este trabajo.

2. ROS, Robot Operating System

2.1. Introduccién a ROS

Robot Operating System (ROS) es un sistema operativo gratuito de codigo libre' que
proporciona funciones flexibles para el manejo y control de robots como la abstraccion
de hardware, control de dispositivos, comunicacion entre procesos y manejo de
paquetes, entre otros. Los desarrolladores de ROS lo definen como “una coleccion de
herramientas, librerias y convenciones que simplifican la tarea de crear
comportamientos roboticos complejos y robustos en una variedad de plataformas
roboticas” (Open Source Robotics Foundation, 2019a). ROS incluye herramientas y
librerias para obtener, construir, escribir y ejecutar cédigo en uno o varios ordenadores
simultaneamente. Desde el punto de vista informatico, ROS es un middleware
(Wikipedia contributors, 2019a), situandose entre el sistema operativo y las aplicaciones
que ejecuta. Por lo tanto, facilita y acelera el trabajo de los desarrolladores. En definitiva,
ROS no es un sistema operativo en sentido estricto, sino que se ejecuta sobre uno:

Linux.

Uno de los aspectos mas importantes de ROS es su filosofia de “desarrollo colaborativo
de software robotico” (Open Source Robotics Foundation, 2019a). El objetivo es facilitar
que laboratorios especializados en distintos aspectos de la robotica puedan colaborar y
apoyarse entre ellos para construir una herramienta de gran valor anadido. De esta
manera, la web de ROS actualmente cita a 79 desarrolladores de distintas
organizaciones. A pesar de este esfuerzo colaborativo, ROS tiene dos autores
principales, Eric Berger y Keenan Wyrobek, que en torno a 2007 comenzaron a trabajar
en el proyecto mientras hacian la tesis doctoral en la Universidad de Stanford
(Wyrobek, 2017). En este articulo se presenta un comic (Figura 2.1) en el que se explica
la necesidad de ROS, como una forma de evitar la pérdida de tiempo de los

desarrolladores.

' ROS se distribuye bajo una licencia del tipo BSD, que se caracteriza por imponer restricciones minimas
en su uso Y distribucion.

obOtiCS —
Hogegearch Keeps

Re-Inventing
the lWheel

7y

...a paper with
a proof-of-
concept robot.

try to build on
this result...

them publish...

«-.but they can't

But inevitablya. get any details
time runs out.-.. on the software
used to make it

work...

R
L
ID,‘I‘
5 "I/,
2y

SO
A° a0 %,
2

-..and countless

i “+..and all the
sleeaprleessspennltghts codo=used=by

writing code So. a grandiose previous lab
from scratch- plan is formed members is a mess-
to write a new
software API...

Figura 2.1. Comic explicando la necesidad de ROS o la pérdida de tiempo reinventando

la rueda en la robodtica. Autoria: (Wyrobek, 2017).

El comic muestra como alguien hace un desarrollo innovador en robética. Otro
laboratorio quiere seguir esa linea, pero no tiene los detalles que hacen falta. Finalmente,
decide hacer un programa para que otros puedan usarlo. Se consigue algo que funciona,
lo publica, otros lo leen y la rueda comienza de nuevo. ROS se cred para romper este
circulo, evitando la pérdida de tiempo, integrando esfuerzos y asegurando una
continuidad en el desarrollo. Los autores iniciales consiguieron dinero para el desarrollo,
implicaron a otros profesionales y trabajaron en un garaje. Diez anos después, muchos

jovenes se han formado en el programa y muchas empresas han comenzado a usarlo

10

para sus nuevos productos y negocios. Al mismo tiempo, la Open Source Robotics

Foundation se hizo cargo del desarrollo de ROS en 2013 (Wyrobek, 2017).

En 2012 comenzo el desarrollo de ROS-Industrial, otro proyecto de cédigo abierto con
licencia BSD que tiene el objetivo de ampliar ROS al mundo de la fabricacion automatica
y robédtica (Wikipedia Contributors, 2019b). Esta rama tiene tres nodos activos: uno en
Texas (EE.UU.), otro en Alemania (Europa) y el ultimo en Singapur (Asia). Se ocupa de
la interaccion entre la robotica y los equipos de fabricacion, con aplicaciones industriales

y actividades formativas.

A lo largo de estos doce anos de desarrollo, se han ido creando en ROS capacidades
para un buen numero de aplicaciones. Algunas de las muchas capacidades actualmente

disponibles en ROS son:

e Detectar las caracteristicas del medio mediante el uso de sensores. Se puede usar
una variedad de ellos, siendo tipicos los sensores LIDAR? y las cAmaras de visidn
optica.

e Navegar en un espacio que puede estar registrado de antemano en un mapa. No es
obligatorio que exista este mapa, pero ayuda con la navegacion. El Propio ROS puede
fabricar estos mapas usando los sensores del robot, y algoritmos SLAM’,

e Gestionar entornos multi-robot. De esta manera, una flota de robots puede
colaborar para hacer una tarea conjuntamente.

e Manejar brazos robéticos para tareas de manipulacion o fabricacion.

2.2. Instalaciéon de Linux y ROS

Actualmente, ROS unicamente esta disponible, de forma estable, en Linux. ROS esta
disponible de forma experimental en MacOS y Windows 10. Este trabajo se ha realizado

sobre Linux debido a su estabilidad.
2.2.1. Instalacion del sistema operativo Linux

Para la realizacion de este trabajo se ha empleado el sistema operativo Linux, en
particular la distribucion Ubuntu 16.04.6 LTS Xenial Xerus. En esta instalacion se
comenzo por la descarga de la version siguiendo las instrucciones de la pagina oficial

(Ubuntu releases, 2019). Dependiendo del ordenador que se usara se necesitara la

2 Light Detection and Ranging o Laser Imaging Detection and Ranging.
* Simultaneous localization and mapping.

version de 32 bits o la de 64 bits. Ya con la descarga completada se procede a la
instalacion del software Rufus (Batard, 2019), que permite colocar esta imagen del
sistema en un dispositivo USB para instalarlo desde éste. Una vez la imagen del sistema
esta lista, es necesario hacer una particion del sistema para tener espacio sobre el que

alojar Ubuntu.

Cuando todo esta preparado, se reinicia el ordenador sobre el que queramos realizar la
instalacion para acceder a la BIOS y ejecutar el USB. Se siguen los pasos expuestos en la

pantalla para finalizar la instalacion.
2.2.2. Instalacion de ROS

Una vez tenemos Ubuntu 16.04.6 Xenial Xerus instalado procedemos a la instalacion de
ROS. En este TFG se ha empleado la version de ROS “Kinetic Kame”, la cual esta
especificamente disenada para la version de Ubuntu 16.04.6 LTS Xenial Xerus. Para ello
se sigue el tutorial que se presenta en la propia pagina de ROS (Open Source Robotics

Foundation, 2019d).
2.2.3. Instalacion de Turtlebot 3

Una vez instalados Ubuntu y ROS, pasamos a la instalacion del robot Turtlebot y todos
los paquetes necesarios para su funcionamiento. Estas instrucciones estan disponibles en

la pagina web del robot Turtlebot (Robotis, 2019b).

2.3. Conceptos basicos de ROS

El funcionamiento de ROS consiste en un modelo grafico de procesos. Los procesos
generados son llamados nodos, como los nodos de un diagrama, y estan conectados por
topicos. Estos se representan como lineas que conectan nodos. Los topicos permiten a
los nodos pasarse mensajes con informacion. Todos los nodos dependen de un maestro
que los registra y ordena, roscore. Este maestro establece comunicacion “peer-to-
peer” entre los nodos, por lo cual los mensajes o llamadas entre nodos no necesitan

pasar por el maestro.

A continuacion, se proporcionan definiciones mas completas de los elementos que

componen ROS.

¢ Nodos: Los nodos son el centro de la programaciéon en ROS, ya que la mayoria del
codigo ejecuta nodos, comunicacion entre nodos u otras acciones relacionadas con

nodos.

12

e Topicos: Para poder enviar mensajes a un tépico, primero el nodo debe publicar en
dicho toépico y si queremos que un nodo reciba la informacion enviada debera
subscribirse al topico. Ninglin nodo puede saber quién esta publicando en qué topico
ni quién lo esta recibiendo: es completamente anénimo.

e Servicios: Un servicio es una accion que un nodo puede ejecutar con un solo

resultado. Los nodos publican sus servicios y otros nodos pueden requerirlos.

En los siguientes parrafos se presentan ejemplos de como establecer un entorno de

trabajo y como crear sobre éste un paquete.

El entorno mas simple sobre el que se puede trabajar consiste en crear un paquete con

su carpeta source (src). Esto se hace de la siguiente forma:
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws
catkin_make

Al hacer este ultimo paso habremos compilado el paquete y se deberian haber creado

las carpetas devel y build junto a la src previamente mencionada.
Se finaliza la creacion del paquete de la siguiente forma:
source devel/setup.bash
Esto permite utilizar el espacio de trabajo como nuestro entorno actual.

Ahora procedemos a la creacion de un paquete en el interior de este espacio. La forma

mas sencilla seria:

catkin_create_pkg <nombre_paquete> [dependenciall]

[dependencia2]
Por ejemplo, podria ser asi:
catkin_create_pkg paquete_prueba std_msgs rospy roscpp

Esto crea un paquete llamado paquete_prueba y dice que este paquete va a depender
de std_msgs, rospy,y roscpp (librerias incluidas en ROS para comunicacion, cédigo

Python y codigo c++)
Una vez creados, volvemos a compilar con:

cd ~/catkin_ws/

catkin_make
source devel/setup.bash

2.4. Herramientas incluidas en ROS

La funcionalidad de ROS se ve altamente potenciada por la inclusion de herramientas
que ayudan a los desarrolladores a visualizar y guardar informacion, navegar la estructura
de paquetes de ROS y crear “scripts” para automatizar o configurar procesos. Entre

ellas cabe destacar:

e rviz (Open Source Robotics Foundation, 2019e): Visualizador 3D que forma parte
de ROS y que se usa para representar robots, los escenarios en los que trabajan y
los datos de los sensores. Este programa es altamente configurable con diferentes
formas de visualizar y extensiones.

e Gazebo (Open Soure Robotics Foundation, 2019f): Aunque no esta incluido en la
instalacion, si que se incluyen paquetes para poder ejecutarlo junto con ROS y poder
emplearlo para obtener simulaciones de nuestros robots y de escenarios en 3D.

e Roslaunch: Es una herramienta clave en ROS, que ejecuta varios nodos de forma

local o remota y les proporciona parametros para ejecutarse correctamente.

2.5. Un problema de navegacion para resolver con ROS

Tal como se ha visto antes, ROS puede resolver una gran cantidad de problemas
generales sobre el uso de robots. Estos problemas van desde el andlisis del medio que
rodea al robot mediante sensores, el movimiento del robot, el uso de un brazo robético
o la fabricacion en entornos industriales. Sin embargo, este Trabajo Fin de Grado se
refiere a aplicaciones de navegacion de un solo robot con ruedas en entornos mapeados
apoyado por sensores que caracterizan el medio. Se quiere que el robot sea capaz de
navegar de un punto inicial a un punto destino sorteando los obstaculos presentes. En
este trabajo, ROS resuelve este problema en una simulacion en el ordenador, que podria

posteriormente trasladarse a un robot fisico que navega en un entorno fisico.

