

ANEXOS
ANEXO A: Ejemplo de análisis de las tramas del protocolo

PLC Lite
Se analizaron las tramas más relevantes que nos permitían cambiar y obtener los valores

de los parámetros configurables, así como las tramas que nos permitían mandar y recibir

datos.

Como ejemplo, se analiza la trama get_system_info que pregunta al módem la

configuración y éste contesta con la información de la configuración. Los datos se han

obtenido con el propio software de TI poniendo formato raw en la visualización.

El resultado mostrado por pantalla es el siguiente:

2017-04-14 11:49:35.8558: Message Sent:

 0x01 80 04 00 2A 81 00 00

2017-04-14 11:49:35.8558: Sending: (0x01) -

SystemInformation.Request:

2017-04-14 11:49:35.8871: Message Received:

0x01 00 3C 00 4C 36 00 00 05 01 0x00 04 00 00 00 00 00 00 00 00

0x00 00 00 00 00 00 00 00 00 00 0x05 03 00 00 00 00 00 00 00 00

0x00 01 00 00 00 00 00 00 00 00 0x01 00 18 00 01 00 87 00 00 00

0x00 00 00 00

2017-04-14 11:49:35.8871: Receiving: (0x01) - SystemInformation:

 Firmware Version: Major:4 Minor:0 Revision:1 Build:5

 Serial Number Length: 0

 Serial Number: 0x

 Device Type: FLEX Lite

 Device Mode: Point To Point

 Hardware Revision: 0

 Diagnostics Port: SCI A

 Data Port: SCI A

 PHY Mode: ROBO

 Band: HalfBand

 Start Tone: 0087

 Address Enable: False

 Address Size: 1

 Address Offset: 24

 Address One: 0x00

 Address Two: 0x00

 Address Three: 0x00

La primera trama, se envía desde el ordenador al módem, los cuatro primeros números

hexadecimales son la cabecera y los cuatro siguientes son los códigos CRC. En detalle

son:

- 0x01: Trama Get System Info

- 0x80: Originada desde el host

- 0x04 00: Longitud de los datos

- 0x2A 81: CRC cabecera

- 0x00 00: CRC datos (si es 0, se ignora en recepción)

La segunda trama, es la contestación del módem a la petición de la configuración del

sistema. Los cuatro primeros son también la parte de la cabecera de la trama, los cuatro

siguientes los códigos CRC y los demás son los datos. En detalle son:

- 0x01: Trama Get System Info

- 0x00: Originada desde el módem

- 0x3c 00: Longitud de los datos (60 en decimal)

- 0x4C 36: CRC cabecera

- 0x00 00: CRC datos

- 0x05 01 00 04: Firmware versión (Major: 4, Minor: 0, Revision: 1, Build:5)

- 0x00 00: Longitud Serial Number (desactivado)

- 0x00 00 … 00: Serial Number (16 octetos con valor 0)

- 0x05: Tipo de dispositivo

- 0x03: Modo dispositivo (Punto a Punto)

- 0x00 00: Revisión hardware

- 0x00 00 00 00 00 00: Reservado

- 0x00: Puerto (SCI A)

- 0x01: PHY Mode (ROBO)

- 0x00 00 00 00 00 00 00 00: Reservado

- 0x01 00: Tamaño dirección

- 0x18 00: Offset dirección

- 0x87 00: Start tone

- 0x00: Dirección 1

- 0x00: Dirección 2

- 0x00: Dirección 3

ANEXO B: Diseño de una placa con el amplificador OPA564
Esquemático de la placa diseñada con el amplificador OPA564 que nos proporciona la misma salida que el módem para probar los

transformadores y así evitar dañar los módems. Para realizar el PCB se uso la herramienta Eagle.

ANEXO C: Código desarrollado

C.1: Programa getsystem.c

/* Programa que envía un getsystem al módem, lee y parsea la respuesta

obteniendo los valores configurados */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <termios.h>

#include <stdio.h>

#include <unistd.h>

#include <strings.h>

// Constantes

#define BAUDRATE B57600

#define MODEMDEVICE "/dev/ttyUSB0"

#define _POSIX_SOURCE 1

// Funciones

void configuration_serialport(struct termios, int fd);

// Estructura trama get system info

struct struct_getsystem {

 unsigned char header [4];

 unsigned char flags_tx;

 unsigned char flags_rx;

 unsigned char modulation [2];

 unsigned char power_tx [2];

 unsigned char pattern [20];

 unsigned char gain_rx [10];

 unsigned char subbands [10];

};

int main()

{

int fd;

int i=0;

int bytes_leidos, bytes_escritos;

struct termios newtio;

struct struct_getsystem getsystem;

// Trama GET SYSTEM INFO (0x8A)

unsigned char buf_getsystem[4] = {0x8A, 0x80, 0x00, 0x00};

// Abrir puerto serie, en modo lectura escritura

fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY);

// Funcion de configuracion puerto serie

configuration_serialport(newtio, fd);

// Escritura trama get system info

bytes_escritos = write(fd,buf_getsystem,sizeof(buf_getsystem));

// Control de error de escritura

if (bytes_escritos != 4) {

 printf("[ERROR] NO se han escrito 4 Bytes por el puerto serie \n");

}

// Lectura resultado get system info

bytes_leidos = read(fd,&getsystem,sizeof(struct struct_getsystem));

// Control errores lectura

if (bytes_leidos != 50) {

 printf("[ERROR] NO se han recibido 50 Bytes\n");

