ANEXOS

ANEXO A: Ejemplo de analisis de las tramas del protocolo
PLC Lite

Se analizaron las tramas mas relevantes que nos permitian cambiar y obtener los valores
de los parametros configurables, asi como las tramas que nos permitian mandar y recibir
datos.

Como ejemplo, se analiza la trama get system_info que pregunta al modem la
configuracién y éste contesta con la informacion de la configuracion. Los datos se han
obtenido con el propio software de Tl poniendo formato raw en la visualizacion.

El resultado mostrado por pantalla es el siguiente:

2017-04-14 11:49:35.8558: Message Sent:

0x01 80 04 00 2A 81 00 00
2017-04-14 11:49:35.8558: Sending: (0x01) -
SystemInformation.Request:
2017-04-14 11:49:35.8871: Message Received:
0x01 00 3C 00 4C 36 00 00 05 01 0x00 04 00 00 00 00 00 00 00 00
0x00 00 00 00 00 OO0 00 0O 00 0O 0x05 03 00 00 00 00 00 00 00 00
0x00 01 00 00 00 00 00 0O 00 0O 0x01 00 18 00 01 00 87 00 00 00
0x00 00 00 00
2017-04-14 11:49:35.8871: Receiving: (0x01) - SystemInformation:

Firmware Version: Major:4 Minor:0 Revision:1 Build:5
Serial Number Length: 0

Serial Number: Ox

Device Type: FLEX Lite
Device Mode: Point To Point
Hardware Revision: 0
Diagnostics Port: SCI A
Data Port: SCI A

PHY Mode: ROBO
Band: HalfBand
Start Tone: 0087
Address Enable: False
Address Size: 1

Address Offset: 24
Address One: 0x00
Address Two: 0x00
Address Three: 0x00

La primera trama, se envia desde el ordenador al mddem, los cuatro primeros nimeros
hexadecimales son la cabecera y los cuatro siguientes son los cddigos CRC. En detalle
son:

- 0x01: Trama Get System Info

- 0x80: Originada desde el host

- 0x04 00: Longitud de los datos

- Ox2A 81: CRC cabecera

- 0x00 00: CRC datos (si es 0, se ignora en recepcion)

La segunda trama, es la contestacion del mddem a la peticion de la configuracion del
sistema. Los cuatro primeros son también la parte de la cabecera de la trama, los cuatro
siguientes los cddigos CRC y los demas son los datos. En detalle son:

- 0x01: Trama Get System Info

- 0x00: Originada desde el médem

- 0x3c 00: Longitud de los datos (60 en decimal)
- Ox4C 36: CRC cabecera

- 0x00 00: CRC datos

- 0x05 01 00 04: Firmware version (Major: 4, Minor: 0, Revision: 1, Build:5)
- 0x00 00: Longitud Serial Number (desactivado)
- 0x00 00 ... 00: Serial Number (16 octetos con valor 0)
- 0x05: Tipo de dispositivo

- 0x03: Modo dispositivo (Punto a Punto)

- 0x00 00: Revisién hardware

- 0x00 00 00 00 00 00: Reservado

- 0x00: Puerto (SCI A)

- 0x01: PHY Mode (ROBO)

- 0x00 00 00 00 00 00 00 00: Reservado

- 0x01 00: Tamafio direccion

- 0x18 00: Offset direccion

- 0x87 00: Start tone

- 0x00: Direccion 1

- 0x00: Direccion 2

- 0x00: Direccion 3

ANEXO B: Disefno de una placa con el amplificador OPA564

Esquematico de la placa disefiada con el amplificador OPA564 que nos proporciona la misma salida que el médem para probar los
transformadores y asi evitar dafiar los médems. Para realizar el PCB se uso la herramienta Eagle.

%

Vdig>
T10pF D
1N4732A
7

C2 Vce
u 1
c .
R4 k:“ 1G5
"/ D2 D4 0,1F |47yF
A !
veR 78 Z8
c1 B350| BAV99T GND
i L1 Cc3
c | . AR | . Vout >
i - OPA564 1pH 10pF
D1 D3 D5
VaS Jay %i
B350 BAV99T MBJ60CA

?L GND

ANEXO C: Cadigo desarrollado

C.1: Programa getsystem.c

/* Programa que envia un getsystem al médem, lee y parsea la respuesta
obteniendo los valores configurados */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <termios.h>

#include <stdio.h>

#include <unistd.h>

#include <strings.h>

/I Constantes

#define BAUDRATE B57600

#define MODEMDEVICE "/dev/ttyUSB0"
#define _POSIX_SOURCE 1

/I Funciones

void configuration_serialport(struct termios, int fd);

/[Estructura trama get system info

struct struct_getsystem {
unsigned char header [4];
unsigned char flags_tx;
unsigned char flags_rx;
unsigned char modulation [2];
unsigned char power_tx [2];
unsigned char pattern [20];
unsigned char gain_rx [10];

unsigned char subbands [10];

int main()

{

int fd;

int i=0;

int bytes_leidos, bytes_escritos;

struct termios newtio;

struct struct_getsystem getsystem;

// Trama GET SYSTEM INFO (0x8A)

unsigned char buf_getsystem[4] = {Ox8A, 0x80, 0x00, 0x00};

/I Abrir puerto serie, en modo lectura escritura

fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY);

// Funcion de configuracion puerto serie

configuration_serialport(newtio, fd);

/[Escritura trama get system info

bytes_escritos = write(fd,buf_getsystem,sizeof(buf_getsystem));

/I Control de error de escritura
if (bytes_escritos !=4) {

printf("[ERROR] NO se han escrito 4 Bytes por el puerto serie \n");

Il Lectura resultado get system info

bytes_leidos = read(fd,&getsystem,sizeof(struct struct_getsystem));

I/l Control errores lectura
if (bytes_leidos !'=50) {
printf("[ERROR] NO se han recibido 50 Bytes\n");