2.6. Navegacion del robot Turtlebot

En estas simulaciones vamos a trabajar con el robot comercial Turtlebot Waffle Pi
(Robotis, 2019) (Anexo 10.1). Como se aprecia en el anexo, este robot es ligero y tiene

reducidas dimensiones (1,8 kg, 281 x 306 x 141 mm). Ademas, viene con paquetes de

14

navegacion (entre otras funcionalidades) que lo hacen muy adecuado para este trabajo.

El robot se muestra en la figura 2.2.

Figura 2.2. El robot Turtlebot3 Waffle Pi. Autoria: (Robotis, 2019).

La instalacién de Ubuntu con ROS y con todos los paquetes necesarios deja el sistema
preparado para el uso del robot Turtlebot. Los paquetes disponibles incluyen utilidades
de navegacion, entorno multirobot, gmapping, y SLAM, entre otros. Para poder
comprender como funciona la navegacion ya incluida en este robot y poder aplicarla
posteriormente al robot Campero, es necesario examinar el funcionamiento en el

Turtlebot y analizar los archivos que lo forman.

Los archivos del Turtlebot estan disenados de tal forma que ROS comprueba con qué
version de éste esta trabajando (Burger, Waffle o Waffle Pi). En funcion de la version se

aplican unas fisicas y unos parametros diferentes.

Una vez instalado el robot Turtlebot y su paquete de navegacion, se pasa a comprobar

el funcionamiento de éste. Para esto se abre en una terminal un maestro:
roscore

Se abre entonces otra terminal sobre la que se carga el mapa del entorno. En principio
deberia ejecutarlo el archivo de navegacion del Turtlebot, pero en las condiciones de
trabajo descritas provoca errores y no consigue cargarlo bien. Es preciso pues ejecutarlo

con antelaciéon para un correcto funcionamiento.

rosrun map_server map_server

catkin_ws/src/turtlebot3/turtlebot3_navigation/maps/map.yaml

15

Ahora podemos ejecutar el codigo con normalidad. Sobre otra terminal, elegimos el

modelo de Turtlebot de Robotis que deseamos utilizar. En este ejemplo se emplea el

waffle_pi (Robotis, 2019),

Este robot incorpora un “360 Laser Distance Sensor LDS-01” se trata de un escaner
LIDAR 2D que puede medir en 360° y recoge datos alrededor del robot para usarlos
para SLAM.

Procedemos a ejecutar el mundo sobre el que simular el robot elegido:
export TURTLEBOT3_MODEL=waffle pi
roslaunch turtlebot3_gazebo turtlebot3_world.launch

Finalmente, en una dltima terminal, entramos en el directorio en el que se aloja el fichero
a ejecutar y lo activamos. Para poder disponer de una guia del mapa en rviz es necesario

completar el comando con el nombre y localizacion del mapa a emplear.
cd catkin_ws/src/turtlebot3/turtlebot3 _navigation

roslaunch turtlebot3 navigation

turtlebot3_navigation.launch map_file:=maps/map.yaml

Una vez completado este proceso deberiamos de tener una ventana de Gazebo y otra

de rviz que deberian de tener el aspecto que se muestra en las figuras 2.3 y 2.4.

Figura 2.3. Contenido grafico de la ventana de Gazebo para el caso de estudio del

robot Turtlebot.

file:///C:/Users/rosario/=maps/map.yaml

Figura 2.4. Contenido grafico de la ventana de rviz para el caso de estudio del robot

Turtlebot.

La ventana de Gazebo es Unicamente una visualizacion en 3D de nuestro robot en el
entorno simulado. En este caso, el entorno estd compuesto por un recinto hexagonal
con nueve obstaculos cilindricos en su interior. El robot se representa por el pequeno

rectangulo negro dentro del hexagono.

La ventana de rviz es de mucho mayor interés puesto que presenta los valores de todos
los sensores del robot. En la imagen vemos el mapa de fondo del entorno. Superpuesto
a éste, se ve la imagen del escaner incluido en el robot que detecta los obstaculos del
entorno y el entorno en si (las columnas y el recinto). Originalmente, al activar este
proceso, en la ventana de rviz el mapa y el radar de nuestro robot no deberian de
solaparse: deberia de haber un desplazamiento. Esto se debe a que el origen del robot
en el mapa no se corresponde con el origen del robot en Gazebo. Este desplazamiento
puede modificarse manualmente. En la barra superior al mapa de rviz se pueden

encontrar varios comandos Utiles para la simulacion, tal como se muestra en la figura 2.5:

campero.rviz* - RViz

™ Interact

"fi" Move Camera |_J Select A Focus Camera == Measure . 2D Pose Estimate | 2D Nav Goal 9 Publish Point]

Figura 2.5. Barra de navegacion de rviz, con comandos utiles para la navegacion del

robot.

Los dos comandos mas importantes para esta aplicacion son “2D Pose Estimate” y “2D
Nav Goal”. El primero de estos permite solucionar el problema en cuestion.

Seleccionandolo y seleccionando posteriormente la localizacion aproximada de nuestro

=

v

L

17

robot (visible en Gazebo) sobre el mapa, el escaner y el mapa deberian solaparse. Este

proceso se puede repetir hasta conseguir un solapamiento satisfactorio.

Una vez tenemos el robot listo y en posicion podemos simular la navegacion.
Seleccionamos la segunda opcion mencionada, “2D Nav Goal”, que permite seleccionar
un destino para nuestro robot. A modo de demostracion seleccionamos un destino que
obligue al robot a esquivar algunos pilares. Partiendo de la posicidn vista en las figuras
2.3 y 2.4, marcamos un destino en la esquina superior derecha (figura 2.6). Si
mantenemos pulsado el raton se puede ademas indicar la orientacion del robot en el
punto de destino. Al finalizar la seleccion el robot traza una primera ruta, que se puede
ver sobre el mapa, y empieza a avanzar. La ruta se recalcula en cada momento de la
trayectoria en funcién de lo que detecten los sensores. Esto puede dar lugar a cambios

en el recorrido.

Figura 2.6. Especificacion del destino de la navegacion (la flecha roja indica el punto y
la orientacidn final del robot). ROS ha calculado la primera ruta a seguir por el robot,

que se muestra como una linea.

En la figura 2.7 se aprecia que, a pesar de que el recorrido inicial indicaba un movimiento
entre los pilares de la fila central, el recorrido final ha preferido rodear los pilares por

el exterior.

Figura 2.7. Robot llegando al punto de destino, mostrando una ruta diferente de la

primera.

Rviz no es la Unica forma de indicar un destino para nuestro robot. Podemos indicar un
destino directamente sobre el topico correspondiente en la navegacion. Para esto

aplicamos el siguiente comando sobre una terminal:

rostopic pub /move_base_simple/goal
geometry_msgs/PoseStamped '{header: {stamp: now,
frame_id: "map"}, pose: {position: {x: 1.0, y: 0.5, z:

0.0}, orientation: {w: 1.0}}}'

El comando “rostopic pub (nombre del tépico) (elemento a
publicar)” nos permite publicar sobre el topico que deseemos. En este caso,
“move_base_simple/goal” es un tépico que indica el destino del robot. Es muy
importante publicar en un formato que sea compatible con el del tépico. Este topico
acepta el destino en el formato PoseStamped, pero esto no ocurre para todos los
topicos, sino que cada uno requiere un formato determinado (Open Source Robotics
Foundation, 2019g). Una vez indicado el formato se procede a escribir el mensaje a
transmitir siguiendo la sintaxis adecuada. En nuestro caso, las partes mas importantes
son “map” que indica el topico sobre el que esta el mapa sobre el que indicaremos el

destino, “position”y “orientation”.

La posicion en coordenadas (X, y, z) podemos obtenerla de rviz. Sobre rviz empleamos
la herramienta “Publish Point” (Figura 2.5). Es posible que esta herramienta no esté

visible en el menu al principio de la ejecucion. Para verla necesitamos hacer click en el

simbolo “+” de la barra de menus de rviz y ahadirlo desde ahi. Una vez seleccionada
esta herramienta, al mover el cursor por el mapa sin necesidad de hacer click, en la
esquina inferior izquierda de la ventana se pueden ver las tres coordenadas (X, y, z).
Aunque la coordenada z no esté exactamente en cero, podemos mantenerla en cero
para la navegacion. Una vez localizado el punto al que queremos mover el robot,
escribimos las coordenadas en el comando anterior. Con esto transmitimos al robot la

posicion. Para la orientacion se usa un cuaternio:

Cuatenio = (0 (). +sin). sin(5)..+sin(3)
uaternio = {cos|=),X *sin|z),Y *sin|<,Z *sin|=

2 2 2 2
En esta ecuacion, X, Y, Z representan el eje unitario sobre el que se realiza el giro y 8
el giro en si. En el comando establecemos el primer valor a 1, indicando que se trata

de un giro de cero radianes (No presenta giro).

Para comprender el funcionamiento del paquete de navegacidon, se aplica una
herramienta proporcionada por ROS que permite observar la dinamica interna. Mientras
el algoritmo de navegacion esta en simulacion, la herramienta ejecuta un comando que
permite ver las comunicaciones entre nodos, quién esta publicando y quién esta suscrito

a qué topicos.

Esta herramienta consiste en el comando rqtgraph, que devuelve un diagrama con los

topicos y nodos actualmente en ejecucion (figura 2.8).

/gazebo_gui

fioint,_state Jrobot_state_publisher

/move_base/goal

/move_base -

Figura 2.8. Diagrama del moédulo de navegacion Turtlebot generado con rqtgraph.
Los nodos estan indicados por 6valos, mientras que los topicos estan escritos sobre

las flechas. Autoria: (Robotis, 2019) Robotis (2019).

Sobre este diagrama se observa que el nodo move_base es el principal encargado de la

navegacion, ya que es la piedra angular del diagrama que recibe todos los datos y los

20

procesa y como salida envia la velocidad necesaria. También se aprecia que esta
utilizando el nodo AMCL como localizacién, junto con la ejecucién del mapa por

map_server y la ejecucion virtual del robot (nodo gazebo).

21

3. Archivos de navegacion

Procedemos a examinar los archivos incluidos en la navegacion de ROS y a comprender
su funcionamiento. Estos archivos son usados por roslaunch para poder ejecutar los
nodos necesarios, que estan escritos en formato . launch. Los archivos que componen
la navegacion de un robot en ROS son: Adaptative Monte-Carlo Localization (AMCL),

Move-Base y el archivo global de ejecucion.

3.1. Adaptative Monte-Carlo Localization (AMCL)

AMCL es un filtro de particulas que permite a los robots localizarse en un entorno.
Consiste en encajar las lecturas de los escaneres del robot con su posiciéon en el mapa,

en un proceso paralelo a la localizacion por odometria. Esto se ve claramente en la figura

3.1.

Odometry Localization

Dead
Feckoning

fodom_frame /base frame

Orientation

AMCLMap Localization

Odometry Dead
Dorift Reckoning

/map_frame fodom_frame ' fbase frame

Estimated by AMCL

Figura 3.1. Imagen que relaciona ambas formas de localizacion (AMCL y odometria).