}

// Procesado de la trama y salida por pantalla

printf("Tipo de trama: GET SYSTEM (%#04x)\n",getsystem.header[0]);

printf("Flags activados en tx %#04x\n",getsystem.flags_tx);

printf("FLAGS:\n");

if ((getsystem.flags_tx & 0x80) == 0x80) {

 printf("\tROBO TX\n");

} if ((getsystem.flags_tx & 0x01) == 0x01) {

 printf("\tFEC\n");

} if ((getsystem.flags_tx & 0x02) == 0x02) {

 printf("\tAGC ON\n");

} if ((getsystem.flags_rx & 0x01) == 0x01) {

 printf("\tROBO RX\n");

}

printf("Flags activados en rx: %#04x \n", getsystem.flags_rx);

switch (getsystem.modulation[0]) {

 case 0:

 printf("Modulacion: DBPSK\n");

 break;

 case 1:

 printf("Modulacion: DQPSK\n");

 break;

 case 3:

 printf("Modulacion: DBPSK + 1/4 rep\n");

 break;

 case 4:

 printf("Modulacion: DBPSK + 1/8 rep\n");

 break;

 default:

 printf("No se reconoce la modulacion configurada\n");

}

printf("Nivel potencia en transmision: %d \n", getsystem.power_tx[0]);

printf("Nivel AGC en recepcion: %d\n", getsystem.gain_rx[0]);

printf("AGC min: %d\n", getsystem.gain_rx[4]);

printf("AGC max: %d\n", getsystem.gain_rx[6]);

printf("Saltos de AGC: %d\n", getsystem.gain_rx[8]);

return 0;

}

// Funcion configuracion puerto serie

void configuration_serialport(struct termios newtio, int fd) {

 bzero(&newtio, sizeof(newtio));

 newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; //57600, 8N1, ignora las lineas

de control del modem y activa receiver

 newtio.c_iflag = IGNPAR | IGNCR; //Sin paridad y traduce CR en nueva linea

 newtio.c_oflag = 0;

 newtio.c_lflag = 0; //forma NO canonica

 newtio.c_cc[VTIME] = 1; //Tiempo en ms que se queda bloqueada la lectura

 newtio.c_cc[VMIN] = 59; //Numero de caracteres mínimo que espera recibir

 tcflush(fd, TCIFLUSH);

 tcsetattr(fd,TCSANOW,&newtio); //Carga el struct termios como nueva configuracion

}

C.2: Programa getinfo.c

/* Programa que manda un getinfo al módem, lee y parsea la respuesta

obteniendo los valores configurados */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <termios.h>

#include <stdio.h>

#include <unistd.h>

#include <strings.h>

// Constantes

#define BAUDRATE B57600

#define MODEMDEVICE "/dev/ttyUSB0"

#define _POSIX_SOURCE 1

//Funciones

void configuration_serialport(struct termios, int fd);

// Estructura trama get info

struct struct_getinfo {

 unsigned char header [4];

 unsigned char crc_header [2];

 unsigned char crc_payload [2];

 unsigned char firmware [4];

 unsigned char serialNumber_length [2];

 unsigned char serialNumber [16];

 unsigned char device_type;

 unsigned char device_mode;

 unsigned char hw_rev [2];

 unsigned char reserved [4];

 unsigned char port;

 unsigned char phy_mode;

 unsigned char reserved_2 [8];

 unsigned char address_length [2];

 unsigned char address_offset [4];

 unsigned char band [2];

 unsigned char startTone [2];

 unsigned char mac_filter [2];

};

int main()

{

int fd;

int i=0;

int bytes_leidos, bytes_escritos;

struct termios newtio;

struct struct_getinfo getinfo;

// Trama GET SYSTEM

unsigned char buf_getinfo[8] = {0x01, 0x80, 0x04, 0x00, 0x2A, 0x81, 0x00, 0x00};

// Abrir puerto serie, en modo lectura escritura

fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY);

// Funcion de configuracion puerto serie

configuration_serialport(newtio, fd);

// Escritura trama get info

bytes_escritos = write(fd,buf_getinfo,sizeof(buf_getinfo));

// Control de error de escritura

if (bytes_escritos != 8) {

 printf("[ERROR] NO se han escrito 8 Bytes por el puerto serie \n");

}

// Lectura resultado get system

bytes_leidos = read(fd,&getinfo,sizeof(getinfo));

// Control errores lectura

if (bytes_leidos != 60) {

 printf("[ERROR] NO se han recibido 60 Bytes\n");

}

// Procesado de la trama y salida por pantalla

printf("Tipo de trama: GET SYSTEM INFO (%#04x)\n",getinfo.header[0]);

if ((getinfo.device_type == 0x05) && (getinfo.device_mode == 0x03)) {

 printf("Device type: PLC LITE\n");

 printf("Device Mode: P to P Mode\n");

} else {

 printf("No esta en modo Point to Point y no se esta utilizando el protocolo PLC Lite");

}

if (getinfo.port == 0) {

 printf("SCI Port: A\n");

} else {

 printf("SCI Port: B\n");

}

if (getinfo.phy_mode == 0) {

 printf("Modo ROBO: ON \n");

} else {

 printf("Modo ROBO: OFF \n");

}

if (getinfo.band[0] == 1){

 printf("Band: Half-Band\n");

} else {

 printf("Band: Full-Band\n");

}

printf("Start tone: %d \n", getinfo.startTone[0]);

return 0;