I/ Procesado de la trama y salida por pantalla
printf("Tipo de trama: GET SYSTEM (%#04x)\n",getsystem.header[0]);
printf("Flags activados en tx %#04x\n",getsystem.flags_tx);
printf("FLAGS:\n");
if ((getsystem.flags_tx & 0x80) == 0x80) {
printf("\tROBO TX\n");
} if ((getsystem.flags_tx & 0x01) == 0x01) {
printf("\tFEC\n");
1} if ((getsystem.flags_tx & 0x02) == 0x02) {
printf("\tAGC ON\n");
} if ((getsystem.flags_rx & 0x01) == 0x01) {
printf("\tROBO RX\n");
}

printf("Flags activados en rx: %#04x \n", getsystem.flags_rx);

switch (getsystem.modulation[0]) {

case 0:
printf("Modulacion: DBPSK\n");
break;

case 1:
printf("Modulacion: DQPSK\n");
break;

case 3:
printf("Modulacion: DBPSK + 1/4 rep\n™);
break;

case 4:
printf(*Modulacion: DBPSK + 1/8 rep\n™);
break;

default:

printf("No se reconoce la modulacion configurada\n™);

printf("Nivel potencia en transmision: %d \n", getsystem.power_tx[0]);
printf("Nivel AGC en recepcion: %d\n", getsystem.gain_rx[0]);
printf("AGC min: %d\n", getsystem.gain_rx[4]);

printf("AGC max: %d\n", getsystem.gain_rx[6]);

printf("Saltos de AGC: %d\n", getsystem.gain_rx[8]);

return O;

}

// Funcion configuracion puerto serie
void configuration_serialport(struct termios newtio, int fd) {
bzero(&newtio, sizeof(newtio));

newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; //57600, 8N1, ignora las lineas
de control del modem y activa receiver

newtio.c_iflag = IGNPAR | IGNCR; //Sin paridad y traduce CR en nueva linea
newtio.c_oflag = 0;

newtio.c_Iflag = 0; //forma NO canonica

newtio.c_cc[VTIME] = 1; //Tiempo en ms que se queda bloqueada la lectura
newtio.c_cc[VMIN] = 59; //Numero de caracteres minimo que espera recibir
tcflush(fd, TCIFLUSH);

tesetattr(fd, TCSANOW,&newtio); //Carga el struct termios como nueva configuracion

C.2: Programa getinfo.c
/* Programa que manda un getinfo al médem, lee y parsea la respuesta

obteniendo los valores configurados */
#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <termios.h>

#include <stdio.h>

#include <unistd.h>

#include <strings.h>

I/ Constantes

#define BAUDRATE B57600

#define MODEMDEVICE "/dev/ttyUSB0"
#define _POSIX_SOURCE 1

/IFunciones

void configuration_serialport(struct termios, int fd);

/I Estructura trama get info

struct struct_getinfo {
unsigned char header [4];
unsigned char crc_header [2];
unsigned char crc_payload [2];
unsigned char firmware [4];
unsigned char serialNumber_length [2];
unsigned char serialNumber [16];
unsigned char device_type;
unsigned char device_mode;
unsigned char hw_rev [2];
unsigned char reserved [4];
unsigned char port;
unsigned char phy_mode;
unsigned char reserved_2 [8];
unsigned char address_length [2];
unsigned char address_offset [4];
unsigned char band [2];
unsigned char startTone [2];

unsigned char mac_filter [2];

int main()

{

int fd;

int i=0;

int bytes_leidos, bytes_escritos;

struct termios newtio;

struct struct_getinfo getinfo;

// Trama GET SYSTEM

unsigned char buf_getinfo[8] = {0x01, 0x80, 0x04, 0x00, 0x2A, 0x81, 0x00, 0x00};

/I Abrir puerto serie, en modo lectura escritura

fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY);

// Funcion de configuracion puerto serie

configuration_serialport(newtio, fd);

/ Escritura trama get info

bytes_escritos = write(fd,buf_getinfo,sizeof(buf getinfo));

// Control de error de escritura
if (bytes_escritos !=8) {
printf("[ERROR] NO se han escrito 8 Bytes por el puerto serie \n");

Il Lectura resultado get system

bytes_leidos = read(fd,&getinfo,sizeof(getinfo));

I/l Control errores lectura
if (bytes_leidos !'=60) {
printf("[ERROR] NO se han recibido 60 Bytes\n");

I/ Procesado de la trama y salida por pantalla

printf(*Tipo de trama: GET SYSTEM INFO (%#04x)\n",getinfo.header[0]);

if ((getinfo.device_type == 0x05) && (getinfo.device_mode == 0x03)) {
printf("Device type: PLC LITE\n");
printf("Device Mode: P to P Mode\n");

}else {

printf("No esta en modo Point to Point y no se esta utilizando el protocolo PLC Lite");
}
if (getinfo.port == 0) {

printf("SCI Port: A\n");

}else {
printf("SCI Port: B\n");

}
if (getinfo.phy_mode == 0) {
printf("Modo ROBO: ON \n");

}else {
printf("Modo ROBO: OFF \n");

}
if (getinfo.band[0] == 1){
printf("Band: Half-Band\n");

}else {
printf("Band: Full-Band\n™);

}
printf(*"Start tone: %d \n", getinfo.startTone[0]);

return O;

}

// Funcion configuracion puerto serie
void configuration_serialport(struct termios newtio, int fd) {

bzero(&newtio, sizeof(newtio));

newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; //57600, 8N1, ignora las
lineas de control del modem y activa receiver

newtio.c_iflag = IGNPAR | IGNCR; //Sin paridad y traduce CR en nueva linea
newtio.c_oflag = 0;

newtio.c_Iflag = 0; //forma NO canonica

newtio.c_cc[VTIME] = 1; //Tiempo en ms que se queda bloqueada la lectura
newtio.c_cc[VMIN] = 59; //Numero de caracteres minimo que espera recibir
tcflush(fd, TCIFLUSH);

tesetattr(fd, TCSANOW,&newtio); //Carga el struct termios como nueva configuracion

C.3: Programa set_tx.c
/* Programa que cambia los parametros de transmision del médem */

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <termios.h>
#include <stdio.h>
#include <unistd.h>
#include <strings.h>