Autoria: ROS.

Desde un nivel técnico, AMCL se encarga de proporcionar unas posiciones estimadas
que pueden verse afectadas con el tiempo por ruido en el sistema de odometria. Tras el

movimiento del robot las posibles variaciones de posicion se ven amplificadas, por lo

22

que el algoritmo compara las posiciones con el cambio en la medicidn del sensor y busca
cuales se ajustan mas. Esto mejora la localizacion del robot y consigue una mayor

precision a lo largo del tiempo.

En ROS ya viene implementado un nodo que, configurandolo adecuadamente, permite

aplicar AMCL a nuestro robot. El nodo que viene instalado en el Turtlebot se presenta

en la Figura 3.1, en la que se reproduce codigo del archivo amcl. launch.

1~ <launch:

2 <!-- Arguments --»

3 <arg name="scan_topic" default="scan"/>

4 <arg name="initial_pose_x" default="@.8"/>

5 <arg name="initial_pose_y" default="8.8"/>

6 <arg name="initial_pose_a" default="8.8"/>

Fi <l-- AaMCL -->

8- <node pkg="amcl™ type="amcl" name="amcl">

9 <param name="min_particles” value="508" />

1@ <param name="max_particles” value="300a" />

11 <param name="kld_err" value="8.82"/>

12 <param name="update_min_d" value="@.28"/>

13 <param name="update_min_a" value="@.28"/>

14 <param name="resample_interwval" value="1"/>

15 <param name="transform_tolerance” value="8.5"/>

16 <param name="recovery_alpha_slow" value="@.2a" />

17 <param name="recovery_alpha_fast™ value="@.2a" />

18 <param name="initial pose_x" value="%{arg initial pose_x)"/>
19 <param name="initial pose_y" value="%{arg initial pose_y)"/>
20 <param name="initial pose_a" value="%{arg initial pose_a)"/»
21 <param name="guil_publish_rate" value="58.8"/>

22 <remap from="scan™ to="%(arg scan_topic)“/>
23 <param name="laser_max_range" value="3.5" />

24 <param name="laser_max_beams" value="138" />

25 <param name="laser_z hit" value="8.5"/>

26 <param name="laser_z_ short" value="8.85"/>

27 <param name="laser_z_ max" value="8.85"/>

28 <param name="laser_z_rand" value="8.5"/>

20 <param name="laser_sigma_hit" value="8.2"/>

3@ <param name="laszer_lambda_short” value="8.,1"/>

31 <param name="laser_ likelihood_max_dist™ value="2.8"/>

32 <param name="laser_model_ type" value="1likelihood field"/>
33 <param name="ocdom_model type" value="diff" />

34 <param name="ocdom_alphal® value="8.1"/>

35 <param name="ocdom_alpha2" value="8.1"/>

36 <param name="ocdom_alpha3" value="8.1"/>

37 <param name="ocdom_alphad" value="8.1"/>

38 <param name="odom_ frams_ id" value="odom™ />

ig <param name="base_frame_id" value="base_footprint"/>
42 </node
41 </launchy|

Figura 3.l. Lineas de codigo del archivo amcl.launch para el robot Turtlebot.

Autoria: (Robotis, 2019b).

Sobre este cédigo diferenciamos dos partes: por un lado, los argumentos de entrada al
fichero en si, y por otro, la ejecucién del nodo AMCL. Este nodo ya viene implementado

en ROS junto a Turtlebot, en el paquete del mismo nombre, y permite modificar los

23

valores de los parametros para adaptarlo a las necesidades y permitir su funcionamiento

en una amplia gama de robots.

Entre los argumentos de entrada se encuentran el nombre del escaner que permite la
localizacion y la posicion inicial del robot. Los valores por defecto que se muestran en

la figura 4.1 estan establecidos para poder comunicarse con el sensor del Turtlebot.

Para poder ejecutar el nodo AMCL es necesario ademas pasarle multitud de parametros
para que se ajuste correctamente a nuestro robot. Entre todos los parametros
necesarios, los mas importantes son los relacionados con la odometria y con el sensor
del robot. Los parametros que hacen referencia al laser en el nombre estan directamente
relacionados con el escaner. Es necesario conocer las especificaciones de nuestro
escaner para poder establecer valores como el nUmero maximo de haces empleado o la
distancia maxima del laser, entre otros. La odometria también es fundamental para
permitir una correcta localizaciéon del robot. El parametro mas importante es el
relacionado con el tipo de movimiento en funcién de las ruedas (odom_model_type),
que puede variar en funcién de unas ruedas diferenciales’ u omnidireccionales. En el caso
del Turtlebot, Unicamente tiene ruedas diferenciales, de ahi que este esté establecido

como valor por defecto.
3.2. Move Base

El archivo move_base. launch, que ejecuta el nodo del mismo nombre, es fundamental
para la navegacion del robot. Ejecutar este nodo en un robot correctamente configurado
da lugar a que el robot intente conseguir llegar a su posicion de destino con la base del
robot dentro de una tolerancia especificada o hasta que indique un error al intentar
llegar. Si el robot detecta que se ha atascado, este nodo también intentara recuperarlo.

En la figura 3.2 se presentan las lineas de codigo de este archivo.

* Diferenciales: Ruedas diferenciales son aquellas que incluyen un mecanismo diferencial. Este
permite que, al girar hacia un lado con ruedas en paralelo, giren a diferentes velocidades (La del
interior de la curva mas lento que la del exterior).

24

1~ <launch>

2 <!-- Arguments --»

3 <arg name="model" default="%(env TURTLEBOT3_MODEL)" doc="model type [burger, waffle,
waffle_pi]™/>

4 <arg name="cmd_vel topic” default="/cmd_wvel™ />

5 <arg name="odom_topic” default="odom" />

6 <arg name="move_forward_only” default="false"/>

7 <!-- move_base --»

B~ <node pkg="move_base” type="move_base” respawn="false" name="move_base" output="screen”>

] <param name="base_local_planner” value="dwa_local_planner/DWAPLlannerR0OS" />

12 <rosparam file="%(find turtlebot3_navigation)/param/costmap_common_params_%(arg model
).yaml™ command="1load" ns="global_costmap™ />

11 <rosparam file="%(find turtlebot3 navigation)/param/costmap_common_params_%(arg model
).yaml™ command="load"” ns="local_costmap” />

12 <rosparam file="$(find turtlebot3_navigation)/param/local_costmap_params.yaml"” command
="load" />

13 <rosparam file="$(find turtlebot3_navigation)/param/global_costmap_params.yaml™ command
="load" />

14 <rosparam file="%(find turtlebot3 navigation)/param/move_base_ params.yaml” command="load"
/e

15 <rosparam file="$(find turtlebot3_navigation)/param/dwa_local_planner_params_$%(arg model
J.yaml™ command="1load" />

16 <remap from="cmd_vel" to="%${arg cmd_vel topic)"/»

17 <remap from="odom" to="%(arg odom_topic)"/>

18 <param name="DWAPlannerROS/min_vel x" value="8.8" if="%{arg move_forward_only)" />

19 </node>

286 </launch>

Figura 3.2. Lineas de codigo del archivo move_base. launch para el robot Turtlebot.

Autora: (Robotis, 2019b).

Al igual que en el AMCL, aqui también hay dos partes claras, los argumentos de entrada

al fichero y la ejecucion del nodo.

Los parametros necesarios son: el nombre de los topicos necesarios para navegacion,
cmd_vel, y odom (velocidad y odometria del robot); y el tipo de robot Turtlebot. Estos
valores son después empleados como parametros de entrada sobre el nodo para

ajustarlo a los mensajes que emite el robot.

Para la ejecucion del nodo es necesario proporcionar varios parametros. Entre ellos se
encuentran la localizacion en carpetas de los mapas de caracteristicas tanto global como
local. Estos archivos ya estaban disponibles en la segunda version de Campero. En la
seccion 4.1 se explica el progreso de las versiones de Campero. Anteriormente a esta
segunda version, se empleaban los archivos pertenecientes a Turtlebot con ligeras
modificaciones. Finalmente se utiliza el comando remap para cambiar el nombre de los

topicos a algo que encaje con la nomenclatura empleada por los otros nodos.

25

3.3. Global launch file

Este archivo, Turtlebot3_navigation.launch, ejecuta todos los elementos que
componen la navegacion, incluidos los archivos de las secciones 3.1 y 3.2,, el mapa y el

software necesario (figura 3.3).

1+ <launch>

2 <!-- Arguments -->

3 <arg name="model” default="%(env TURTLEBOT3_MODEL)" doc="model type [burger, waffle, waffle_pi]"/>
4 <arg name="map_file" default="%(find turtlebot3 navigation)/maps/map.yaml"”/>

5 <arg name="open_rviz" default="true"/>

6 <arg name="move_forward_only" default="false"/>

8 <!-- Turtlebotl -->

9+ <include file="$(find turtlebot3_bringup)/launch/turtlebot3_remote.launch”>

18 <arg name="model” walue="%({arg model)™ />

11 </include>

12

13 <!-- Map server -->

14 <node pkg="map_server" name="map_server"” type="map_server"” args="%(arg map_file)"/>
15

16 <1-- AMCL -->

17 <include file="%(find turtlebot3_navigation)/launch/amcl.launch"/>

18

19 <!-- move_base --»

28~ <include file="${find turtlebot3_navigation)/launch/move_base.launch™>

21 <arg name="model" walue="%({arg model)" />

22 <arg name="move_forward_only™ value="%(arg move_forward_only)"/>

23 </include>

24

25 <1-- rviz

26 <group if="%(arg open_rviz)}">»

27 - <node pkg="rviz" type="rviz" name="rviz" required="true"

28 args="-d $(find turtlebot3_navigation)/rviz/turtlebot3_navigation.rviz"/>
29 <fgroup>

38 </launch>

Figura 3.3. Lineas de cédigo del archivo Turtlebot3_navigation.launch para el

robot Turtlebot. Autoria: (Robotis, 2019b).

Este documento esta estructurado en varias partes para una comprension clara del
mismo. Primero se especifican los argumentos de entrada. En este caso, los mas

importantes son el modelo de robot Turtlebot y la localizacién del mapa a abrir.

Posteriormente se procede a la ejecucion del robot. El archivo
Turtlebot3_remote.launch ejecuta unicamente el robot de forma virtual. No
ejecuta ningun otro software de visualizacién o de control, como podrian ser procesos

de navegacion o software como Gazebo o rviz.

El nodo map_server es especifico para cargar un mapa y trabajar sobre él en entornos

virtuales, en este caso, colocar el robot en dicho escenario.

Ahora, desde dentro de este archivo, se llama a los otros dos ficheros previamente
descritos amcl.launch y move_base.launch, que se ejecutaran con sus valores por

defecto.

26

Finalmente, para poder ver el desarrollo de la simulacion realizada con el software, es
necesario ejecutar alguna forma de visualizacion. Para ello ejecutamos el archivo

Turtlebot3_navigation.rviz.

Estos archivos que hemos descrito son los encargados de las ejecuciones realizadas en
el apartado 2.6. En la siguiente seccion se aplican estos conceptos a la navegacion de

nuestro robot movil manipulador.