}

// Funcion configuracion puerto serie

void configuration_serialport(struct termios newtio, int fd) {

 bzero(&newtio, sizeof(newtio));

 newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; //57600, 8N1, ignora las

lineas de control del modem y activa receiver

 newtio.c_iflag = IGNPAR | IGNCR; //Sin paridad y traduce CR en nueva linea

 newtio.c_oflag = 0;

 newtio.c_lflag = 0; //forma NO canonica

 newtio.c_cc[VTIME] = 1; //Tiempo en ms que se queda bloqueada la lectura

 newtio.c_cc[VMIN] = 59; //Numero de caracteres mínimo que espera recibir

 tcflush(fd, TCIFLUSH);

 tcsetattr(fd,TCSANOW,&newtio); //Carga el struct termios como nueva configuracion

}

C.3: Programa set_tx.c

/* Programa que cambia los parametros de transmisión del módem */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <termios.h>

#include <stdio.h>

#include <unistd.h>

#include <strings.h>

#include <stdlib.h>

// Constantes

#define BAUDRATE B57600

#define MODEMDEVICE "/dev/ttyUSB0"

#define _POSIX_SOURCE 1 /* POSIX compliant source */

//Funciones

void configuration_serialport(struct termios, int fd);

void printuso(char *progname);

struct struct_set_tx initargs(int argc, char **argv, char *verb, int* robo, int* fec, int* ptx, int*

mod, int* band);

// Estructura trama set_tx

struct struct_set_tx {

 unsigned char header [4];

 unsigned char flags_tx [2];

 unsigned char modulation [2];

 unsigned char power_tx [2];

 unsigned char subbands [10];

};

//Variables globales estaticas para ancho de banda y ROBO

static int b = 0;

static int r = 1;

int main(int argc, char *argv[])

{

int fd;

int i=0;

int bytes_leidos, bytes_escritos;

struct termios newtio;

struct struct_set_tx set_tx_2;

unsigned char buf_lectura[10]; //Leer el ACK de los cambios

//Array trama para cambiar ancho de banda (byte 13)

unsigned char buf_band [36] = {0x0c, 0x80, 0x1f, 0x00, 0x25, 0x67, 0x68, 0x3b, 0x09, 0x00,

0x04, 0x00, 0x01, 0x00, 0x87, 0x00, 0x0b, 0x00, 0x02, 0x00, 0x01, 0x00, 0x0a, 0x00, 0x09,

0x00, 0x01, 0x00, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,0x00};

char verb;

int robo;

int fec;

int ptx;

int mod;

int band;

//Inicializacion del buffer de lectura

for (i=0; i<sizeof(buf_lectura); i++) {

 buf_lectura[i] = 0x00;

}

// Abrir puerto serie, en modo lectura escritura

fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY);

// Funcion de configuracion puerto serie

configuration_serialport(newtio, fd);

//Estructura que guarda los cambios de parametros introducido por linea de comandos

set_tx_2 = initargs(argc, argv, &verb, &robo, &fec, &ptx, &mod, &band);

//Configuración del ancho de banda

if (b == 1){

 buf_band [12] = 0x01;

} else if (b == 0){

 buf_band [12] = 0x00;

}

//Configuracion ROBO o no ROBO a nivel global (TX y RX)

if (r == 1){

 buf_band [20] = 0x01;

} else if (r == 0){

 buf_band [20] = 0x00;

}

// Escritura y lectura del cambio de ancho de banda

bytes_escritos= write(fd,buf_band,sizeof(buf_band));

bytes_leidos = read(fd,buf_lectura,sizeof(buf_lectura));

// Escritura y lectura de los demas parametros de configuracion

bytes_escritos= write(fd,&set_tx_2,sizeof(struct struct_set_tx));

bytes_leidos=read(fd,buf_lectura,sizeof(buf_lectura));

return 0;

}

// Funcion configuracion puerto serie

void configuration_serialport(struct termios newtio, int fd) {

 bzero(&newtio, sizeof(newtio));

 newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; //57600, 8N1, ignora las lineas

de control del modem y activa receiver

 newtio.c_iflag = IGNPAR | IGNCR; //Sin paridad y traduce CR en nueva linea

 newtio.c_oflag = 0;

 newtio.c_lflag = 0; //forma NO canonica

 newtio.c_cc[VTIME] = 1; //Tiempo en ms que se queda bloqueada la lectura

 newtio.c_cc[VMIN] = 6; //Numero de caracteres mínimo que espera recibir

 tcflush(fd, TCIFLUSH);

 tcsetattr(fd,TCSANOW,&newtio); //Carga el struct termios como nueva configuracion

}

// Funcion que indica el uso del programa

void printuso(char *progname) {

 fprintf(stderr,"Uso: %s [-v] -r[ROBO] [-f[FEC]] [-p[Ptx]] [-m[modulation] -

b[band]]\n",progname);

 fprintf(stderr, "Si algun parametro no se introduce, se pondra el valor por defecto");

 fprintf(stderr," -v\t\tMuestra detalles en salida estándar\n");

 fprintf(stderr," -r[ROBO]\t modo ROBO ON (1), modo ROBO OFF (0) (por defecto: 1)\n");

 fprintf(stderr," -f[FEC]\t FEC ON (1), FEC OFF (0) (por defecto: 1)\n");

 fprintf(stderr," -p[Ptx]\t Nivel de potencia de TX (de 0 a 7), siendo 0 el MAX (por defecto:

2)\n");

 fprintf(stderr," -m[modulation]\tModulación a utilizar: (por defecto DBPSK) \n");

 fprintf(stderr," 1\t\tDBPSK\n");

 fprintf(stderr," 2\t\tQPSK\n");

 fprintf(stderr," 3\t\tDBPSK+1/4\n");

 fprintf(stderr," 4\t\tDBPSK+1/8\n");

 fprintf(stderr," -b[band]\tHalf-Band (1) y Full-Band (0) (por defecto: 1)\n");

}

// Funcion lectura parametros de configuracion por linea de comandos

struct struct_set_tx initargs(int argc, char **argv, char *verb, int* robo, int* fec, int* ptx, int*

mod, int* band) {

 char *progname = *argv;

 struct struct_set_tx set_tx;

 int j = 0;

 //Inicializacion struct con valores por defecto

 set_tx.header [0] = 0x8b; //SET PHY PARAMETERS

 set_tx.header [1] = 0x80;

 set_tx.header [2] = 0x10;

 set_tx.header [3] = 0x00;

 set_tx.flags_tx [0] = 0x81; //ROBO TX y FEC

 set_tx.flags_tx [1] = 0x02; //PRM

 set_tx.modulation [0] = 0x00; //BPSK

 set_tx.modulation [1] = 0x00;

 set_tx.power_tx [0] = 0x02; //Ptx=2 (6dB)

 set_tx.power_tx [1] = 0x00;

 for (j=0;j<10;j++){

 set_tx.subbands[j]=0x00;

 }

 if (argc<2) {

 printuso(progname);

 exit(1);

 }

 //Lectura y procesado de los parametros por linea de configuracion

 for(argc--,argv++; argc > 0; argc--,argv++) {

 if (**argv == '-') {

 switch (*(++*argv)) {

 case 'v':

 *verb=1;

 break;

 case 'r':

 *robo=atoi(++*argv);

 printf("ROBO es:%d\n", (int)*robo);

 if (*robo == 1){

 set_tx.flags_tx [0] = 0x81;

 r = 1;

 } else {

 set_tx.flags_tx [0] = 0x00;

 r = 0;

 }

 printf("Flags 0 ROBO tx es %x\n",set_tx.flags_tx [0]);

 break;

 case 'f':

 *fec=atoi(++*argv);

 if (*fec == 1){

 set_tx.flags_tx [0] = 0x81;

 } else {

 set_tx.flags_tx [0] = 0x00;

 }

 printf("Flags 0 FEC tx es %x\n",set_tx.flags_tx [0]);

 break;

 case 'p':

 *ptx=atoi(++*argv);

 printf("El flag de ptx enviado es:%d\n",*ptx);

 set_tx.power_tx [0] = (unsigned char)*ptx;

 printf("Flags 0 y 1 Ptx tx es %x\n%x\n",set_tx.power_tx [0], set_tx.power_tx[1]);

 break;

 case 'm':

 *mod=atoi(++*argv);

 if (*mod == 1){

 set_tx.modulation [0] = 0x00;

 } else if (*mod == 2){

 set_tx.modulation [0] = 0x01;

 } else if (*mod == 3){

 set_tx.modulation [0] = 0x03;

 } else if (*mod == 4){

 set_tx.modulation [0] = 0x04;

 }

 printf("Flags 0 modulation tx es %x\n",set_tx.modulation [0]);;

 break;

 case 'b':

 *band=atoi(++*argv);

 if (*band == 1){

 b = 1;

 } else {

 b = 0;

 }

 break;

 default:

 printuso(progname);

 exit(1);

 }

 }

 else {

 printuso(progname);

 exit(1);

 }

 }

 if (*verb) {

 fprintf(stderr,"Valores de parámetros: r=%d, f=%d, p=%d, m=%d,

b=%d\n",*robo,*fec,*ptx,*mod,*band);

 }

 return set_tx;

}

C.4: Programa set_rx.c

/* Programa que cambia los parametros de recepción del módem */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <termios.h>

#include <stdio.h>

#include <unistd.h>

#include <strings.h>

#include <stdlib.h>

// Constantes

#define BAUDRATE B57600

#define MODEMDEVICE "/dev/ttyUSB0"

#define _POSIX_SOURCE 1 /* POSIX compliant source */

//Funciones

void configuration_serialport(struct termios, int fd);

void printuso(char *progname);

struct struct_set_rx initargs(int argc, char **argv, char *verb, int* robo, int* agc, int* grx);

// Estructura trama set_rx

struct struct_set_rx {

 unsigned char header [4];

 unsigned char flags_rx [2];

 unsigned char gain_rx [2];

 unsigned char subbands [10];

};

int main(int argc, char *argv[])

{

int fd;

int i=0;

int bytes_leidos, bytes_escritos;

struct termios newtio;

struct struct_set_rx set_rx_2;

unsigned char buf_lectura[10]; //Leer el ACK de los cambios

char verb;

int robo;

int agc;

int grx;

//Inicializacion del buffer de lectura

for (i=0; i<sizeof(buf_lectura); i++) {

 buf_lectura[i] = 0x00;

}

// Abrir puerto serie, en modo lectura escritura

fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY);

// Funcion de configuracion puerto serie

configuration_serialport(newtio, fd);

//Estructura que guarda los cambios de parametros introducido por linea de comandos

set_rx_2 = initargs(argc, argv, &verb, &robo, &agc, &grx);