#include <stdlib.h>

// Constantes

#define BAUDRATE B57600

#define MODEMDEVICE "/dev/ttyUSB0"

#define _POSIX_SOURCE 1 /* POSIX compliant source */

/[Funciones
void configuration_serialport(struct termios, int fd);
void printuso(char *progname);

struct struct_set_tx initargs(int argc, char **argv, char *verb, int* robo, int* fec, int* ptx, int*
mod, int* band);

/[Estructura trama set_tx

struct struct_set_tx {
unsigned char header [4];
unsigned char flags_tx [2];
unsigned char modulation [2];
unsigned char power_tx [2];

unsigned char subbands [10];

/[Variables globales estaticas para ancho de banda y ROBO
static intb = 0;

static intr = 1;

int main(int argc, char *argv[])
{

int fd;

int i=0;

int bytes_leidos, bytes_escritos;
struct termios newtio;

struct struct_set_tx set_tx_2;

unsigned char buf_lectura[10]; //Leer el ACK de los cambios

/[Array trama para cambiar ancho de banda (byte 13)

unsigned char buf_band [36] = {Ox0c, 0x80, 0x1f, 0x00, 0x25, 0x67, 0x68, 0x3b, 0x09, 0x00,
0x04, 0x00, 0x01, 0x00, 0x87, 0x00, 0x0b, 0x00, 0x02, 0x00, 0x01, 0x00, 0x0a, 0x00, 0x09,
0x00, 0x01, 0x00, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00};

char verb;
int robo;
int fec;
int ptx;
int mod;

int band;

/Mnicializacion del buffer de lectura
for (i=0; i<sizeof(buf_lectura); i++) {

buf_lectura[i] = 0x00;

/I Abrir puerto serie, en modo lectura escritura

fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY);

// Funcion de configuracion puerto serie

configuration_serialport(newtio, fd);

/[Estructura gque guarda los cambios de parametros introducido por linea de comandos

set_tx_2 =initargs(argc, argv, &verb, &robo, &fec, &ptx, &mod, &band);

/IConfiguracién del ancho de banda
if (b==1){

buf _band [12] = 0x01;
}else if (b == 0){

buf_band [12] = 0x00;

¥
/[Configuracion ROBO o0 no ROBO a nivel global (TXy RX)
if r==1){

buf_band [20] = 0x01;
}elseif (r==0){
buf_band [20] = 0x00;

I Escritura y lectura del cambio de ancho de banda
bytes_escritos= write(fd,buf_band,sizeof(buf_band));
bytes_leidos = read(fd,buf_lectura,sizeof(buf_lectura));

/I Escritura y lectura de los demas parametros de configuracion

bytes_escritos= write(fd,&set_tx_2,sizeof(struct struct_set_tx));

bytes_leidos=read(fd,buf_lectura,sizeof(buf_lectura));

return O;

}

// Funcion configuracion puerto serie
void configuration_serialport(struct termios newtio, int fd) {
bzero(&newtio, sizeof(newtio));

newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; //57600, 8N1, ignora las lineas
de control del modem y activa receiver

newtio.c_iflag = IGNPAR | IGNCR; //Sin paridad y traduce CR en nueva linea
newtio.c_oflag = 0;

newtio.c_lflag = 0; //forma NO canonica

newtio.c_cc[VTIME] = 1; //Tiempo en ms que se queda blogueada la lectura
newtio.c_cc[VMIN] = 6; //Numero de caracteres minimo que espera recibir
tcflush(fd, TCIFLUSH);

tesetattr(fd, TCSANOW,&newtio); //Carga el struct termios como nueva configuracion

// Funcion que indica el uso del programa
void printuso(char *progname) {

fprintf(stderr,"Uso: %s [-v] -rf[ROBO] [-f[FEC]] [-p[Ptx]] [-m[modulation] -
b[band]]\n",progname);

fprintf(stderr, "Si algun parametro no se introduce, se pondra el valor por defecto");
fprintf(stderr,” -v\t\tMuestra detalles en salida estandar\n™);

fprintf(stderr,” -r[ROBO]\t modo ROBO ON (1), modo ROBO OFF (0) (por defecto: 1)\n");
fprintf(stderr,” -f[FEC]\t FEC ON (1), FEC OFF (0) (por defecto: 1)\n");

fprintf(stderr,” -p[Ptx]\t Nivel de potencia de TX (de 0 a 7), siendo 0 el MAX (por defecto:
2)\n");

fprintf(stderr,” -m[modulation]\tModulacién a utilizar: (por defecto DBPSK) \n");
fprintf(stderr,” 1\ttDBPSK\n");
fprintf(stderr,” 2\ttQPSK\n");

fprintf(stderr,” 3\t\tDBPSK+1/4\n");
fprintf(stderr,” 4\t\tDBPSK+1/8\n");
fprintf(stderr,” -b[band]\tHalf-Band (1) y Full-Band (0) (por defecto: 1)\n");

// Funcion lectura parametros de configuracion por linea de comandos

struct struct_set_tx initargs(int argc, char **argv, char *verb, int* robo, int* fec, int* ptx, int*
mod, int* band) {

char *progname = *argv;
struct struct_set_tx set_tx;

intj=0;

Mnicializacion struct con valores por defecto
set_tx.header [0] = 0x8b; //SET PHY PARAMETERS
set_tx.header [1] = 0x80;
set_tx.header [2] = 0x10;
set_tx.header [3] = 0x00;
set_tx.flags_tx [0] = 0x81; //ROBO TXy FEC
set_tx.flags_tx [1] = 0x02; //PRM
set_tx.modulation [0] = 0x00; //BPSK
set_tx.modulation [1] = 0x00;
set_tx.power_tx [0] = 0x02; //Ptx=2 (6dB)
set_tx.power_tx [1] = 0x00;
for (j=0;j<10;j++){

set_tx.subbands[j]=0x00;

if (argc<2) {
printuso(progname);
exit(1);

}

//Lectura y procesado de los parametros por linea de configuracion

for(argc--,argv++; argc > 0; argc--,argv++) {
if (**argv =="-) {
switch (*(++*argv)) {
case 'v"
*verb=1;
break;
case '
*robo=atoi(++*argv);
printf("ROBO es:%d\n", (int)*robo);
if (*robo == 1){
set_tx.flags_tx [0] = 0x81;
r=1,
}else {
set_tx.flags_tx [0] = 0x00;
r=0;
¥
printf("Flags 0 ROBO tx es %x\n",set_tx.flags_tx [0]);
break;

case 'f":

*fec=atoi(++*argv);

if (*fec == 1){
set_tx.flags_tx [0] = 0x81,;
}else {
set_tx.flags_tx [0] = 0x00;
}
printf("Flags 0 FEC tx es %x\n",set_tx.flags_tx [0]);
break;
case 'p".

