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Procesos de Regresión Gaussiana: Estudio de
métodos Sparse para la predicción de tensión

futura en equipos de comunicaciones

RESUMEN

Este Trabajo Fin de Grado forma parte de la ĺınea Smart del proyecto de investigación

“Battery life Extensor”(BATT-Ex), cuyos principales objetivos son proporcionar

información relevante sobre la bateŕıa en sistemas de telecocomunicaciones y tomar

decisiones inteligentes en base al conocimiento de su estado actual. En los últimos años

las bateŕıas han recibido mucha atención debido a las redes de comunicaciones y a la

aparición de los Veh́ıculos Hı́bridos (HEVs) y los Veh́ıculos Eléctricos (EVs). Esto ha

llevado a que centros de investigación como el Mitsubishi Electric Research Laboratories

(MERL) en Boston o empresas como la Sociedad Ibérica de Construcciones Eléctricas

(SICE) hayan querido profundizar en su investigación y colaborar en el siguiente

trabajo de investigación. Con el presente trabajo se pretende mejorar las técnicas de

estimación futura de tensión en bateŕıas por procesado de la señal de tensión-corriente,

en instalaciones aisladas de comunicaciones. Para ello se han utilizado técnicas de

Inteligencia Artificial. En particular, se ha estudiado el uso de la regresión con

procesos gaussianos (GPR) como herramienta de predicción y sus diferentes variantes

Sparse para reducir la complejidad computacional del algoritmo. Para llevar a cabo

la estimación se necesita información sobre las variables de interés. Para ello, se ha

utilizado la base de datos de un sistema fotovoltaico de gran potencia ubicado en el

monte del Monasterio de Sigena la cual contiene 10 años de datos recabados cada

15 minutos de parámetros como tensión, corriente o temperatura. De forma más

concreta, se ha evaluado el GPR en su enunciado clásico, el método FITC Sparse

y una variante con múltiples expertos GPR comparando los resultados de estimación

de tensión aportando el perfil de corriente o temperatura futura.
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Gaussian Process Regression: Study of Sparse
Methods to estimate future voltage in

communication systems

ABSTRACT

This Bachelor’s Degree Final Project is part of the Smart line of the research project

“Battery life Extensor”(BATT-Ex), that aims to provide relevant information about

the battery for the user and to make intelligent decisions based on knowledge of

its current state. In recent years batteries have received a lot of attention due to

telecommunications networks and the emergence of Hybrid Vehicles (HEVs) and

Electric Vehicles (EVs). This has led research centres such as Mitsubishi Electric

Research Laboratories (MERL) in Boston or companies such as Sociedad Ibérica de

Construcciones Eléctricas (SICE) to want to deepen their research and collaborate

in the following research work. The aim of this work is to improve the techniques for

future estimation of battery voltage by processing the voltage-current signal in isolated

communications installations. Artificial Intelligence techniques have been used for this

purpose. In particular, the use of Gaussian Process Regression (GPR) as a prediction

tool and its different Sparse variants have been studied to reduce the computational

complexity of the algorithm. In order to carry out the estimation, information on

the variables of interest is needed. For this purpose, the database of a high power

photovoltaic system located in the mountain of the Sigena Monastery has been used,

which contains 10 years of data collected every 15 minutes from parameters such as

voltage, current or temperature. More specifically, GPR has been evaluated in its

classical statement, FITC Sparse approximation method and a variant with multiple

GPR experts comparing the results of voltage estimation providing the current profile

or future temperature.
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Caṕıtulo 1

Introducción

El presente trabajo forma parte del proyecto de investigación “Battery life

Extensor”(BATT-Ex, RTC-2015-3358-5) el cual se desarrolla de forma conjunta entre

el Grupo de Electrónica de Potencia y Microelectrónica de la Universidad de Zaragoza

(GEPM), el Grupo de almacenamiento de Enerǵıa Eléctrica de la Universidad de

Mondragón y la empresa Sociedad Ibérica de Construcciones Eléctricas (SICE).

Además, para este proyecto concreto se ha contado con la colaboración del Mitsubishi

Electric Research Laboratories (MERL). En este centro de investigación, miembros del

equipo de trabajo han realizado diversas estancias para trabajar de forma conjunta en

profundizar el conocimiento de las bateŕıas. Como consecuencia, se han publicado, de

forma conjunta, diversos art́ıculos y se está colaborando actualmente en otro abordando

los resultados obtenidos en este trabajo.