//Escritura y lectura parametros de configuracion recepcion

bytes_escritos= write(fd,&set_rx_2,sizeof(struct struct_set_rx));

printf("Los bytes escritos por el puerto serie son %d \n", bytes_escritos);

bytes_leidos=read(fd,buf_lectura,sizeof(buf_lectura));

return 0;

}

// Funcion configuracion puerto serie

void configuration_serialport(struct termios newtio, int fd) {

 bzero(&newtio, sizeof(newtio));

 newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; //57600, 8N1, ignora las lineas de

control del modem y activa receiver

 newtio.c_iflag = IGNPAR | IGNCR; //Sin paridad y traduce CR en nueva linea

 newtio.c_oflag = 0;

 newtio.c_lflag = 0; //forma NO canonica

 newtio.c_cc[VTIME] = 1; //Tiempo en ms que se queda bloqueada la lectura

 newtio.c_cc[VMIN] = 6; //Numero de caracteres mínimo que espera recibir

 tcflush(fd, TCIFLUSH);

 tcsetattr(fd,TCSANOW,&newtio); //Carga el struct termios como nueva configuracion

}

// Funcion que indica el uso del programa

void printuso(char *progname) {

 fprintf(stderr,"Uso: %s [-v] -r[ROBO] [-a[AGC]] [-g[Grx]]\n",progname);

 fprintf(stderr, "Si algun parametro no se introduce, se pondra el valor por defecto");

 fprintf(stderr," -v\t\tMuestra detalles en salida estándar\n");

 fprintf(stderr," -r[ROBO]\t modo ROBO ON (1), modo ROBO OFF (0) (por defecto: 1)\n");

 fprintf(stderr," -a[AGC]\t AGC ON (1), AGC OFF (0) (por defecto: 1)\n");

 fprintf(stderr," -g[Grx]\tganancia amplificador recepcion (por defecto: AGC ON)\n");

}

// Funcion lectura parametros de configuracion por linea de comandos

struct struct_set_rx initargs(int argc, char **argv, char *verb, int* robo, int* agc, int* grx) {

 char *progname = *argv;

 struct struct_set_rx set_rx;

 int j = 0;

 //Inicializacion struct con valores por defecto

 set_rx.header [0] = 0x8c;//SET PHY PARAMETERS

 set_rx.header [1] = 0x80;

 set_rx.header [2] = 0x0e;

 set_rx.header [3] = 0x00;

 set_rx.flags_rx [0] = 0x02; //ROBO RX y AGC

 set_rx.flags_rx [1] = 0x01;

 set_rx.gain_rx [0] = 0x00; //Prx

 set_rx.gain_rx [1] = 0x00;

 for (j=0;j<10;j++){

 set_rx.subbands[j]=0x00;

 }

 if (argc<2) {

 printuso(progname);

 exit(1);

 }

 for(argc--,argv++; argc > 0; argc--,argv++) {

 if (**argv == '-') {

 switch (*(++*argv)) {

 case 'v':

 *verb=1;

 break;

 case 'r':

 *robo=atoi(++*argv);

 if (*robo == 0){

 set_rx.flags_rx [1] = 0x00;

 } else{

 set_rx.flags_rx [1] = 0x01;

 }

 printf("Flag ROBO es %x\n",set_rx.flags_rx [1]);

 break;

 case 'a':

 *agc=atoi(++*argv);

 if (*agc == 0) {

 set_rx.flags_rx [0] = set_rx.flags_rx [0] & (~0x02);

 printf("Flag agc 0 es %#04x\n",set_rx.flags_rx[0]);

 } else {

 set_rx.flags_rx [0] = set_rx.flags_rx [0] | 0x02;

 printf("Flag agc 1 es %#04x\n",set_rx.flags_rx[0]);

 }

 printf("Flag agc despues es %x\n",set_rx.flags_rx[0]);

 break;

 case 'g':

 *grx=atoi(++*argv);

 if (*agc == 1){

 set_rx.gain_rx [0] = 0x00;

 } else {

 set_rx.gain_rx [0] = (unsigned char) *grx;

 }

 printf("Flag gain_rx es %x\n",set_rx.gain_rx[0]);

 break;

 default:

 printuso(progname);

 exit(1);

 }

 }

 else {

 printuso(progname);

 exit(1);

 }

 }

 if (*verb) {

 fprintf(stderr,"Valores de parámetros: r=%d, a=%d, g=%d\n",*robo,*agc,*grx);

 }

 return set_rx;

}

C.5: Programa send_bin.c

/* Programa que lee un fichero con los datos y los empaqueta en tramas para mandarlos */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <termios.h>

#include <stdio.h>

#include <strings.h>

#include <unistd.h>

#include <time.h>

#include <sys/time.h>

#include <stdlib.h>

// Constantes

#define LONGITUD_MAXIMA 54 //Longitud maxima de datos en una trama

#define BAUDRATE B57600

#define MODEMDEVICE0 "/dev/ttyUSB0"

#define MODEMDEVICE1 "/dev/ttyUSB1"

#define _POSIX_SOURCE 1 /* POSIX compliant source */

//Funciones

void CRC16_UpdateChecksum(unsigned short *pcrcvalue, const void *data, int length);

unsigned short CRC16_BlockChecksum(const void *data, int length);

double timeval_diff(struct timeval *a, struct timeval *b);

void configuration_serialport(struct termios, int fd);