*ptx=atoi(++*argv);

printf("El flag de ptx enviado es:%d\n",*ptx);

set_tx.power_tx [0] = (unsigned char)*ptx;
printf("Flags 0 y 1 Ptx tx es %x\n%x\n",set_tx.power_tx [0], set_tx.power_tx[1]);

break;

case 'm":
*mod=atoi(++*argv);
if (*mod == 1){
set_tx.modulation [0] = 0x00;
} else if (*mod == 2){
set_tx.modulation [0] = 0x01;
} else if (*mod == 3){
set_tx.modulation [0] = 0x03;
} else if (*mod == 4){
set_tx.modulation [0] = 0x04;
}
printf("Flags 0 modulation tx es %x\n",set_tx.modulation [0]);;

break;

case 'b":
*pband=atoi(++*argv);
if (*band == 1){
b=1;
}else {
b=0;

}
break;

default:
printuso(progname);

exit(1);

else {
printuso(progname);

exit(1);

if (*verb) {

fprintf(stderr,"Valores de parametros: r=%d, f=%d, p=%d, m=%d,
b=%d\n",*robo,*fec,*ptx,*mod,*band);

}

return set_tx;

C.4: Programa set_rx.c
/* Programa que cambia los parametros de recepcién del moédem */

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <termios.h>
#include <stdio.h>
#include <unistd.h>
#include <strings.h>

#include <stdlib.h>

/I Constantes

#define BAUDRATE B57600

#define MODEMDEVICE "/dev/ttyUSB0"

#define _POSIX_SOURCE 1 /* POSIX compliant source */

/[Funciones
void configuration_serialport(struct termios, int fd);

void printuso(char *progname);

struct struct_set_rx initargs(int argc, char **argv, char *verb, int* robo, int* agc, int* grx);

// Estructura trama set_rx
struct struct_set_rx {
unsigned char header [4];
unsigned char flags_rx [2];
unsigned char gain_rx [2];
unsigned char subbands [10];
b

int main(int argc, char *argv[])
{

int fd;

int i=0;

int bytes_leidos, bytes_escritos;
struct termios newtio;

struct struct_set_rx set_rx_2;
unsigned char buf_lectura[10]; //Leer el ACK de los cambios
char verb;

int robo;

int agc;

int grx;

/lInicializacion del buffer de lectura

for (i=0; i<sizeof(buf_lectura); i++) {
buf_lectura[i] = 0x00;

}

/I Abrir puerto serie, en modo lectura escritura

fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY);

// Funcion de configuracion puerto serie

configuration_serialport(newtio, fd);

/[Estructura que guarda los cambios de parametros introducido por linea de comandos

set_rx_2 = initargs(argc, argv, &verb, &robo, &agc, &grx);

/[Escritura y lectura parametros de configuracion recepcion
bytes_escritos= write(fd,&set_rx_2,sizeof(struct struct_set_rx));
printf("'Los bytes escritos por el puerto serie son %d \n", bytes_escritos);

bytes_leidos=read(fd,buf_lectura,sizeof(buf_lectura));

return O;

}

// Funcion configuracion puerto serie
void configuration_serialport(struct termios newtio, int fd) {
bzero(&newtio, sizeof(newtio));

newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; //57600, 8N1, ignora las lineas de
control del modem y activa receiver

newtio.c_iflag = IGNPAR | IGNCR; //Sin paridad y traduce CR en nueva linea
newtio.c_oflag = 0;

newtio.c_Iflag = 0; //forma NO canonica

newtio.c_cc[VTIME] = 1; //[Tiempo en ms que se queda bloqueada la lectura
newtio.c_cc[VMIN] = 6; //Numero de caracteres minimo que espera recibir
tcflush(fd, TCIFLUSH);

tesetattr(fd, TCSANOW,&newtio); //Carga el struct termios como nueva configuracion

// Funcion que indica el uso del programa

void printuso(char *progname) {
fprintf(stderr,"Uso: %s [-v] -rf[ROBO] [-aAGC]] [-9[Grx]]\n",progname);
fprintf(stderr, "Si algun parametro no se introduce, se pondra el valor por defecto");

fprintf(stderr,” -v\t\tMuestra detalles en salida estandar\n™);

fprintf(stderr,” -rf[ROBQO]\t modo ROBO ON (1), modo ROBO OFF (0) (por defecto: 1)\n");
fprintf(stderr,” -aJAGC]\t AGC ON (1), AGC OFF (0) (por defecto: 1)\n");
fprintf(stderr," -g[Grx]\tganancia amplificador recepcion (por defecto: AGC ON)\n");

}

// Funcion lectura parametros de configuracion por linea de comandos

struct struct_set_rx initargs(int argc, char **argv, char *verb, int* robo, int* agc, int* grx) {
char *progname = *argv;
struct struct_set_rx set_rx;

intj=0;

/Mnicializacion struct con valores por defecto
set_rx.header [0] = Ox8c;//SET PHY PARAMETERS
set_rx.header [1] = 0x80;
set_rx.header [2] = OxOe;
set_rx.header [3] = 0x00;
set_rx.flags_rx [0] = 0x02; //ROBO RX y AGC
set_rx.flags_rx [1] = 0x01,;
set_rx.gain_rx [0] = 0x00; //Prx
set_rx.gain_rx [1] = 0x00;
for (j=0;j<10;j++){
set_rx.subbands[j]=0x00;
}

if (argc<2) {
printuso(progname);
exit(1);
}
for(argc--,argv++; argc > 0; argc--,argv++) {
if (**argv =="-) {
switch (*(++*argv)) {

case 'v"