27

4. Robot Campero

En este Trabajo Fin de Grado se requeria trabajar sobre el modelo de robot Campero.

Este robot esta siendo disefiado por la empresa Robotnik’.

Campero es un robot de cuatro ruedas que tiene un brazo robdtico de seis ejes. El

brazo robético esta situado en la superficie del robot, y se puede programar para dos o

tres dedos, dependiendo de la aplicacion que se desee ejecutar (figura 4.1).

Figura 4.1. Primer plano de Campero en el entorno de simulacién Gazebo.

El robot cuenta con dos escaneres laser, uno frontal y uno trasero. Cada uno es capaz
de observar 270°, y estan colocados en esquinas opuestas del vehiculo. El robot también
incluye una camara optica frontal. También se dispone de dos tipos de ruedas,

omnidireccionales y direccionales.

Para este robot no esta disponible una hoja de especificaciones como en el caso de
Turtlebot. Sin embargo, el software incluye algunas medidas del robot, que dan cuenta
de su magnitud. Asi, el robot emplea ruedas de aproximadamente 40 cm de diametro,
que contrastan claramente con las ruedas de 6,6 cm de diametro presentes en Turtlebot
Waffle Pi. Se trata de un robot mucho mas grande que el Turtlebot Waffle Pi, que parece

estar disenado para utilidades en las que se precisa fuerza y capacidad de transporte.

> Robotnik: Empresa de robética espafiola. C/ Ciudad de Barcelona, 3-A, Valencia (Espaia)

28

4.1. Version del software

Al estar el proyecto Campero en desarrollo durante la realizacion de este TFG, se han
ido actualizando los archivos proporcionados por la empresa. Todas las versiones
recibidas estan firmadas como la version 0.0.0, lo que determina que todavia es un

proyecto relativamente nuevo.

La version original de Campero fue proporcionada el 10 de abril de 2019. Esta incluia
una primera version del robot que simulaba su manejo en dos entornos. En esta version
no habia ninguna mencion sobre la navegacion del robot, por lo que se desarrollaron

archivos de cédigo especificos para este uso.

Posteriormente se recibié una actualizacion el 22 de mayo de 2019 que incluye, entre
otras modificaciones, un paquete de navegacién no operativo en el interior del software
del robot. A pesar de no estar operativo incluye archivos de configuracién sobre el
robot Campero necesarios para la navegacion. Después de probar los cambios incluidos
en el robot, se instalaron los archivos generados hasta el momento en el TFG en el

nuevo destino especificado por el fabricante.

Finalmente se recibié una ultima version el 5 de agosto de 2019 que contenia gran
cantidad de paquetes, pero no aportaba ninguna mejora significativa sobre el paquete de

navegacion. Tras probar esta version se decidio continuar con la version anterior.

4.2. Archivos proporcionados

Tal como se ha descrito. el sistema operativo ROS esta basado en un funcionamiento
por carpetas. Se comienza por establecer un espacio de trabajo (work space) en el que
se generan las carpetas necesarias de nuestro robot. En los siguientes parrafos se
describe el esquema de las carpetas de Campero, principalmente el primer nivel y

cuando sea relevante el segundo.

campero_ws: Esta es la carpeta madre de definicion de Campero, que contiene a todas

las demas:

e Build: Carpeta obtenida al compilar el work space en nuestro espacio de trabajo.
e Devel: Carpeta obtenida al compilar el work space en nuestro espacio de trabajo.
e src/campero: Carpeta source y subcarpeta campero, que tiene los siguientes

componentes:

29

o Campero_common: Contiene los paquetes desarrollados o en desarrollo
disponibles para ejecutar por el robot.

* Campero_control: Paquete encargado del movimiento y control
del robot Campero. Una vez proporcionados los parametros
principales del robot (tipo de ruedas, tipo de brazo...), se encarga del
control de los ejes del robot y de establecer el control de la base del
robot.

= Campero_description: Proporciona las distintas configuraciones
que puede tener el robot (Ruedas omnidireccionales o direccionales
y brazo con tres dedos o dos... cuatro posibles combinaciones en
total). También contiene las descripciones de las estructuras dentro
del robot, como las ruedas o los sensores.

= Campero_localization: Paquete fundamental de localizacion del
robot. Contiene el fichero AMCL y mapas de prueba sobre los que
ejecutar el robot.

o Campero_robot: Archivos de configuracion del robot. Fundamentalmente
para el inicio y el control.

o Campero_sim: Ficheros para la simulacion del robot y sus escenarios.

= Campero_gazebo: Archivos principales de ejecucion. Contiene la
ejecucion del software Gazebo (solo, junto con el robot campero, o
junto a rviz). También incluye los escenarios sobre los que ejecutar
Gazebo.

= Campero_sim_bringup: Contiene el archivo de ejecucion principal.
Esta disenado para ejecutar el robot campero en un escenario
exterior junto con Gazebo y rviz para conseguir una primera toma de
contacto con el robot y manejarlo libremente por la escena.

o Openrave_catkin: Paquete de instalacion necesario para el funcionamiento
del robot. Para poder ejecutarlo correctamente es necesario instalarlo desde
la terminal de Linux, al instalarse con ROS. OpenRAVE es un software de
simulacion de robots para desarrollo, simulacion y aplicacion de algoritmos

de motion planning®

6 Motion planning: Se emplea para encontrar una secuencia de movimientos validos que muevan el robot
desde su posicion de origen hasta su destino evitando obstaculos. (Wikipedia Contributors, 2019c)

30

o Robotnik_msgs: Paquete de mensajes para los robots de la empresa
Robotnik.
o Robotnik_sensors: Paquete de los sensores de robots de la empresa

Robotnik.

4.3. Instalacidén y ejecucion

A continuacion, se explica la instalaciéon del robot Campero a partir de los ficheros

pertinentes.

El primer paso consiste en colocar el espacio de trabajo campero_ws junto al espacio
catkin_ws instalado por defecto con Turtlebot. Una vez colocado debemos eliminar
los archivos devel y build para poder compilarlo en el ordenador de trabajo. Sobre

la terminal de Linux se ejecutan los siguientes comandos:
cd campero_ws/
catkin_make

Esto compilara el espacio de trabajo para poder operar en él. Es posible que en este
punto aparezcan mensajes de error o de advertencia diciendo que falta alglin paquete

necesario de ROS. Algunos estos paquetes son:
ros-kinetic-mavros
ros-kinetic-localization
ros-kinetic-costmap-prohibition-layer
ros-kinetic-teb-local-planner
ros-kinetic-twist-mux
ros-kinetic-teleop-tools
ros-kinetic-openrave
ros-kinetic-universal-robot
Para poder instalar los paquetes es necesario ejecutar comandos de este tipo:

sudo apt-get install [nombre del paquete]

31

Al tratarse de un comando “sudo”, el sistema pedira la contraseia de administrador.
Una vez instalados todos los paquetes necesarios y compilado el espacio debemos anadir

un plugin de teleoperacion:
cd campero_ws/src
git clone https://github.com/RobotnikAutomation/teleop_panel.git
cd..
catkin_make

Una vez anadido este plugin y compilado todo el espacio adecuadamente procedemos a

declaralo entorno de trabajo:
rosws init campero_ws
source devel/setup.bash

Ahora deberia estar correctamente instalado el robot Campero. Para comprobar su
correcto funcionamiento probamos a ejecutar un entorno de prueba proporcionado por

Robotnik para el manejo de Campero:
roslaunch campero_sim_bringup campero_complete.launch

Una vez ejecutado correctamente y estando ademas Gazebo y rviz en ejecucion, se

puede probar a manejar el robot desde la pantalla de rviz.

Con estos pasos el robot deberia proporcionar un correcto funcionamiento y

deberiamos observar las siguientes pantallas de Gazebo (Figura 4.2) y rviz (Figura 4.3).

32

Figura 4.2. Simulacion del robot Campero en el entorno Gazebo, en el escenario por

defecto exterior.

Figura 4.3. Simulacion del robot Campero en el entorno rviz, en el escenario por

defecto exterior.

33

34

5. Navegacion sobre el robot Campero

Una vez descrito el funcionamiento del paquete de navegacion del robot Turtlebot y
documentados los archivos de especificaciones del robot Campero, se describen los

aspectos principales de la navegacion de Campero.

5.1. Preparacion Inicial

Para comenzar, es preciso especificar donde se quiere aplicar el paquete de navegacion.
En ROS se puede aportar capacidades de navegacion a un robot de distintas formas. Las
dos formas que se plantearon en este trabajo fueron: 1) la creacion de un nuevo espacio
de trabajo que se encargue de la comunicacion y que aloje los ficheros de navegacion, y
2) el desarrollo de un nuevo paquete, dentro de los ficheros del robot Campero, que se

encargue de la navegacion.
5.1.1. Modelo inicial

La opcién de crear un nuevo espacio de trabajo y comunicar el nuevo espacio de trabajo
con el espacio de trabajo catkin_ws, se vio afectada por problemas. Esta opcidn
Unicamente se puede aplicar si el robot esta configurado de una forma especifica,
compatible con el entorno catkin_ws. Para conseguir esto seria necesario
reestructurar los archivos del robot y renombrar nodos y topicos para que se adaptaran

a lo preestablecido por ejemplo en el paquete de navegacion del robot Turtlebot.

Este problema hizo que se desestimara la primera opcién y se opto por el desarrollo de
un paquete de navegacion propio para el robot Campero. Para ello se empieza creando

un paquete dentro del espacio de trabajo campero_ws:
cd campero_ws/src/campero
catkin_create_pkg campero_navigation std_msgs rospy roscpp
Con esto creamos el paquete en la localizacion deseada, pero todavia falta compilarlo:
cd
cd campero_ws
catkin_make

Este proceso deberia de haber creado el paquete correctamente con los archivos

packahe.xml y cmakelists.txt.

35

5.1.2. Versiéon con navegacion

Conforme avanzaba con el proyecto e iban llegando nuevas versiones del robot
Campero, llegd una version que dejaba claro que se estaba trabajando en el desarrollo

de la navegacion del robot.

Se observa que se habia creado un paquete con el mismo nombre en el sistema, pero
en un nivel inferior, en la subcarpeta campero_common. A pesar de estar creado, el
paquete estaba casi vacio: sélo contenia archivos basicos del paquete. Entre ellos estaban
los archivos de configuracion del robot necesarios para poder aplicar la navegacion,
archivos que es necesario incluir como argumentos para lanzar el nodo de navegacion
del robot. Se tomé la decision de adaptarse a la nueva localizacion del paquete y se
movieron los archivos de navegacion previamente desarrollados a esta localizacion,

usando los datos de configuracion recibidos en esta version del software de campero.

5.2. Archivos finales

En esta seccidn se explican los nuevos ficheros de Campero con detalle. Los ficheros

necesarios para este sistema de navegacion son:

e AMCL, encargado de la localizacion del robot en cada momento.

e move_base, encargado principal de la navegacion.

e one_robot, encargado de ejecutar el robot sin ningun software extra (una funcion
similar a la del fichero Turtlebot3_remote.launch).

e Un fichero de ejecucion global.
5.2.1. AMCL

Para poder aplicar el codigo AMCL sobre nuestro robot es preciso identificar un
conjunto de valores correctos para los parametros necesarios. Los parametros mas
importantes para el correcto funcionamiento de este algoritmo son los nombres de los
topicos sobre los que publica nuestro robot. Es necesario localizar los topicos

responsables para poder incluirlos en el codigo:
Scanner: front_laser/scan
Mapa/global frame: campero_map
Odometria: campero_odom

Base frame: campero_base footprint

36

También es necesario saber qué tipo de rueda emplear para poder aplicarlo como

parametro en la categoria “odom_model_type”.