Dado el interés que este tipo de investigación tiene en la industria, SICE ha

apoyado este trabajo a través de una beca de investigación.

1.1. Antecedentes

El proyecto BATT-Ex se centra en solucionar los problemas que tienen los sistemas

de telecomunicaciones aislados. En este tipo de instalaciones, se hace necesario el uso

de bateŕıas para asegurar un correcto funcionamiento del sistema durante el d́ıa. Los

principales problemas que presentan este tipo de sistemas conocidos como sistemas de

almacenamiento de enerǵıa (ESS, Energy Storage Systems) son el dimensionamiento,

el mantenimiento y la absorción de enerǵıa.
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Figura 1.1: Sistema de comunicaciones alimentado por placas fotovoltaicas

Debido a la ubicación de este tipo de sistemas se hace necesario alimentarlos con

paneles fotovoltaicos (Figura 1.1). Sin embargo, este tipo de fuente de enerǵıa presenta

incertidumbre debido a los cambios meteorológicos. Se considera un sistema estable ya

que existe una distinción clara de patrones nocturnos y diurnos pero son dependientes

de pasos por nube y distintos fenómenos meteorológicos que alteran la producción de

la enerǵıa durante el d́ıa. Estos patrones pueden verse en la Figura 1.2
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Figura 1.2: Patrones de corriente en función de la climatoloǵıa

Es por ello que con el fin de aprovechar la enerǵıa generada y ser capaces de

alimentar el sistema por la noche o en caso de fallo, se hace imprescindible el uso

de bateŕıas con una gestión inteligente.

Un ejemplo de aplicación de este tipo de sistemas se encuentra en las estaciones de
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comunicaciones de 5G. Las nuevas bandas de frecuencia superior con menor eficiencia,

los esquemas de modulación más eficientes, en términos de eficiencia espectral, pero

peores en eficiencia de amplificación, la carga de computacional y el aumento de

estaciones base lleva a problemas de suministro de enerǵıa. En las ciudades y, por

lo general, en sistemas con conexión a la red no resulta un problema. Sin embargo,

śı que lo es en las estaciones aisladas por lo que han de ser capaces de aprovechar

al máximo la enerǵıa almacenada con el fin de reducir costes y mejorar la calidad de

servicio.

1.2. Motivación y Objetivos

Los sistemas de gestión de bateŕıas (BMS, Battery Management Systems) son

los encargados del control de la bateŕıa y de asegurarse de su seguridad y correcto

funcionamiento. Para ello, los BMS incluyen sensores de diferentes magnitudes f́ısicas

como tensión, corriente, temperatura, etc. Estas magnitudes son las que procesa el

BMS para tratar de estimar el estado de la bateŕıa. Tradicionalmente, el estado de

carga (SoC, State of Charge) y el estado de salud (SoH, State of Health) han sido

los principales parámetros a tener en cuenta a la hora de averiguar el estado de

una bateŕıa. El SoC representa la carga interna de la bateŕıa en función de su carga

máxima actual mientras que el SoH se refiere al estado en que se encuentra la bateŕıa

respecto al estado inicial. Ambos parámetros se encuentran al 100 % cuando la bateŕıa

se fabrica sin defectos. Existen multitud de técnicas para estimar estos parámetros.

Mayoritariamente se ha trabajado con modelos equivalentes de bateŕıa y filtros de

Kalman [1]-[2]. Sin embargo, recientemente se están comenzando a usar técnicas

basadas en análisis de datos (Data-driven methods) como las Redes Neuronales o

las Máquinas de vectores de soporte [3]-[4]. A través de este tipo de estimaciones se

obtiene un resultado más certero. Pese a su buen funcionamiento, el envejecimiento

de las bateŕıas provoca que este tipo de métodos requieran de un reentrenamiento

lo cual es un problema para la estimación tanto del SoC como del SoH ya que no

hay un acceso fácil a los valores reales de SoC o SoH. Es por ello, y porque en los

sistemas fotovoltaicos el parámetro que limita la operación del sistema es la tensión

mı́nima que admite el convertidor de potencia, que en este trabajo se trata de estimar

un parámetro diferente, la tensión que el sistema va a ser capaz de suministrar en

un determinado momento. Este parámetro resulta de gran utilidad ya que puede ser

medido con precisión haciendo aśı un reentrenamiento sencillo.
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En el presente trabajo, se ha estudiado la predicción de tensión futura dados tres

perfiles de variables f́ısicas conocidas por el BMS:

− Perfil de corriente y temperatura futura conocido

− Perfil de corriente futura conocido pero no de temperatura

− Perfil de temperatura futura conocido pero no de corriente

Frente a otras técnicas basadas en análisis de datos, la estimación de tensión permite

un simple reentrenamiento por lo que puede aportar estimaciones certeras pese al

envejecimiento de la bateŕıa. El objetivo es estimar la tensión correspondiente al tiempo

t + T asumiendo que los perfiles de alguna de las tres situaciones es conocido desde t

hasta t+T . Esta situación de conocer patrones futuros es realista ya que, en la práctica,

un operario o el BMS puede ingresar al algoritmo distintos patrones correspondientes

a distintas situaciones, desde el funcionamiento normal al más cŕıtico. De esta forma se

sabe qué estación de almacenamiento tiene probabilidad de fallar en caso de que suceda

dicho patrón y aśı actuar en consecuencia. En este trabajo contamos con una base de

datos realista y de gran tamaño lo que ofrece un amplio espectro de posibilidades para

las técnicas basadas en análisis de datos. Se ha analizado las capacidades que tiene

el GPR en el ámbito de las bateŕıas. Además, se ha realizado una aproximación GPR

Sparse para reducir la carga computacional que tiene el GPR con grandes volúmenes de

datos. Por otro lado, debido a la variabilidad de tipos de d́ıas que se pueden encontrar

en la base de datos, se ha hecho una clasificación de tipos de d́ıas a través de mapas

autoorganizados (SOM, Self-organizing map). Con los d́ıas ya clasificados según su

tipoloǵıa, se ha entrenado un modelo GPR con cada tipo de d́ıa y se ha hecho un test

con un periodo distinto de la base de datos. El experto GPR que en cada muestra

obtiene menor varianza es el que se toma como válido.

1.3. Estado del Arte

La estimación de parámetros de bateŕıas a través de regresión con Procesos

Gaussianos de forma exacta ya ha sido probada con éxito, por parte de nuestros

compañeros del MERL, en la estimación del SoC y del SoH [5]-[6]-[7]. Tanto en [8]

como en [9] se hace uso de aproximaciones Sparse en el ámbito de las bateŕıas para

estimar el SoC ya que en ambos art́ıculos hacen uso de grandes volúmenes de datos que

son lo suficientemente complejos como para que un GPR exacto no pueda tratarlos.
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En [10] hacen uso, al igual que en nuestro caso, de este algoritmo como estimador

de tensión a través de un GPR exacto. Sin embargo, en todos estos trabajos, se han

utilizado bases de datos creadas de, forma sintética, a partir de modelos de bateŕıas. Las

peculiaridades de una base de datos real con casúısticas de d́ıas tan diversas no existe

en bases de datos sintéticas y por por ello no se ha abordado previamente la posibilidad

de crear expertos GPR en este ámbito. Alejándonos del sector de las bateŕıas si que

existen casos de uso de expertos GPR vistos, por ejemplo, en śıntesis de voz [11]. En

este caso, existen dos expertos, uno para la duración de las śılabas y otro para la

duración de una llamada telefónica.

1.4. Herramientas

El proyecto ha sido realizado sobre Matlab 2018a. Se ha escogido esta herramienta

porque, además de ofrecer un entorno de trabajo muy versátil, cuenta con la

toolbox GPML y la toolbox de SOM. La toolbox GPML desarrollada por Carl

Edward Rasmussen está en continua actualización abordando cada vez más tipos de

aproximaciones Sparse y cubre el abanico completo del GPR incluyendo funciones

de minimización, covarianzas, densidades de probabilidad y capacidad de testing. El

amplio abanico de posibilidades que aporta el GPML provoca que ciertos métodos se

engloben en la misma función y resulte ineficientes. Se ha trabajado en su mejora,

realizando los cálculos matriciales necesarios. Por otro lado, la toolbox de SOM,

desarrollada por la Universidad Tecnológica de Helsinki [12], permite el entrenamiento

de los mapas, visualizaciones complejas, y herramientas de clustering como la K-means.
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Caṕıtulo 2