*verb=1;

break;

case "
*robo=atoi(++*argv);
if (*robo == 0){
set_rx.flags_rx [1] = 0x00;
} else{
set_rx.flags_rx [1] = 0x01;
¥
printf("Flag ROBO es %x\n",set_rx.flags_rx [1]);
break;

case 'a".
*agc=atoi(++*argv);
if (*fagc==0) {
set_rx.flags_rx [0] = set_rx.flags_rx [0] & (~0x02);
printf("Flag agc 0 es %#04x\n",set_rx.flags_rx[0]);
}else {
set_rx.flags_rx [0] = set_rx.flags_rx [0] | Ox02;
printf("Flag agc 1 es %#04x\n",set_rx.flags_rx[0]);
}
printf("Flag agc despues es %x\n",set_rx.flags_rx[0]);

break;

case 'g"

*grx=atoi(++*argv);

if (*agc == 1){
set_rx.gain_rx [0] = 0x00;
Yelse {

set_rx.gain_rx [0] = (unsigned char) *grx;

}

printf("Flag gain_rx es %x\n",set_rx.gain_rx[0]);

break;

default:
printuso(progname);
exit(1);
}
}

else {
printuso(progname);
exit(1);
}
}

if (*verb) {
fprintf(stderr,"Valores de parametros: r=%d, a=%d, g=%d\n",*robo,*agc,*grx);
}

return set_rx;

}

C.5: Programa send_bin.c
/* Programa que lee un fichero con los datos y los empaqueta en tramas para mandarlos */

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <termios.h>
#include <stdio.h>
#include <strings.h>
#include <unistd.h>
#include <time.h>
#include <sys/time.h>

#include <stdlib.h>

/I Constantes

#define LONGITUD_MAXIMA 54 //Longitud maxima de datos en una trama
#define BAUDRATE B57600

#define MODEMDEVICEO "/dev/ttyUSB0"

#define MODEMDEVICEL1 "/dev/ttyUSB1"

#define _POSIX_SOURCE 1 /* POSIX compliant source */

//[Funciones

void CRC16_UpdateChecksum(unsigned short *pcrcvalue, const void *data, int length);
unsigned short CRC16_BlockChecksum(const void *data, int length);

double timeval_diff(struct timeval *a, struct timeval *b);

void configuration_serialport(struct termios, int fd);

// Tabla para calcular CRC
static unsigned short crctable[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, Oxalda, 0xb16b, Oxcl8c, Oxdlad, Oxelce, Oxflef,
0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37h, Oxa35a, 0xd3bd, 0xc39c, 0xf3ff, Oxe3de,
0x2462, 0x3443, 0x0420, 0x1401, Ox64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, Oxe5ee, 0xf5cf, Oxchac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x6616, 0x5695, 0x46b4,
Oxb75b, Oxa77a, 0x9719, 0x8738, Oxf7df, Oxe7fe, 0xd79d, Oxc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, Oxf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
Ox5af5, Ox4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2al2,
Oxdbfd, Oxcbhdc, Oxfbbf, Oxeb9e, 0x9b79, 0x8h58, Oxbb3b, Oxabla,
0x6cab, 0x7c87, Ox4ced, 0x5cc5, 0x2c¢22, 0x3c03, 0x0c60, 0x1c4l,
Oxedae, 0xfd8f, Oxcdec, Oxddcd, Oxad2a, OxbdOb, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, Ox4ef4, 0x3el3, 0x2e32, 0x1e51, 0x0e70,
0xffof, Oxefbe, Oxdfdd, Oxcffc, Oxbflb, Oxaf3a, 0x9f59, 0x8f78,

0x9188, 0x81a9, Oxblca, Oxaleb, 0xd10c, Oxc12d, Oxfl4e, Oxel6f,
0x1080, 0x00al, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83h9, 0x9398, 0xa3fb, Oxb3da, 0xc33d, Oxd31c, 0xe37f, Oxf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
Oxb5ea, Oxa5ch, 0x95a8, 0x8589, 0xf56e, Oxe54f, Oxd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
Oxa7db, Oxb7fa, 0x8799, 0x97b8, Oxe75f, 0xf77e, Oxc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, Oxe92f, 0x99c8, 0x89e9, 0xb98a, Oxa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
Oxcb7d, Oxdb5c, Oxeb3f, Oxfble, 0x8bf9, 0x9bd8, Oxabbb, Oxbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7al6, 0x0afl, Ox1ad0, 0x2ab3, 0x3a92,
0xfd2e, OxedOf, Oxdd6c, Oxcd4d, Oxbdaa, Oxad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c¢83, 0x1ce0, 0x0ccl,
Oxef1f, Oxff3e, Oxcf5d, Oxdf7c, Oxaf9b, Oxbfba, 0x8fd9, 0x9ff8,
Ox6e17, 0x7e36, Ox4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, Ox1ef0

}

//Estructura trama de datos
struct frame {
unsigned char header [4];
unsigned char CRCheader [2];
unsigned char CRCdata [2];
unsigned char mode [2];
unsigned char dataFixed [26];
unsigned char data [LONGITUD_MAXIMA];

unsigned char padding;

void main(int argc, char *argv[]){
struct frame dataFrame;

struct termios newtio;

struct timeval horainicio; // variable para estadisticas finales
struct timeval tvalBefore, tval After;

double secs;

unsigned long ttrans; // tiempo de transmisién a simular
unsigned long timeout; // tiempo de expiracion a simular
FILE *ptr_fich_tx;

char nombre_fichero[] = "ca_10.png";

unsigned char c;

int fdO, fd1;

intij;

unsigned char buffer[LONGITUD_MAXIMA + 1];

int bytes_leidos, bytes_escritos, respuesta;

int tamchar,tamuchar;

int bytes_frame;

int sizeBin;

int numPages;

unsigned short crcCab, crcPay;

unsigned char buf_lectura[100] =
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

unsigned char buf_respuesta[100] =
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

if (argc 1= 2){
printf("Uso: %s nombre_fichero \n", argv[0]);

exit(1);