El codigo completo empleado, que incluye comentarios sobre cada parametro, se

presenta en el Anexo 10.2.
5.2.2. Move_base

Como ya se ha comentado, este archivo es el principal encargado de la navegacion de
nuestro robot. En estos archivos se empieza por asignar valores a los parametros
necesarios para la ejecucion, entre ellos los nombres de los topicos. Los topicos mas
importantes a destacar son el de velocidad de navegacion y el que hace referencia a la
odometria de navegacion, ambos diferentes a la odometria y velocidad normales. Estos
topicos de navegacidn se usan exclusivamente para enviar las velocidades calculadas en
navegacion, mientras que los empleados por defecto son de uso exclusivo para un

movimiento manual del robot.

Una vez pasamos los parametros comienza la ejecucion del nodo move_base. Entre los
pardmetros necesarios para su ejecucion estan los parametros de los costmaps’
necesarios. Como nuestro robot dispone de dos tipos de ruedas, ha sido necesario

colocar una clausula condicional que permita diferenciar sobre cual estamos trabajando.

Ahora encontramos uno de los problemas que enfrentaremos mas adelante. El nodo
move_base requiere un topico como el escaner que vamos a emplear, pero nuestro
robot no dispone de un Unico escaner, sino que dispone de dos para cubrir los 360°.
Por esta razéon hemos tenido que elegir cual de ambos le proporcionamos al sistema,

que en este caso fue el frontal.
El codigo completo empleado esta en el Anexo 10.3.

5.2.3. One_robot

El codigo de este archivo se basa en la ejecucion de una instancia del robot sin ningin

otro add on para, posteriormente, ejecutar el software de navegacion.

Se empieza estableciendo los argumentos de entrada requeridos en la ejecucién. En

primer lugar, se requiere el nombre del robot, ya que podria darse la situacion de que

7 Costmap: Mapa de caracteristicas que indica la posicién de obsticulos en el mundo. Aplicado
principalmente en navegacion se actualiza conforme recibe informaciéon de los sensores. (Open Source
Robotics Foundation, 2019b).

37

se quisieran representar varios robots en un entorno para simular tareas cooperativas
o entornos multi-robot. A continuacion, se especifica la posicion inicial del robot. Esta
informacion no tiene mucha relevancia ya que se puede modificar posteriormente en el
software de visualizacion y el propio algoritmo puede obtenerla de forma detallada. El
archivo xacro permite identificar la configuracion en la que se encuentra el robot (tipo
de ruedas y de brazo). Este es un archivo XML en un formato que lo hace mas corto y
legible. Lo mismo sucede con el mapa que queremos representar en rviz, en el caso de
que no lo haya creado el software del robot en si (SLAM). El robot también necesita

otros parametros dependientes del tipo de ruedas o del tipo de localizacion empleado

(odometria o AMCL).

El siguiente paso es ejecutar el nodo que conlleva la simulacion del robot en Gazebo,
siguiendo el esquema tanto del robot Turtlebot como de los ficheros propios del robot
Campero. También es necesario ejecutar el nodo que permita el control del mismo y
que simule las uniones de sus partes, lo que se especifica en la carpeta

campero_control.

Habiendo cubierto estos apartados, la ejecucion de este archivo deberia crear un robot
en el entorno de Gazebo para permitir aplicarle el algoritmo deseado, en nuestro caso

la navegacion del robot.
El codigo completo empleado esta en el Anexo 10.4.

5.2.4. Global

Finalmente, fue preciso desarrollar un archivo de ejecucion global, que debera ejecutarse
para poner en marcha todo el programa. Esto implica ejecutar los archivos anteriores,
ejecutar el nodo de mapeado y el software empleado, rviz y Gazebo. Empezamos, como

en todos los casos, con los argumentos de entrada para la ejecucion del archivo.

Entre estos argumentos, al igual que en el modelo del Turtlebot, estan presentes el
nombre del robot, la posicion inicial, el xacro y el mapa, y el tipo de movimiento y

brazo.

El argumento del prefijo también debe especificarse en este archivo. Viendo otros
archivos del robot Campero, se pudo observar que el nombre de los topicos varia en
funcion del nombre del robot, lo que esta preparado para evitar superposiciones en la

emision de informacion por tépicos. El nombre del robot se posiciona al principio de

38

todos los topicos en los que publican los nodos pertinentes al mismo. Por esta razon se
incluye un argumento con ID del robot que pasa a ser el prefijo usado para localizar los

topicos y acceder a ellos.

Posteriormente, necesitamos ejecutar el algoritmo descrito anteriormente para
posicionar un robot en nuestro entorno de simulacion. Para pasarle los parametros
necesarios basta con referirse a los que le hemos puesto a la entrada, los cuales deberian

ser suficientes para ejecutar correctamente el archivo.

Como dato importante se puede apreciar que, antes de ejecutar el robot, se coloca un
indicador que se encarga de abrir un grupo. Esto dictamina que todos los elementos en
su interior estan bajo el mismo nombre. Este paso es fundamental para el
funcionamiento, ya que de otra manera seria imposible localizar los tépicos facilmente y

no se podrian ejecutar entornos multi-robot en un futuro.

El archivo map_server se encarga de cargar el mapa sobre el que observar la
simulacion. En su interior contiene el nodo del mismo nombre que empieza el proceso.
La ultima parte de este codigo cierra el grupo, ya que se han ejecutado todos los archivos

necesarios en su interior.

A continuacién, de forma opcional se ejecuta un fichero que simula la accidon de la

gravedad. Solo tiene utilidad en el caso de un posible choque, para que el robot en la
. 8 . .

simulacion vuelva a la posicion de reposo. Si este PID® no estuviera implementado, en el

momento en el que el robot se chocara podria quedar levitando y seria preciso reiniciar

la simulacion.

Como parte final de este codigo se ejecutan Gazebo y rviz para poder observar la

simulaciéon en un visualizador.

El cédigo completo empleado esta en el Anexo 10.5.

8 Control Proporcional, Integral y Derivativo

39

6. Experimentacion con el robot Campero

En esta seccion se explica el funcionamiento del cédigo presentado en la seccion 5 y se

aplica a casos de estudio.

6.1. Reconocimiento del entorno

Previo a la ejecucion de la navegacion es necesario realizar un mapa del entorno en el
caso de que no dispongamos de uno de antemano. Para esto es necesario emplear la
funcionalidad de Gmapping y SLAM introducida en el archivo global de ejecucion.

Ejecutamos el siguiente codigo en una terminal:
Roslauch campero_common campero_navigation
campero_nav.launch gmapping:=true

Con esto deberiamos de ejecutar la navegacion del robot junto a un mapeado del

entorno. En rviz deberia mostrarse el robot empezando a mapear el entorno, tal como

se aprecia en la figura 6.1.

Figura 6.1. Robot Campero sobre un entorno sin mapear.

40

Aqui se evidencia la problematica de emplear un Unico escaner: el robot presenta un
punto ciego tanto en navegacion como en mapeado que le impide ver obstaculos en 90°
de su vision. Ahora podemos mover el robot manualmente por el entorno o aplicar la
navegacion para conseguir un mejor resultado en el mapa. Tras enviar el robot por el

mapa deberiamos tener una imagen similar a la figura 6.2.

-

Figura 6.2. Robot Campero sobre un entorno mapeado.

Una vez explorado el entorno debemos guardar el mapa producido. Sin cerrar la

ejecucion anterior abrimos otra terminal:
rosrun map_server map_saver map:=/campero/map -f mymap
Este comando creara dos archivos: mymap . pgm y mymap.yaml.
El archivo mymap . pgm se presenta en el Anexo 10.6.
Ahora es preciso colocar estos archivos en la propia ejecucion de la simulacion:
Roslaunch campero_common campero_navigation
campero_nav.launch map:=

[Directorio en el que guardemos el mapa]

41

Tras esta ejecucion se puede proceder con la navegacion.

6.2. Navegacion en exterior con ruedas diferenciales

A continuacién, se muestra un caso de estudio en el entorno exterior con las ruedas
por defecto de Campero: diferenciales. Antes de ejecutar la navegacion, como el
entorno es conocido de antemano, ejecutamos la linea siguiente haciendo referencia a

la localizacion del mapa del entorno:
Roslaunch campero_common campero_navigation
campero_nav.launch map:=
[Directorio en el que guardemos el mapa]

Una vez ejecutado este comando deberiamos ver que se empiezan a ejecutar Gazebo y
rviz para la visualizaciéon de nuestra navegacion. Cabe destacar que no es necesario
ejecutar un maestro antes (roscore) debido a que roslaunch ya se encarga de

ejecutarlo por si mismo.

Al ejecutar este algoritmo deberiamos ver imagenes similares a las que se presentan en

la figura 6.3 (Gazebo) y 6.4 (rviz).

- MO8 [E%:Z | mRRO|E

»
»
3
»
»
»
»
»
»
3

1, ReslTime Factor: i Real Time:

Figura 6.3. Representacion en Gazebo de una simulacion con el robot Campero usando

ruedas diferenciales en el entorno exterior.

ioteract G Mevecamers [selet 4 fousCamers eaMemure f DPusbwmae 4 Dnewoesl @ AbEiRoe F =. &

D pisplays.

» @ Global options
+ v Global Status: Ok
» & Grid

* iy RobotModel A
+ A ResrLaser

» 7 FrontLaser

. Views

Type: |Orbit (rvi) 2| | Zero

Focal Shap.
Focal shap... [

CL L)

» B image

A

Output Topic: |campero/cmd_vel

save Remove | | Rename

© Time
ROS Time: [245.76 ROS Elapsed: [245.70 Wall Time: [1564927833.42 | wall Elapsed: [400.00) Experimental

Reset 31fps

Figura 6.4. Representacion de una simulacién exitosa de Campero en rviz.

De esta manera se puede apreciar en Gazebo que se ha simulado correctamente el
robot junto con el entorno de simulacion. Por otro lado, en rviz vemos el robot y los

sensores disponibles, tanto la cdmara como el sensor frontal.

Para probar el sistema de navegacion, en rviz debemos establecer un objetivo a alcanzar

por el robot.

De la misma forma que en el caso del Turtlebot, es posible indicar a Campero el destino
de la navegacion por medio de una terminal. Para ello es preciso realizar una serie de
cambios para adaptar el comando usado en Turtlebot, principalmente sobre el nombre
de los topicos. El topico a modificar es el del destino, pero Campero trabaja con varios

topicos que interactian con el destino, principalmente:
/campero/move_base/goal
/campero/move_base_simple/goal

Tenemos que seleccionar cual de estos topicos emplear para comunicarle el destino de

navegacion a nuestro robot en funcion de las ventajas e inconvenientes que incluyan.