// Tabla para calcular CRC

static unsigned short crctable[256] = {

 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,

 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,

 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,

 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,

 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,

 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,

 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,

 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,

 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,

 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,

 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,

 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,

 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,

 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,

 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,

 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,

 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,

 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,

 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,

 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,

 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,

 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,

 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,

 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,

 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,

 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,

 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,

 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,

 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,

 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,

 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,

 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0

};

//Estructura trama de datos

struct frame {

 unsigned char header [4];

 unsigned char CRCheader [2];

 unsigned char CRCdata [2];

 unsigned char mode [2];

 unsigned char dataFixed [26];

 unsigned char data [LONGITUD_MAXIMA];

 unsigned char padding;

};

void main(int argc, char *argv[]){

 struct frame dataFrame;

 struct termios newtio;

 struct timeval horainicio; // variable para estadísticas finales

 struct timeval tvalBefore, tvalAfter;

 double secs;

 unsigned long ttrans; // tiempo de transmisión a simular

 unsigned long timeout; // tiempo de expiración a simular

 FILE *ptr_fich_tx;

 char nombre_fichero[] = "ca_10.png";

 unsigned char c;

 int fd0, fd1;

 int i,j;

 unsigned char buffer[LONGITUD_MAXIMA + 1];

 int bytes_leidos, bytes_escritos, respuesta;

 int tamchar,tamuchar;

 int bytes_frame;

 int sizeBin;

 int numPages;

 unsigned short crcCab, crcPay;

 unsigned char buf_lectura[100] =

{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00

,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

 unsigned char buf_respuesta[100] =

{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00

,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};

 if (argc != 2){

 printf("Uso: %s nombre_fichero \n", argv[0]);

 exit(1);

 }

 // Abrir puerto serie, en modo lectura escritura

 if ((fd0 = open(MODEMDEVICE0, O_RDWR | O_NOCTTY)) < 0){

 printf("Ha habido un error al abrir el puerto serie");

 }

 // Funcion de configuracion puerto serie

 configuration_serialport(newtio, fd0);

 //Tipo de trama -> De datos cabecera fija

 dataFrame.header [0] = 0x00;

 dataFrame.header [1] = 0x80;

 dataFrame.header [3] = 0x00;

 //CRC Payload a 00

 dataFrame.CRCdata [0] = 0x00;

 dataFrame.CRCdata [1] = 0x00;

 //Mode

 dataFrame.mode [0] = 0x01;

 dataFrame.mode [1] = 0x00;

 //Datos fijos de la trama

 dataFrame.dataFixed[0]= 0xa0;

 dataFrame.dataFixed[1]= 0xaa;

 dataFrame.dataFixed[12]= 0x01;

 dataFrame.dataFixed[16]= 0x01;

 //Padding

 dataFrame.padding = 0x00;

 //Instante de tiempo antes de empezar la transmision

 gettimeofday (&tvalBefore, NULL);

 //Apertura fichero en modo lectura y control del error

 if ((ptr_fich_tx = fopen(argv[1],"r")) == NULL){

 printf("No se ha podido abrir el fichero %s.\n", argv[1]);

 }

 else {

 clock_t start = clock();

 gettimeofday (&tvalBefore, NULL); //medimos justo antes de empezar a enviar los datos

 //Calculo tamaño del fichero y cuantas páginas serán necesarias en función de la longitud

máxima

 fseek(ptr_fich_tx, 0L, SEEK_END);

 sizeBin = ftell (ptr_fich_tx);

 printf("El archivo %s ocupa: %d\n", argv[1],sizeBin);

 numPages = ((sizeBin / LONGITUD_MAXIMA) + 1);

 printf("Numero de tramas necesarias para enviar fichero:%d\n",numPages);

 dataFrame.dataFixed[16] = numPages;

 printf("El numero de paginas es %02hhx\n",dataFrame.dataFixed[16]);

 fseek(ptr_fich_tx, 0L, SEEK_SET);

 while(!feof(ptr_fich_tx)){

 bytes_leidos = fread(dataFrame.data,sizeof(unsigned char),

LONGITUD_MAXIMA,ptr_fich_tx);

 dataFrame.header [2] = (unsigned char) bytes_leidos + 32; //sumo los datos reales mas

los datos fijos que son 32 (4 CRCs + 2 MODE + 26 fijos)

 //Calculo CRCs cabecera y payload

 crcCab = CRC16_BlockChecksum (dataFrame.header, sizeof(dataFrame.header));

 dataFrame.CRCheader[0] = crcCab;

 dataFrame.CRCheader[1] = crcCab >> 8;

 dataFrame.dataFixed [20] = (unsigned char) bytes_leidos;

 if ((argv[1] == "-") && (argv[2] == "v")){

 printf("Longitud trama enviada %d \n", dataFrame.header[2]);

 printf("Longitud datos payload %d\n", (unsigned char)dataFrame.dataFixed[20]);

 }

 if ((LONGITUD_MAXIMA % 2)!=0){

 bytes_frame=sizeof(struct frame);

 } else{

 bytes_frame=sizeof(struct frame) - 1;

 }

 bytes_escritos = write(fd0,&dataFrame,bytes_frame);

 printf("Bytes escritos:%d\n",bytes_escritos);

 if ((argv[1] == "-") && (argv[2] == "v")){

 printf("Los bytes escritos en el puerto serie son %d", bytes_escritos);

 }

 usleep (165000); //necessary for BPSK

 //usleep (165000*2.3); //necessary for BPSK+1/4

 //usleep (165000*4.2); //necessary for BPSK+1/8

 //usleep (100000);

 j++;

 printf("Numero de pagina enviada:%02hhx\n",dataFrame.dataFixed[12]);