/I Abrir puerto serie, en modo lectura escritura
if ((fd0 = open(MODEMDEVICEO, O_RDWR | O_NOCTTY)) < 0){

printf("Ha habido un error al abrir el puerto serie™);

// Funcion de configuracion puerto serie

configuration_serialport(newtio, fd0);

/[Tipo de trama -> De datos cabecera fija
dataFrame.header [0] = 0x00;
dataFrame.header [1] = 0x80;
dataFrame.header [3] = 0x00;

/ICRC Payload a 00
dataFrame.CRCdata [0] = 0x00;
dataFrame.CRCdata [1] = 0x00;

//Mode
dataFrame.mode [0] = Ox01;
dataFrame.mode [1] = 0x00;

/[Datos fijos de la trama
dataFrame.dataFixed[0]= 0xa0;
dataFrame.dataFixed[1]= Oxaa;
dataFrame.dataFixed[12]= 0x01;
dataFrame.dataFixed[16]= 0x01;

//Padding
dataFrame.padding = 0x00;

/lInstante de tiempo antes de empezar la transmision

gettimeofday (&tvalBefore, NULL);

/[Apertura fichero en modo lectura y control del error
if ((ptr_fich_tx = fopen(argv[1],"r")) == NULL){
printf("No se ha podido abrir el fichero %s.\n", argv[1]);
¥
else {

clock_t start = clock();

gettimeofday (&tvalBefore, NULL); //medimos justo antes de empezar a enviar los datos

/ICalculo tamafio del fichero y cuantas paginas seran necesarias en funcion de la longitud
maxima

fseek(ptr_fich_tx, OL, SEEK_END);
sizeBin = ftell (ptr_fich_tx);
printf("El archivo %s ocupa: %d\n", argv[1],sizeBin);
numPages = ((sizeBin / LONGITUD_MAXIMA) + 1);
printf("Numero de tramas necesarias para enviar fichero:%d\n",numPages);
dataFrame.dataFixed[16] = numPages;
printf("El numero de paginas es %02hhx\n",dataFrame.dataFixed[16]);
fseek(ptr_fich_tx, OL, SEEK_SET);

while(!feof(ptr_fich_tx)){

bytes_leidos = fread(dataFrame.data,sizeof(unsigned char),
LONGITUD_MAXIMA ptr_fich_tx);

dataFrame.header [2] = (unsigned char) bytes_leidos + 32; //sumo los datos reales mas
los datos fijos que son 32 (4 CRCs + 2 MODE + 26 fijos)

/ICalculo CRCs cabecera y payload

crcCab = CRC16_BlockChecksum (dataFrame.header, sizeof(dataFrame.header));
dataFrame.CRCheader[0] = crcCab;

dataFrame.CRCheader[1] = crcCab >> §;

dataFrame.dataFixed [20] = (unsigned char) bytes_leidos;

if ((argv[1] == ") && (argv[2] =="v"))}{
printf("'Longitud trama enviada %d \n", dataFrame.header[2]);

printf("Longitud datos payload %d\n", (unsigned char)dataFrame.dataFixed[20]);

if (LONGITUD_MAXIMA % 2)1=0){

bytes_frame=sizeof(struct frame);

} else{

bytes_frame=sizeof(struct frame) - 1;

bytes_escritos = write(fd0,&dataFrame,bytes_frame);

printf("Bytes escritos:%d\n" bytes_escritos);

if ((argv[1] =="-") && (argv[2] == "v")){
printf("Los bytes escritos en el puerto serie son %d", bytes_escritos);
¥
usleep (165000); //necessary for BPSK
[lusleep (165000*2.3); //necessary for BPSK+1/4
/lusleep (165000*4.2); //necessary for BPSK+1/8
/lusleep (100000);

Jt;

printf(*Numero de pagina enviada:%02hhx\n",dataFrame.dataFixed[12]);

/IControlar el numero de secuencia (cabecera)
dataFrame.header[1] = ((dataFrame.header[1] + 1) & 0x8f);
dataFrame.dataFixed[12] = dataFrame.dataFixed [12] + 1;

printf(*Numero de secuencia enviada: %02hhx\n",dataFrame.header[1]);

gettimeofday (&tvalAfter, NULL); //Anotamos hora de fin de la transmision
secs = timeval_diff(&tvalAfter, &tvalBefore);

printf("Tiempo: %.7g ms\n", secs*1000);

printf ("Velocidad TX efectiva conseguida: %.6g bps\n",(sizeBin*8/secs));

//Definicion de funciones completas

void CRC16_UpdateChecksum(unsigned short *pcrcvalue, const void *data, int length)
{

unsigned short crc;

const unsigned char *buf = (const unsigned char *) data;

crc = *pcrevalue;

while (length--)

{

cre = (cre << 8) A crctable[(cre >> 8) A *buf++];

¥

*pcrevalue = crc;

}

unsigned short CRC16_BlockChecksum(const void *data, int length)
{

unsigned short crc;

crc=0;

CRC16_UpdateChecksum(&crc, data, length);

return crc;

}

double timeval_diff(struct timeval *a, struct timeval *b)
{
return

(double)(a->tv_sec - (double)b->tv_sec);

// Funcion configuracion puerto serie
void configuration_serialport(struct termios newtio, int fd) {
bzero(&newtio, sizeof(newtio));

newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; //57600, 8N1, ignora las lineas
de control del modem y activa receiver

newtio.c_iflag = IGNPAR | IGNCR; //Sin paridad y traduce CR en nueva linea
newtio.c_oflag = 0;

newtio.c_lflag = 0; //forma NO canonica

newtio.c_cc[VTIME] = 1; //Tiempo en ms que se queda bloqueada la lectura
newtio.c_cc[VMIN] = 20; //Numero de caracteres minimo que espera recibir
tcflush(fd, TCIFLUSH);

tesetattr(fd, TCSANOW,&newtio); //Carga el struct termios como nueva configuracion