El primero consiste en una forma de interaccion que prepara el destino para la
introducciéon de una cadena de diferentes destinos, dindole un ID a cada uno y
posteriormente las coordenadas. Este tépico requiere la introduccion de datos en

formato “MoveBaseActionGoal” (Open Source Robotics Foundation, 2019h).

43

El segundo es el mas similar al usado en Turtlebot. Requiere el mismo formato de
introduccion de datos, “PoseStamped”, y tiene un funcionamiento similar, por lo que

es el que emplearemos.

Una vez elegido el topico sobre el que publicar, necesitamos cambiar el nombre del
topico empleado para el mapa. Campero emplea “campero_map”. Una vez modificado

se aplica la posicion y la orientacion de la misma forma que Turtlebot.
El comando que obtenemos es:

rostopic pub /campero/move_base_simple/goal
geometry_msgs/PoseStamped '{header: {stamp: now,
frame_id: "campero_map"}, pose: {position: {x: 3.0, y:

0.0, z: 0.0}, orientation: {w: 1.0}}}’

Para este trabajo vamos a emplear la opcion de menu de rviz “2D Nav Goal”, pero tanto

esta opcion como el comando anterior dan los mismos resultados. Hacemos la seleccion

que se presenta en la figura 6.5.

Figura 6.5. Representacion en rviz del destino de la navegacion del robot Campero.

Robot Campero en la posicion inicial del recorrido.

44

Intencionadamente hemos seleccionado un camino que requiere esquivar obstaculos,
arboles en este caso. Si el robot siguiera un camino recto colisionaria con estos. Tal

como se aprecia en la figura 6.6, el robot localiza el obstaculo y recalcula una ruta para

llegar al destino.

Figura 6.6. El robot Campero durante la navegacion, tras esquivar los obstaculos.

Robot Campero en un punto intermedio del recorrido.

Se aprecia como el software de navegacion y de evitacion de obstaculos se ha acoplado
correctamente a Campero y ha sido capaz de esquivar el obstaculo introducido para

llegar al destino. (figura 6.7).

45

Figura 6.7. El robot Campero ha alcanzado su destino.

6.3. Navegacion en interior con ruedas omnidireccionales

En esta seccidn se muestra un caso de estudio que consiste en la navegacion en otro
entorno proporcionado por la empresa Robotnik, que incluye ruedas omnidireccionales.
La figura 6.8 muestra en Gazebo este entorno cerrado que se corresponde con el
interior de una construccion. El entorno tiene forma rectangular, y tiene una pared
interior que permite al robot acceder a la parte trasera por los dos lados. Delante de la
pared hay tres obstaculos pegados a ella a modo de mesas. Al igual que en el caso
anterior, en las primeras simulaciones es necesario realizar un mapa del entorno, que se
empleara mas adelante para guiar la navegacion. El archivo resultante, mapaInt.pgm se

presenta en el Anexo 10.7.

46

Figura 6.8. Representacion en Gazebo de una simulacion con el robot Campero usando

ruedas omnidireccionales en el entorno interior.

La figura 6.9 muestra en rviz a campero en este mismo entorno. Se puede comprobar
que el robot esta equipado con ruedas omnidireccionales realizando una simulacion
particular: se establece como destino el mismo punto de origen y se comprueba que
para ejecutarla el robot hace una rotacion pura sin desplazarse. Tras hacer otras pruebas
simples y comprobar que la navegacion funciona adecuadamente, procedemos a ejecutar
una simulaciéon mas compleja. Para ello, establecemos cémo objetivo un punto en la

parte posterior de la pared interior, tal como se muestra en la figura 6.10.

Una vez establecido el objetivo, el software de navegacion se encarga de esquivar el
obstaculo principal, la pared interior. La figura 6.11 muestra al robot en transito,
rodeando la pared interior. La figura 6.12 muestra al robot detenido en el punto de

destino y con la orientacion deseada.

47

Figura 6.9. Representacion en rviz del robot Campero usando ruedas

omnidireccionales en el entorno interior.

Figura 6.10. Representacion en rviz del robot Campero con un objetivo de navegacion

establecido en un punto localizado tras la pared interior.

48

Figura 6.1 1. Representacion en rviz del robot Campero navegando hacia el objetivo,

para lo que debe rodear la pared interior.

Figura 6.12. Representacion en rviz del robot Campero detenido en el punto de

destino y con la orientacion deseada.

49

7. Discusion general

7.1. Simulacién con el robot Turtlebot

Las simulaciones de la navegacion de Turtlebot Waffle Pi han funcionado en general de
forma adecuada. Todavia se aprecian algunos problemas que es necesario pulir, como
errores de ejecucion y algin error en el mapeado. Sin embargo, la tecnologia de
navegacion aplicada a este robot ha sido muy eficaz. Sélo es necesario resolver algunos
aspectos para conseguir una ejecucion mas fluida. Las simulaciones con Turtlebot me
han permitido familiarizarme con los procedimientos de gmapping y SLAM, que pude

luego aplicar al robot Campero con pequenas adaptaciones.

A pesar de estar muy desarrollado, Turtlebot presenté alguna complicacién en relacion
con la instalacion y la ejecucion. Fue necesario instalar algunos paquetes necesarios para
la ejecucion de otros. Una vez instalado, seguir los pasos del tutorial no resulté suficiente
para conseguir simulaciones exitosas. El problema result6 estar asociado a la ejecucion
del mapa. Pude resolver este problema realizando una ejecucion por partes en distintas
terminales, tal como se explica en el apartado 2.6. Tras solucionar esto, la ejecucion del
robot seguia provocando errores. Por ello, nuevamente, fue necesario ejecutar el robot
en una nueva terminal. Resueltos estos problemas, se pudo ejecutar las simulaciones. Sin
embargo, en ocasiones aparecian mensajes de errores y advertencias que eran

compatibles con la continuacién de la ejecucion del programa.

La navegacion de Turtlebot en las condiciones experimentales se beneficid de disponer
de un solo escaner con cobertura de 360°. De esta manera, no habia angulos muertos y
el robot pudo evitar los obstaculos correctamente. Aunque en este entorno el robot se
haya beneficiado de este sensor Unico, en otros casos podria ser mas practico usar varios

sensores.

7.2. Simulacion con el robot Campero

La instalacion de Campero no dio problemas especificos. La guia del robot y la guia
proporcionada por los tutores de este trabajo permitieron progresar de forma rapida y

firme.

Las simulaciones realizadas sobre Campero han sido satisfactorias, pero han puesto de
manifiesto que el robot esta una fase inicial de su desarrollo y que todavia necesita

mucho trabajo para llegar a una madurez similar a la de Turtlebot. Las simulaciones han

50

permitido navegar con el robot Campero en dos entornos diferentes, aunque con dos

limitaciones relevantes.

La primera limitacion importante es que en ocasiones el planificador de trayectorias no
consigue trazar un camino desde la localizacion actual hasta el objetivo. Este es el caso
de simulaciones que necesitan esquivar obstaculos con trayectorias complejas. A la vista
de estas situaciones en Gazebo, parece ser fisicamente posible llegar, pero el software
no es capaz de trazar el camino. En estos casos, el software de navegacion se muestra
demasiado restrictivo. Cabe pensar que haya diferencias entre la geometria real de
Campero y los parametros geométricos introducidos en move_base.launch. Esto
podria explicar también algunas colisiones durante las maniobras. El hecho de que se
usara la misma rutina de navegacioén en Turtlebot sin dar lugar a estos problemas me

hace pensar que el error podria localizarse en la parametrizacién del robot Campero.

La segunda limitacion de las simulaciones con Campero consiste en que el software de
navegacion (move_base. launch) sélo gestiona una entrada de senal de escaner. En el
caso de Campero, como dispone de dos escaneres, se eligioé usar el escaner delantero.
Como consecuencia, nos encontramos con un punto ciego durante la navegacion de 90°
(la parte trasera izquierda). Esto es especialmente limitante para la navegacion con las
ruedas omnidireccionales, ya que a la hora de girar o de dirigirse hasta el destino el
robot no detecta los obstaculos por su punto ciego y puede sufrir colisiones. Con ruedas
direccionales el problema es menos importante porque el robot siempre se dirige de
cara hacia el destino (el punto ciego esta a la espalda del robot). Con las ruedas
direccionales, este problema puede ser importante durante los giros que realiza el robot

al posicionarse antes de moverse o después de llegar al destino.

51

8. Conclusiones

La realizacion de este TFG ha permitido que el alumno se familiarizara con la herramienta
ROS, habiendo realizado una instalacion exitosa de Ubuntu, ROS, Turtlebot 3 vy
Campero, habiendo manejado los archivos que implementan SLAM y la navegacion
autonoma de ambos robots, y habiendo completado simulaciones en distintos robots,

configuraciones, entornos y modos.
Ademas, de este TFG se derivan las siguientes conclusiones:

|. ElSoftware de Turtlebot para ROS esta ya muy desarrollado y da lugar a simulaciones
de navegacion exitosas en situaciones que requieren trayectorias complejas que
cambian durante la propia simulacion. Sin embargo, se han encontrado problemas
durante la ejecucion, que han necesitado la apertura simultanea de varias terminales
de Ubuntu.

2. El software de Campero para ROS esta en una fase de progreso rapido por parte de
la empresa Robotnik, a pesar de que los archivos de codigo fuente todavia estan en
una version inicial. Entre abril y agosto de 2019 se han recibido tres versiones con
mejoras importantes en cuanto a la parametrizacién de la navegacion y desarrollo
del brazo robodtico. Sin embargo, el software de Campero no contiene en este
momento rutinas especificas para la navegacion.

3. Las rutinas de navegacién de ROS usadas en Turtlebot se han aplicado con éxito a
Campero, usando los parametros del robot recibidos en la version de 22 de mayo
de 2019. Con esta configuracion, Campero ha realizado navegaciones en dos
entornos y dos tipos de ruedas, alcanzando los puntos propuestos.

4. Las simulaciones realizadas con campero han puesto de manifiesto dos limitaciones
del estado actual del software y su parametrizacion: |) en algunos casos en que es
necesario esquivar obstaculos, el robot no es capaz de trazar un camino que
visualmente parece posible o bien colisiona en las maniobras; y 2) el software de
navegacion solo acepta la entrada de uno de los dos sensores de Campero, lo que

genera un punto ciego al elegir uno de los dos.

52

9. Recomendaciones para trabajos futuros con el

robot Campero

En relacion con las posibles mejoras a implementar en trabajos futuros con Campero,
sera preciso abordar la mejora de la navegacion. Los parametros geométricos usados en
la version con la que esta realizado el trabajo parecen no ser completamente adecuados.
El primer paso para resolver este problema seria revisar con detalle la parametrizacion

de la geometria del robot.

Otras posibles mejoras llevarian a incluir otros paquetes que puedan ser de interés para
el usuario o para mejorar las capacidades del robot. Este seria el caso de otras formas
de localizacién, de otras rutinas de navegacién o de entornos multirobot. Quizas la
mejora mas clara podria ser el desarrollo de un software especifico para el manejo del
brazo robético localizado en la superficie del robot Campero, que actualmente no esta
operativo. ROS tiene una gran variedad de utilidades para el control de robots

manipuladores, que podrian adaptarse a Campero.