 //Controlar el numero de secuencia (cabecera)

 dataFrame.header[1] = ((dataFrame.header[1] + 1) & 0x8f);

 dataFrame.dataFixed[12] = dataFrame.dataFixed [12] + 1;

 printf("Numero de secuencia enviada: %02hhx\n",dataFrame.header[1]);

 }

 gettimeofday (&tvalAfter, NULL); //Anotamos hora de fin de la transmision

 secs = timeval_diff(&tvalAfter, &tvalBefore);

 printf("Tiempo: %.7g ms\n", secs*1000);

 printf ("Velocidad TX efectiva conseguida: %.6g bps\n",(sizeBin*8/secs));

 }

}

//Definicion de funciones completas

void CRC16_UpdateChecksum(unsigned short *pcrcvalue, const void *data, int length)

{

 unsigned short crc;

 const unsigned char *buf = (const unsigned char *) data;

 crc = *pcrcvalue;

 while (length--)

 {

 crc = (crc << 8) ^ crctable[(crc >> 8) ^ *buf++];

 }

 *pcrcvalue = crc;

}

unsigned short CRC16_BlockChecksum(const void *data, int length)

{

 unsigned short crc;

 crc = 0;

 CRC16_UpdateChecksum(&crc, data, length);

 return crc;

}

double timeval_diff(struct timeval *a, struct timeval *b)

{

 return

 (double)(a->tv_sec - (double)b->tv_sec);

}

// Funcion configuracion puerto serie

void configuration_serialport(struct termios newtio, int fd) {

 bzero(&newtio, sizeof(newtio));

 newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; //57600, 8N1, ignora las lineas

de control del modem y activa receiver

 newtio.c_iflag = IGNPAR | IGNCR; //Sin paridad y traduce CR en nueva linea

 newtio.c_oflag = 0;

 newtio.c_lflag = 0; //forma NO canonica

 newtio.c_cc[VTIME] = 1; //Tiempo en ms que se queda bloqueada la lectura

 newtio.c_cc[VMIN] = 20; //Numero de caracteres mínimo que espera recibir

 tcflush(fd, TCIFLUSH);

 tcsetattr(fd,TCSANOW,&newtio); //Carga el struct termios como nueva configuracion

}

C.6: Programa receive_bin.c

/* Programa que recibe y procesa los datos recibidos */

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <termios.h>

#include <stdio.h>

#include <strings.h>

#include <string.h>

#include <unistd.h>

#include <time.h>

#include <sys/time.h>

#include <stdlib.h>

#include <signal.h>

// Constantes

#define LONGITUD_MAXIMA 54

#define BAUDRATE B57600

#define MODEMDEVICE1 "/dev/ttyUSB1"

#define _POSIX_SOURCE 1 /* POSIX compliant source */

//Funciones

void configuration_serialport(struct termios, int fd);

void CRC16_UpdateChecksum(unsigned short *pcrcvalue, const void *data, int length);

unsigned short CRC16_BlockChecksum(const void *data, int length);

double timeval_diff(struct timeval *a, struct timeval *b);

void terminarbucle();

typedef enum { false, true } bool;

bool fin = false;

// Tabla para calcular CRC

static unsigned short crctable[256] = {

 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,

 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,

 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,

 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,

 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,

 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,

 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,

 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,

 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,

 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,

 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,

 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,

 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,

 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,

 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,

 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,

 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,

 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,

 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,

 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,

 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,

 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,

 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,

 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,

 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,

 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,

 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,

 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,

 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,

 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,

 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,

 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0

};

//Estructura trama de datos

struct frame {

 unsigned char header [4];

 unsigned char CRCheader [2];

 unsigned char CRCdata [2];

 unsigned char mode [2];

 unsigned char dataFixed [26];

 unsigned char data [LONGITUD_MAXIMA];

 unsigned char padding;

};

void main(int argc, char *argv[]){

 struct frame dataFrame;

 struct termios newtio;

 struct timeval horainicio; // variable para estadísticas finales

 struct timeval tvalBefore, tvalAfter,tvalCond;//medir tiempo de inicio y fin

 double secs, tiempo_secs;

 clock_t t_ini, t_fin;

 unsigned long ttrans; // tiempo de transmisión a simular

 unsigned long timeout; // tiempo de expiración a simular

 unsigned short padding;

 FILE *ptr_fich_rx, *ptr_fich_ruido;

 char nombre_fichero_ruido[] = "test.bin";

 unsigned char c;

 int fd1;

 int i,k;

 int num_rx = 1;

 int n=0;

 unsigned char buf_ruido[LONGITUD_MAXIMA],buf_zero[LONGITUD_MAXIMA];

 int bytes_leidos, bytes_escritos, bytes_datos,bytes_ruido;

 int sizeBin;

 unsigned short crcCab, crcPay;

 if (argc != 2){

 printf("Uso: %s nombre_fichero \n", argv[0]);

 exit(1);

 }

 //Relleno con 0's

 for (k=0; k<sizeof(buf_ruido); k++){

 buf_ruido [k] = 0x00;

 buf_zero [k] = 0x00;

 }

 signal(SIGALRM,terminarbucle);

 // Abrir puerto serie, en modo lectura escritura

 fd1 = open(MODEMDEVICE1, O_RDWR | O_NOCTTY);