C.6: Programa receive_bin.c
/* Programa que recibe y procesa los datos recibidos */

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <termios.h>
#include <stdio.h>
#include <strings.h>
#include <string.h>
#include <unistd.h>
#include <time.h>

#include <sys/time.h>

#include <stdlib.h>

#include <signal.h>

I/ Constantes

#define LONGITUD_MAXIMA 54

#define BAUDRATE B57600

#define MODEMDEVICEL1 "/dev/ttyUSB1"

#define POSIX_SOURCE 1 /* POSIX compliant source */

//Funciones

void configuration_serialport(struct termios, int fd);

void CRC16_UpdateChecksum(unsigned short *pcrcvalue, const void *data, int length);
unsigned short CRC16_BlockChecksum(const void *data, int length);

double timeval_diff(struct timeval *a, struct timeval *b);

void terminarbucle();

typedef enum { false, true } bool;
bool fin = false;
// Tabla para calcular CRC
static unsigned short crctable[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, Oxalda, 0xb16b, Oxcl8c, Oxdlad, Oxelce, Oxflef,
0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37h, Oxa35a, 0xd3bd, 0xc39c, 0xf3ff, Oxe3de,
0x2462, 0x3443, 0x0420, 0x1401, Ox64e6, 0x74c7, 0x44a4, 0x5485,
Oxa56a, 0xb54b, 0x8528, 0x9509, Oxe5ee, 0xf5cf, OxcSac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x6616, 0x5695, 0x46b4,
0xb75b, Oxa77a, 0x9719, 0x8738, Oxf7df, Oxe7fe, 0xd79d, Oxc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, Oxf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
Ox5af5, Ox4ad4, 0x7ab7, 0x6a96, Ox1a71, 0x0a50, 0x3a33, 0x2al2,
Oxdbfd, Oxchdc, Oxfbbf, Oxeb9e, 0x9h79, 0x8h58, Oxbb3b, Oxabla,

Ox6cab, 0x7c87, Ox4ced, 0x5cc5, 0x2¢22, 0x3c03, 0x0c60, 0x1cal,
Oxedae, 0xfd8f, Oxcdec, Oxddcd, Oxad2a, OxbdOb, 0x8d68, 0x9d49,
0x7e97, Ox6ebh6, 0x5ed5, Ox4ef4, 0x3el3, 0x2e32, 0x1e51, 0x0e70,
0xffof, Oxefbe, Oxdfdd, Oxcffc, Oxbflb, Oxaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, Oxblca, Oxaleb, 0xd10c, 0xc12d, Oxfl4e, Oxel6f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, Oxa3fh, 0xb3da, 0xc33d, 0xd31c, Oxe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
Oxb5ea, Oxa5ch, 0x95a8, 0x8589, 0xf56e, Oxe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
Oxa7db, Oxb7fa, 0x8799, 0x97b8, Oxe75f, 0xf77e, Oxc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, Oxe92f, 0x99c8, 0x89e9, 0xb98a, Oxa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08el, 0x3882, 0x28a3,
Oxcb7d, Oxdb5c, Oxeb3f, Oxfble, 0x8bf9, 0x9bd8, Oxabbb, Oxbb9a,
Ox4a75, 0x5a54, 0x6a37, 0x7al6, Ox0afl, Ox1ad0O, Ox2ab3, 0x3a92,
0xfd2e, OxedOf, Oxdd6c, Oxcd4d, Oxbdaa, Oxad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, Ox0ccl,
Oxef1f, Oxff3e, Oxcf5d, Oxdf7c, Oxafob, Oxbfba, 0x8fd9, Ox9ff8,
Ox6e17, 0x7e36, Ox4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, Ox1ef0

}

/[Estructura trama de datos
struct frame {
unsigned char header [4];
unsigned char CRCheader [2];
unsigned char CRCdata [2];
unsigned char mode [2];
unsigned char dataFixed [26];
unsigned char data [LONGITUD_MAXIMA];

unsigned char padding;

void main(int argc, char *argv[]){
struct frame dataFrame;
struct termios newtio;
struct timeval horainicio; // variable para estadisticas finales
struct timeval tvalBefore, tval After,tvalCond;//medir tiempo de inicio y fin
double secs, tiempo_secs;
clock_tt_ini, t fin;
unsigned long ttrans; // tiempo de transmisién a simular
unsigned long timeout; // tiempo de expiracion a simular
unsigned short padding;
FILE *ptr_fich_rx, *ptr_fich_ruido;
char nombre_fichero_ruido[] = "test.bin";
unsigned char c;
int fd1;
intik;
intnum_rx = 1;
int n=0;
unsigned char buf_ruido[LONGITUD_MAXIMA],buf_zero[LONGITUD_MAXIMA];
int bytes_leidos, bytes_escritos, bytes_datos,bytes_ruido;

int sizeBin;

unsigned short crcCab, crcPay;

if (argc 1= 2){
printf("Uso: %s nombre_fichero \n", argv[0]);

exit(1);

//Relleno con O's
for (k=0; k<sizeof(buf_ruido); k++){
buf_ruido [k] = 0x00;

buf_zero [K] = 0x00;

¥
signal(SIGALRM,terminarbucle);

/I Abrir puerto serie, en modo lectura escritura

fdl = open(MODEMDEVICE1, O_RDWR | O_NOCTTY);

// Funcion de configuracion puerto serie

configuration_serialport(newtio, fd1);

/lInstante de tiempo antes de empezar la transmision
gettimeofday (&tvalBefore, NULL);
//Ruido blanco
if ((ptr_fich_ruido = fopen(nombre_fichero_ruido,"r"))==NULL){
printf("No se ha podido abrir el fichero %s.\n",nombre_fichero_ruido);

}else {

bytes_ruido = fread(buf_ruido,sizeof(unsigned char),
LONGITUD_MAXIMA ptr_fich_ruido);