Como ya se ha comentado, a lo largo del trabajo se han ido recibiendo nuevas versiones
con actualizaciones del software de Campero. Cabe esperar que este intenso desarrollo
continuara en un futuro, por lo que dejaran de ser necesarias algunas de las
recomendaciones actuales y apareceran otras que daran pie a nuevos trabajos. Las
nuevas versiones del software apuntan a mejoras inminentes en los campos de
navegacion y de manejo del brazo robdtico. Por ello, convendria trabajar en la
introduccion de nuevos paquetes o del desarrollo de entornos multirobot. Entre las
funciones que pueden ser interesantes para el usuario, se incluyen la conduccion
autonoma (incluyendo, por ejemplo, paquetes similares al “Autonomous Driving” de
Turtlebot) o paquetes para la manipulacion de objetos en un entorno multirobot y

colaborativo.

Para finalizar, Campero es todavia un proyecto joven que requiere de mucho trabajo y

dedicacion. Existen gran cantidad de mejoras y de correcciones a realizar.

10. Anexos

10.1.

Archivo de especificaciones del robot Waffle Pi por la empresa Robotis

e Features

#ROS

WORLD’S MOST POPULAR ROS PLATFORM

TurtleBot is the world's most popular open source robot
for education and research.

AFFORDABLE COST

orda atfoem

TurtieBot is the aft

for educations a arch & developments

SMALL SIZE

magine the TurtleBot in

lotype re

your backpack and bang it anywhere

EXTENSIBILITY

Extend ideas beyond imagination
with various SBC, sensor, motor and flexible structure

- MODULAR ACTUATOR
(“"") Easy to assemble, maintain, replace and reconfigure
\ -
Pr—
OPEN SOURCE SOFTWARE
Vanety of open sourc e for the user
You can medify downlo source code and share it with your friends
~
————y’
(OPEN SOURCE HARDWARE
Schematics, PCB Gerber, BOM and 3D CAD data
are fully opened 1o the user
(.] STRONG SENSOR LINEUPS
360
High utilized Raspberry Pi Camera, Enhanced 360° LIDAR,
9-Axis Inertial Measurement Unit and precise encoder for your robat.

e Main Components

Raspberry Pi Camera
for Perception

Bluetooth Module
for Remote Controller

Li-Po Battery 11.1V 1,800mAh

Scalable Structure

~. ./ 360° LIDAR for SLAM & Navigation

-

Single Board Computer
(Raspberry Pi)

}
i SR

OpenCR
(32-bit ARM® Cortex®-M7)

DR

e

Sprocket Wheels for Tire and Caterpillar

DYNAMIXEL x 2 for Wheels

* Specification

Items Waffle Pi
Maximum Translational Velocity 0.26m/s
Maximum Rotational Velocity 1.82rad/s (104.27 deg/s)
Maximum Payload 30kgs
Size (L x W x H) 281mm x 306mm x 14Tmm
Weight (+ SBC + Battery + Sensors) 1.8kgs
Operating Time About 2hr
Charging Time About 2hr 30min
DYNAMIXEL XM430-W210-T
SBC Raspberry Pi 3
Embedded Controller OpenCR (32-bit ARM® Cortex®-M7)
Sensor Raspberry Pi Camera
360° LIDAR
3-Axis gyroscope
3-Axis accelerometer
3-Axis magnetometer

141mm (H)

306mm (W)

Al =281x306x141

"4
(Lx W x H, mm)

=1.8Kg

281mm (L)

54

55

10.2. Archivo de cédigo amcl.launch para el robot Campero

Autoria: Cddigo creado por Jorge Playan a partir del fichero de AMCL de Turtlebot. Valores empleados

para los pa

rametros por la empresa Robotnik.

<?’xml ve
<launch>

<!-- Arg

<arg

<!--
<arg
<arg
carg
<arg

<!-- AMC

<l--
<nod

rsion="1.0"?>

uments -->
name="prefix" default="campero_"/>

Busca los topics -->

name="scan_topic" default="front_laser/scan"/>
name="map_topic" default="$(arg prefix)map"/>
name="global frame" default="$(arg prefix)map"/>
name="odom_frame" default="$(arg prefix)odom"/>
name="base_frame" default="$(arg prefix)base_ footprint"/>

name="odom_model_type" default="diff"/>

Posiciones iniciales -->

name="x_init_pose" default="0.0"/>
name="y init_pose" default="0.0"/>
name="z_init_pose" default="0.0"/>
name="a_init_pose" default="0.0"/>
L -->

Ejecutamos el nodo "amcl" con los siguientes parametros -->
e pkg="amcl" type="amcl" name="amcl" output="screen">

<!--cambiar el nombre en funcién del de tu sensor-->
<remap from="scan" to="$(arg scan_topic)"/>

<remap from="map" to="$(arg map_topic)"/>

<param name="use_map_topic" value="false"/>

<!-- Rango de particulas, ajustar el max

en funcioén de la potencia del pc -->
<param name="min_particles" value="500"/>
<param name="max_particles" value="3000"/>
<!-- Max error entre la distribucién estimada y la real -->
<param name="kld_err" value="0.02"/>
<param name="kld z" value="0.99"/>

<!-- Valores para un filtro? -->

<param name="update_min_d" value="0.20"/>

<param name="update_min_a" value="0.20"/>
<!-- Intervalo de re-sampling -->
<param name="resample_interval" value="1"/>
<!-- Tiempo de conversioén permitido, s -->
<param name="transform_tolerance" value="0.2"/>
<!-- Index drop rate, si es 0.0 es que esta desactivado -->
<param name="recovery_alpha_slow" value="0.00"/>
<param name="recovery_alpha_fast" value="0.00"/>
<!-- Posicién inicial -->
<param name="initial pose_x" value="$(arg x_init _pose)"/>
<param name="initial pose_y" value="$(arg y_init_pose)"/>
<param name="initial pose_z" value="$(arg z_init _pose)"/>
<param name="initial pose_a" value="$(arg a_init _pose)"/>
<!-- Periodo maximo de mostrar la info del scan y el path, en Hz -->
<param name="gui_publish_rate" value="50.0"/>
<!-- Parametros del sensor de distancia -->
<!-- Valores max de distancia y de rayos usados -->
<param name="laser_max_range" value="3.5"/>
<param name="laser_max_beams" value="180"/>
<l-- mixed weight of sensor model? -->
<param name="laser_z hit" value="0.5"/>
<param name="laser_z_ short" value="0.05"/>
<param name="laser_z_ max" value="0.05"/>
<param name="laser_z rand" value="0.5"/>
<!-- Desviacion estandar -->
<param name="laser_sigma_hit" value="0.2"/>
<!-- Drop rate para z_short -->
<param name="laser_lambda_short" value="0.1"/>

<param name="laser_likelihood_max_dist" value="2.0"/>

<!-- Tipo de sensor ("likelihood field" o "beam") -->
<param name="laser_model type" value="likelihood field"/>
<!-- Parametros de odometria -->
<l-- Forma de conduccién, "diff" o "omni" -->
<param name="odom_model_ type" value="$(arg odom_model type)"/>

<!-- Valores estimados de notion noise -->

<param name="odom_alphal"
<param name="odom_alpha2"
<param name="odom_alpha3"
<param name="odom_alpha4"
<param name="odom_alpha5"
<!-- Odometry frame -->
<param name="odom_frame_id"
<!-- Robot base frame -->
<param name="base_ frame_id"
<param name="global frame_id"
</node>

</launch>

value="0.1"/>
value="0.1"/>
value="0.1"/>
value="0.1"/>
value="0.1"/>

value="$(arg odom_frame)"/>

value="$(arg base frame)"/>
value="$(arg global frame)"/>

57

58

10.3. Archivo de cédigo move_base.launch para el robot Campero

Autoria: Codigo basado en move_base.launch de Turtlebot. Contiene llamadas a ficheros de parametros

creados por la empresa Robotnik.

<?xml version="1.0"?>
<launch>

<!-- Arguments -->

<arg name="prefix" default="campero_"/>

<!-- Busca los topics -->
<arg name="cmd_vel topic" default="move_base/cmd_vel"/>
<!-- Distinto del toépico de velocidad normal -->

<arg name="odom_topic" default="robotnik_base_control/odom"/>
<arg name="global frame" default="$(arg prefix)map"/>

<arg name="odom_frame" default="$(arg prefix)odom"/>

<arg name="base_ frame" default="$(arg prefix)base_footprint"/>
<arg name="scan_topic" default="front_laser/scan"/>

<arg name="omni" default="true"/>

<!-- Ejecutar move_base -->
<!-- Ejecutamos el nodo -->
<node pkg="move_base" type="move_base" respawn="false"
name="move_base" output="screen">

<!-- Parametros que le pasamos al nodo -->
<rosparam file=

"$(find campero_navigation)/config/move base params.yaml"
command="load" />

<!-- Parametros de constmaps local y global -->
<rosparam file=
"$(find campero_navigation)/config/costmap_common_params.yaml"
command="1load" ns="global_costmap" />
<rosparam file=
"$(find campero_navigation)/config/costmap_common_params.yaml"
command="1load" ns="local_ costmap" />
<rosparam file=
"$(find campero_navigation)/config/local costmap params.yaml"
command="load" />
<rosparam file=
"$(find campero_navigation)/config/global costmap_params_map.yaml"
command="load" />

<!-- If para el tipo de ruedas -->
<rosparam if="$(arg omni)"
file=

59

"$(find campero_navigation)/config/teb_local planner_omni_params.yaml"

command="1load" />
<rosparam unless="$(arg omni)"
file=

"$(find campero_navigation)/config/teb _local planner_diff params.yaml"

command="1oad" />

<!-- Parametros relativos al sensor laser -->
<param name=

"global costmap/obstacle layer/scan/sensor_frame"
value="$(arg prefix)front_laser_ link"/>
<param name=

"local_costmap/obstacle layer/scan/sensor_frame"
value="$(arg prefix)front_laser_link"/>
<param name=

"global costmap/obstacle_layer/scan/topic"
value="$(arg scan_topic)"/>
<param name=

"local costmap/obstacle layer/scan/topic"
value="$(arg scan_topic)"/>

<!-- Parametros de los marcos -->
<param name=

"local _costmap/global_ frame"
value="$(arg odom_frame)"/>
<param name=

"local _costmap/robot_base_frame"
value="$(arg base_frame)"/>
<param name=

"global costmap/global_ frame"
value="$(arg global frame)"/>
<param name=

"global costmap/robot_base_ frame"
value="$(arg base_frame)"/>
<param name=
"DWAPlannerR0OS/global_frame_id"
value="$(arg odom_frame)"/>
<param name=
"TebLocalPlannerROS/map_frame"
value="$(arg global frame)"/>

<!-- Especificos de navegacion -->

<param name=

"base_local planner"

value="teb_local planner/TebLocalPlannerROS" />
<param name=

"controller_frequency"

value="5.0" />

<param name=

"controller_patience"
value="15.0" />

<!-- Renombrar -->

<remap from="cmd_vel" to="$(arg cmd_vel topic)" />

<remap from="odom" to="$(arg odom topic)" />
</node>

</launch>

60

61

10.4. Archivo de cédigo campero_one_robot_nav.launch para el robot Campero

Autoria: Jorge Playan. Basado en la ejecucion de navegacion del Turtlebot. Creacion del robot basada en

“campero_one_robot.launch” por la empresa Robotnik.