 // Funcion de configuracion puerto serie

 configuration_serialport(newtio, fd1);

 //Instante de tiempo antes de empezar la transmision

 gettimeofday (&tvalBefore, NULL);

 //Ruido blanco

 if ((ptr_fich_ruido = fopen(nombre_fichero_ruido,"r"))==NULL){

 printf("No se ha podido abrir el fichero %s.\n",nombre_fichero_ruido);

 } else {

 bytes_ruido = fread(buf_ruido,sizeof(unsigned char),

LONGITUD_MAXIMA,ptr_fich_ruido);

 }

 //Apertura fichero en modo escritura y control del error

 if ((ptr_fich_rx = fopen(argv[1],"w"))==NULL){

 printf("No se ha podido abrir el fichero %s.\n",argv[1]);

 }

 while (fin==false){

 bytes_leidos = read(fd1,&dataFrame,sizeof(struct frame));

 if (dataFrame.dataFixed[12] == 0x01) {

 gettimeofday (&tvalCond, NULL);

 }

 bytes_datos = bytes_leidos-36;

 printf("Numero de pagina recibida:%d\n",dataFrame.dataFixed[12]);

 printf("Size payload:%d\n",dataFrame.dataFixed[20]);

 padding=LONGITUD_MAXIMA-dataFrame.dataFixed[20];

 printf("Long padding:%d\n",padding);

 if (dataFrame.dataFixed[20]<LONGITUD_MAXIMA){

 memcpy(dataFrame.data+dataFrame.dataFixed[20], buf_zero, padding);

 }

 //Escritura en el fichero de los datos recibidos

 bytes_escritos = fwrite(dataFrame.data,sizeof(unsigned char),(unsigned

char)LONGITUD_MAXIMA,ptr_fich_rx);

 fclose(ptr_fich_rx);

 ptr_fich_rx = fopen(argv[1],"a");

 num_rx++;

 if (num_rx == 0x70){

 fin = true;

 }

 }

 sizeBin = ftell (ptr_fich_rx);

 printf("El archivo %s ocupa: %d\n", argv[1],sizeBin);

 gettimeofday (&tvalAfter, NULL); //Anotamos hora de fin de la transmision

 secs = timeval_diff(&tvalAfter, &tvalBefore);

 tiempo_secs = timeval_diff(&tvalAfter, &tvalCond);

 printf("Tiempo: %.7g ms\n", secs * 1000.0);

 printf("Tiempo real: %.7g ms\n", tiempo_secs * 1000.0);

 printf ("Velocidad TX efectiva conseguida: %.6g bps\n",(sizeBin*8/secs));

 fclose(ptr_fich_rx);

}

//Definicion de funciones completas

void CRC16_UpdateChecksum(unsigned short *pcrcvalue, const void *data, int length)

{

 unsigned short crc;

 const unsigned char *buf = (const unsigned char *) data;

 crc = *pcrcvalue;

 while (length--)

 {

 crc = (crc << 8) ^ crctable[(crc >> 8) ^ *buf++];

 }

 *pcrcvalue = crc;

}

unsigned short CRC16_BlockChecksum(const void *data, int length)

{

 unsigned short crc;

 crc = 0;

 CRC16_UpdateChecksum(&crc, data, length);

 return crc;

}

double timeval_diff(struct timeval *a, struct timeval *b)

{

 return

 (double)(a->tv_sec + (double)a->tv_usec/1000000) -

 (double)(b->tv_sec + (double)b->tv_usec/1000000);

}

void terminarbucle (){

 signal(SIGALRM,SIG_IGN);

 fin = true;

 signal(SIGALRM, terminarbucle);

}

// Funcion configuracion puerto serie

void configuration_serialport(struct termios newtio, int fd) {

 bzero(&newtio, sizeof(newtio));

 newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; //57600, 8N1, ignora las lineas

de control del modem y activa receiver

 newtio.c_iflag = IGNPAR | IGNCR; //Sin paridad y traduce CR en nueva linea

 newtio.c_oflag = 0;

 newtio.c_lflag = 0; //forma NO canonica

 newtio.c_cc[VTIME] = 1; //Tiempo en ms que se queda bloqueada la lectura

 newtio.c_cc[VMIN] = LONGITUD_MAXIMA + 36; //Numero de caracteres mínimo que

espera recibir

 tcflush(fd, TCIFLUSH);

 tcsetattr(fd,TCSANOW,&newtio); //Carga el struct termios como nueva configuracion

}

ANEXO D: Presupuesto de montaje de dos prototipos de

radio PLC

Presupuesto realizado para un prototipo teniendo en cuenta el precio por unidad de

compra:

Concepto Precio

Núcleo transformador EFD15-N87 1,05 €

Carrete plástico EFD-15 1,28 €

bobina hilo de cobre AWG36 17,53 €

Módem PLC TI f28plc83 72,19 €

Convertidor 15V(TRACO-POWER TEN30-1213) 65,63 €

Convertidor 3,3V(TRACO-POWER TSR 1-2433) 7,27 €

TOTAL 164,95 €

El precio total de dos prototipos de radio PLC sería 329,9 €.

ANEXO E: Diagrama de Gantt

La estimación en horas para cada uno de los bloques es:

BLOQUE TIEMPO (Horas)

1. DOCUMENTACION 32

2. HARDWARE 108

3. SOFTWARE 116

4. PRUEBAS DE CAMPO 24

5. RELIZACION
MEMORIA 60

TOTAL 340