}

//Apertura fichero en modo escritura y control del error
if ((ptr_fich_rx = fopen(argv[1],"w"))==NULL){
printf("No se ha podido abrir el fichero %s.\n",argv[1]);

¥
while (fin==false){

bytes_leidos = read(fd1,&dataFrame,sizeof(struct frame));
if (dataFrame.dataFixed[12] == 0x01) {
gettimeofday (&tvalCond, NULL);

}
bytes_datos = bytes_leidos-36;

printf(*Numero de pagina recibida:%d\n",dataFrame.dataFixed[12]);
printf("Size payload:%d\n",dataFrame.dataFixed[20]);
padding=LONGITUD_MAXIMA-dataFrame.dataFixed[20];
printf("'Long padding:%d\n",padding);

if (dataFrame.dataFixed[20]<LONGITUD_MAXIMA){

memcpy(dataFrame.data+dataFrame.dataFixed[20], buf_zero, padding);

/IEscritura en el fichero de los datos recibidos

bytes_escritos = fwrite(dataFrame.data,sizeof(unsigned char),(unsigned
char)LONGITUD_MAXIMA ptr_fich_rx);

fclose(ptr_fich_rx);

ptr_fich_rx = fopen(argv[1],"a");

num_rx++;
if (num_rx == 0x70){

fin = true;

sizeBin = ftell (ptr_fich_rx);

printf("El archivo %s ocupa: %d\n", argv[1],sizeBin);

gettimeofday (&tvalAfter, NULL); //Anotamos hora de fin de la transmision
secs = timeval_diff(&tval After, &tvalBefore);

tiempo_secs = timeval_diff(&tval After, &tvalCond);

printf("Tiempo: %.7g ms\n", secs * 1000.0);

printf(*Tiempo real: %.7g ms\n", tiempo_secs * 1000.0);

printf ("Velocidad TX efectiva conseguida: %.6g bps\n”,(sizeBin*8/secs));
fclose(ptr_fich_rx);

//Definicion de funciones completas

void CRC16_UpdateChecksum(unsigned short *pcrcvalue, const void *data, int length)
{

unsigned short crc;

const unsigned char *buf = (const unsigned char *) data;

crc = *perevalue;

while (length--)

{

cre = (cre << 8) A crctable[(cre >> 8) A *buf++];
}

*pcrevalue = crc;

}

unsigned short CRC16_BlockChecksum(const void *data, int length)
{

unsigned short crc;

crc=0;

CRC16_UpdateChecksum(&crc, data, length);

return crc;

}

double timeval_diff(struct timeval *a, struct timeval *b)
{
return
(double)(a->tv_sec + (double)a->tv_usec/1000000) -
(double)(b->tv_sec + (double)b->tv_usec/1000000);

void terminarbucle (){
signal(SIGALRM,SIG_IGN);

fin = true;

signal(SIGALRM, terminarbucle);

// Funcion configuracion puerto serie
void configuration_serialport(struct termios newtio, int fd) {
bzero(&newtio, sizeof(newtio));

newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; //57600, 8N1, ignora las lineas
de control del modem y activa receiver

newtio.c_iflag = IGNPAR | IGNCR; //Sin paridad y traduce CR en nueva linea
newtio.c_oflag = 0;

newtio.c_lflag = 0; //forma NO canonica

newtio.c_cc[VTIME] = 1; //Tiempo en ms que se queda bloqueada la lectura

newtio.c_cc[VMIN] = LONGITUD_MAXIMA + 36; //Numero de caracteres minimo que
espera recibir

tcflush(fd, TCIFLUSH);

tesetattr(fd, TCSANOW,&newtio); //Carga el struct termios como nueva configuracion

ANEXO D: Presupuesto de montaje de dos prototipos de
radio PLC

Presupuesto realizado para un prototipo teniendo en cuenta el precio por unidad de
compra:

Concepto Precio

Nducleo transformador EFD15-N87 1,05 €
Carrete pléstico EFD-15 1,28 €
bobina hilo de cobre AWG36 17,53 €
Mdodem PLC TI 28plc83 72,19 €
Convertidor 15V(TRACO-POWER TEN30-1213) 65,63 €
Convertidor 3,3V(TRACO-POWER TSR 1-2433) 7,27 €
TOTAL 164,95 €

El precio total de dos prototipos de radio PLC seria 329,9 €.

ANEXO E: Diagrama de Gantt

2016 2017 2018
_EB_HEH MARZ0| ABRIL | MAYD | JUNIO | JULID AGOSTOP FIEMBECTUBHEVIEMBﬁCIEMBF ENEHD_EB_HEH MARZO| ABRIL | MAYO | JUNIO | JULID AGOSTOP FIEMBECTUBHEVIEMB&CIEMHF ENEHD_EB_HEH M

IHEENEEOEEE N EEENEE RN HEE N EEE N HE N HEHENEE N HEE N BB EE N EE RN HEE N EEE N HEE N HEE N EE N HEE N EE N EEE N EEHENEEHER

s

ABRIL

|2
3
N
=]

__1[DOCUMENTACIGN
11 [Lectura documentacion modem y prog
1.2 [Investigacién protocolo FLCs

1.3 |Investigacidn protocolo PLC Lite | |

HARDYARE] |
1 |Estudio y analisis parte hardware | |
.2 |Disefio § construccion transformadores 1 11

2.3 | Disefio placa amplificador OPA564

4 |Prueba y caracterizacion transformadores
.5 | Montaje todos los componentes

SOFTWARE
1 [Anilisis tramas protocolo PLC Lite

.2 |Lectura y estudio libreria termios
3 |Programacidn software comunicacion

3.4 |Envio de voz comprimida
PRUEBAS DE CAMFO 11

4] | |
"~ 5[REALIZACION MEMDRIA 11 [ENEEEE 11 11 | B

La estimacion en horas para cada uno de los bloques es:

BLOQUE TIEMPO (Horas)

1. DOCUMENTACION 32
2. HARDWARE 108
3. SOFTWARE 116

4. PRUEBAS DE CAMPO 24
5. RELIZACION
MEMORIA 60

TOTAL 340