<?xml version="1.0"?>
<launch>

<!-- Argumentos de entrada -->
<!-- Nombre del robot -->
<arg name="id_robot" default="campero"/>

<!-- Posicidén inicial -->

<arg name="x_init_pose" default="0"/>
<arg name="y _init_pose" default="0"/>
<arg name="z_init_pose" default="0"/>

<!-- Xacro utilizada -->
<arg name="xacro_robot" default="campero_rubber.urdf.xacro"/>

<!-- Mapa de rviz -->
<arg name="map_file" default="empty/empty.yaml"/>

<!-- Tipo de movimiento -->
<arg name="robot_localization_mode" default="odom"/>
<arg name="ros_planar_move_plugin" default="false"/>

<!-- Tipo de brazo -->
<arg name="3_finger_gripper" default="false"/>

<!-- Empieza el robot-->

<!-- Prefijo -->
<arg name="prefix" value="$(arg id_robot) "/>

<!-- Load the URDF into the ROS Parameter Server -->
<param name="robot_ description”
command="$(find xacro)/xacro
'$(find campero_description)/robots/$(arg xacro_robot)'
prefix:=$(arg prefix)
ros_planar_move_plugin:= $(arg ros_planar_move_plugin)
--inorder"/>

<!-- Nodo que publica datos del robot -->

<node name="robot_state_ publisher"”
pkg="robot_state_publisher"
type="robot_state publisher”
respawn="false"

62

output="screen">

<remap from="/joint_states" to="joint states" />
<!-- Cambio de nombre -->

</node>

<!-- Spawn del robot en Gazebo -->
<node name="urdf_spawner_campero_model"
pkg="gazebo_ros"
type="spawn_model"
respawn="false" output="screen"
args="-x $(arg x_init_pose)
-y $(arg y_init_pose)
-z $(arg z_init_pose)
-] campero_url@_elbow_joint -2
-J campero_url@_shoulder_lift_joint -0.785
-] campero_url@_shoulder_pan_joint -0.785
-J campero_front_ptz_camera_tilt_joint -2
-] campero_front_ptz_camera_pan_joint 3.14
-urdf
-param robot_description
-model $(arg id_robot)
-unpause

n />

<!-- Empieza nodos de control del robot campero -->
<include file="¢(find campero_control)/launch/campero_control.launch">
<arg name="prefix" value="$(arg prefix)"/>
<arg name="sim" value="true"/>
<arg if="$(arg ros_planar_move_plugin)"
name="kinematics" value="steel _omni"/>
<arg name="ros_planar_move_plugin”
value="$(arg ros_planar_move_plugin)"/>
<arg name="launch_robot_localization" value="false"/>
<arg name="3_finger_gripper" value="$(arg 3_finger_gripper)"/>
</include>

</launch>

63

10.5. Archivo de cédigo campero_nav.launch para el robot Campero

Autoria: Jorge Playan. Basado en archivos de ejecucion global de Turtlebot y de la empresa Robotnik para

Camepero.

<?xml version="1.0"?>
<launch>

<!-- Argumentos de entrada -->
<!-- Nombre del robot -->
<arg name="id_robot" default="campero"/>

<!-- Posicidén inicial -->

<arg name="x_init_pose" default="0"/>
<arg name="y _init_pose" default="0"/>
<arg name="z_init_pose" default="0"/>

<!-- Ejecucidén de Gmapping, idealmente deberiamos ejecutarlo al principio
y manejar manualmente el robot por el entorno para realizar un mapa vy,
posteriormente, anadirlo -->

<arg name="gmapping" default="false"/>

<!-- Xacro utilizada -->
<arg name="xacro_robot" default="campero_mecanum.urdf.xacro"/>

<!-- Mapa de rviz -->
<arg name="map_file" default="empty/map_empty.yaml"/>

<!-- Tipo de movimiento y localizacidén -->
<arg name="robot_localization_mode" default="odom"/>
<arg name="ros_planar_move_plugin" default="true"/>

<!-- Tipo de brazo -->
<arg name="3_finger_gripper" default="false"/>

<!-- Prefijo para encontrar topics -->
<arg name="prefix" value="$(arg id_robot)_"/>

<!-- Ejecutar el robot campero -->
<!-- Colocamos todos los nodos en el grupo del Robot -->
<group ns="$(arg id_robot)">

<!-- E1 Robot -->
<include file=
"$(find campero_gazebo)/launch/campero_one_robot nav.launch">

<!-- Argumentos -->
<!-- Nombre -->

64
<arg name="id_robot" value="$(arg id_robot)"/>

<!-- PosiciA3n inicial -->

<arg name="x_init_ pose" value="$(arg x_init_pose)"/>
<arg name="y_init_pose" value="$(arg y_init_pose)"/>
<arg name="z_init_ pose" value="$(arg z_init _pose)"/>

<!-- Xacro -->
<arg name="xacro_robot" value="$(arg xacro_robot)"/>

<!-- Mapa -->
<arg name="map_file" value="$(arg map_file)"/>

<!-- Movimiento especifico para ruedas "omni" -->
<arg name="ros_planar_move_plugin"
value= "$(arg ros_planar_move plugin)"/>

<!-- Brazo -->
<arg name="3_finger_gripper"
value="$(arg 3_finger_gripper)"/>
</include>

<!-- Ejecutar MapServer-->
<include file="¢$(find campero_localization)/launch/map_server.launch">

<!-- Para poder buscar topics -->
<arg name="prefix" value="$(arg prefix)"/>

<!-- Mapa -->
<arg name="map_file" value="$(arg map_file)"/>
</include>

<!-- Ejecutar AMCL-->
<include file="$(find campero_localization)/launch/mi_amcl.launch">

<!-- Para poder buscar topics -->
<arg name="prefix" value="$(arg prefix)"/>

<!-- Tipo ruedas (diff o omni) en funcidn
del tipo de movimiento -->
<arg if="$(arg ros_planar_move_plugin)"
name="odom_model type" value="omni"/>
<arg unless="$(arg ros_planar_move_ plugin)"
name="odom_model_type" value="diff"/>

<!-- Posicion inicial -->

<arg name="x_init pose" value="$(arg x_init_pose)"/>

<arg name="y_init_pose" value="$(arg y_init_pose)"/>

<arg name="z_init pose" value="$(arg z_init_pose)"/>
</include>

<!-- Ejecutar MoveBase -->

<include file="$(find campero_navigation)/launch/move_base.launch">

<!-- Para poder buscar topics -->
<arg name="prefix" value="$(arg prefix)"/>

<!-- Tipo de ruedas -->

<arg name="omni" value="$(arg ros_planar_move_plugin)"/>
</include>
<!-- Ejecutar gmapping -->

<include if="$(arg gmapping)"
file="$(find campero_localization)/launch/slam_gmapping.launch">

<arg name="prefix" value="$(arg prefix)"/>

</include>
<!-- Fin del grupo -->
</group>
<!-- Activa un PID que simula la gravedad-->
<rosparam command="load"
file=

"$(find campero_control)/config/gazebo/gazebo_controller_omni.yaml"/>

<!-- Ejecutar Gazebo y rviz-->
<include file="$(find campero_gazebo)/launch/gazebo_rviz.launch">

<!-- Ejecutar rviz -->
<arg name="launch_rviz" value="true"/>

<!-- Mundo de Gazebo-->
<arg name="world"
value="$(find campero_gazebo)/worlds/campero_outside.world"/>

<!-- Setting debug-->
<arg name="debug" value="false"/>
</include>
</launch>

65

10.6. Archivo de mapa del entorno exterior mymap . pgm

66

Autoria: Jorge Playan cred el mapa. El entorno de simulacion fue creado por la empresa Robotnik.

10.7. Archivo de mapa del entorno interior mapalnt.pgm

67

Autoria: Jorge Playan creo6 el mapa. El entorno de simulacion fue creado por la empresa Robotnik.

68

| 1. Bibliografia

Batard, P. (5 de Agosto de 2019). Rufus. Obtenido de https://rufus.ie/

COMMANDIA. (15 de septiembre de 2019). Robédtica mévil colaborativa de objetos
deformables en aplicaciones industriales. Obtenido de

http://commandia.unizar.es/es/lo-basico-de-commandia/

Open Source Robotics Foundation. (4 de agosto de 2019a). ROS. Obtenido de

https://www.ros.org/

Open Source Robotics Foundation. (5 de Agosto de 2019b). Costmap_2d. Obtenido de

http://wiki.ros.org/costmap_2d

Open Source Robotics Foundation. (5 de Agosto de 2019c). TurtleBot. Obtenido de

http://wiki.ros.org/Robots/TurtleBot

Open Source Robotics Foundation. (5 de Agosto de 2019d). Kinetic Installation Ubuntu.

Obtenido de http://wiki.ros.org/kinetic/Installation/Ubuntu

Open Source Robotics Foundation. (5 de agosto de 2019e). rviz. Obtenido de

http://wiki.ros.org/rviz

Open Source Robotics Foundation. (28 de Agosto de 2019g).
geometry_msgs/PoseStamped Message. Obtenido de

http://docs.ros.org/melodic/api/geometry_msgs/html/msg/PoseStamped.html

Open Source Robotics Foundation. (28 de Agosto de 2019h).
move_base_msgs/MoveActionGoal Message. Obtenido de
http://docs.ros.org/fuerte/api/move_base_msgs/html/msg/MoveBaseActionGoal.

html

Open Soure Robotics Foundation. (5 de agosto de 2019f). Gazebo. Robot Simulation Made

Easy. Obtenido de http://gazebosim.org/

Robotis. (4 de agosto de 2019). Turtlebot 3 Wiaffle Pi. Obtenido de

http://www.robotis.us/turtlebot-3-waffle-pi/

Robotis. (5 de Agosto de 2019b). Turtlebot 3 PC Setup. Obtenido de

http://emanual.robotis.com/docs/en/platform/turtlebot3/pc_setup/#pc-setup

69

Ubuntu releases. (5 de Agosto de 2019). Ubuntu 16.04.06 LTS (Xenial Xersus). Obtenido

de http://releases.ubuntu.com/16.04/

Wikipedia contributors. (4 de agosto de 2019a). Wikipedia, the free encyclopedia.
Obtenido de Middleware:
https://en.wikipedia.org/w/index.php?title=Middleware&oldid=902648688

Wikipedia Contributors. (4 de agosto de 2019b). Wikipedia, The Free Encyclopedia.
Obtenido de Robot Operating System:
https://en.wikipedia.org/w/index.php?title=Robot_Operating_System&oldid=90
4579289

Wikipedia Contributors. (5 de Agosto de 2019c). Wikipedia, The Free Encyclopedia.

Obtenido de Motion Planning: https://en.wikipedia.org/wiki/Motion_planning

Wyrobek, K. (31 de octubre de 2017). The Origin Story of ROS, the Linux of Robotics.
IEEE Spectrum. Obtenido de
https://spectrum.ieee.org/automaton/robotics/robotics-software/the-origin-

story-of-ros-the-linux-of-robotics