Regresión con Procesos Gaussianos

Los Procesos Gaussianos son una herramienta matemática cuya teoŕıa básica fue

introducida por Kolmogorov y Wiener [13]-[14] en los años cuarenta. Sin embargo,

no fue hasta los años setenta cuando se comenzaron a utilizar como herramienta de

regresión en el campo de la Geoestad́ıstica [15] llevándose, años mas tarde, a otros

contextos. Pese a ello, fueron C. E. Rasmussen junto a Christopher K. I. Williams, a

finales de siglo, quienes introdujeron esta técnica en el campo de la inteligencia artificial

[16] haciendo, años mas tarde, un estudio más profundo [17] que ha sido tomado como

objeto de estudio obligatorio para todo aquel que investigue en GPR.

Existen múltiples ventajas que nos llevan a hacer uso de los Procesos Gaussianos

como herramienta de regresión:

− Expresión anaĺıtica cerrada. Dado una función de covarianza y observaciones,

podemos computar la distribución a posteriori de forma cerrada. Esta propiedad

no es muy usual en modelos no paramétricos.

− No existe overfitting. Al contrario que otras técnicas como las redes neuronales,

esta técnica de regresión no hace un sobre entrenamiento de los datos.

− Aporta un intervalo de confianza. A través de la varianza de la distribución,

se puede establecer un intervalo en el que el dato estimado se debe encontrar. Esto

aporta una información extra al sistema sobre cómo de buena es esta estimación.

Su principal limitación reside en la carga computacional y la memoria ya que crece a

razón de O(n3) siendo n el número de datos de entrenamiento.
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2.1. Introducción a los Procesos Gaussianos

Tal y como define C. E. Rasmussen [17] un Proceso Gaussiano (GP) es una colección

de variables aleatorias, que cumplen que cualquier subconjunto finito de la colección,

tiene una distribución Gaussiana

Un GP viene completamente especificado por su función de media y de covarianza.

Se puede definir la función media m(x) y la función de covarianza k(x,x′) de un proceso

real f(x) como

m(x) = E[f(x)] (2.1)

k(x,x′) = [(f(x)−m(x))(f(x′)−m(x′)] (2.2)

y será denotado como

f(x) ∼ GP(m(x)), k(x,x′)) (2.3)

Normalmente se asume que la media de la función es cero. Sin embargo, si es necesario,

se puede incorporar el conocimiento de su valor al modelo.

f(x)

f(x)

x x

Figura 2.1: Una representación visual de un proceso gaussiano que modela una función
unidimensional. Los diferentes tonos de rojo representan el intervalo de confianza de
cada en cada punto. Las ĺıneas de colores muestran diferentes realizaciones del proceso.
Esquina superior izquierda: Un GP no condicionado por ningún punto. Las gráficas
restantes La distribución a posteriori tras haber sido condicionada con diferente número
de datos. [18]
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Definición 1 (Distribución normal multivariante). Se dice que un vector aleatorio x

sigue una distribución normal multivariante si tiene la siguiente función de densidad

de probabilidad conjunta

fx(x1, . . . , xn) =
1

(2π)n/2|K|1/2
exp

(
− 1

2
(x− µT )K−1(x− µ)

)
donde µ = [µ(x1), . . . , µ(xn)]T representa la esperanza de x y K = AAT es la matriz

de covarianza de las componentes de x.

Los procesos gaussianos se dice que son consistentes y por tanto cumplen la

propiedad de marginalización.

Definición 2 (Propiedad de marginalización). Dados dos vectores x y y aleatorios y

gaussianos:

x ∼ N (µx, K1,1)

y ∼ N (µy, K2,2)

se cumple [
x
y

]
∼ N (µ, K) = N

( [µx

µy

]
,

[
K1,1 K1,2

K2,1 K2,2

] )
Esta propiedad expresa como, al tratar de forma conjunta ambos vectores, la

distribución resultante será una normal que depende de los parámetros de las

distribuciones de los vectores y de la correlación entre ambos (K12 y K21).

Con dicha propiedad y con el siguiente teorema se presenta la base de

funcionamiento del GPR.

Teorema 1. Sean x e y dos vectores aleatorios conjuntamente gaussianos[
x
y

]
∼ N (

[
µx

µy

]
,

[
A C
CT B

]
) (2.4)

la distribución marginal de xy la condicional de x dado y son

x ∼ N (µx, A)

x|y ∼ N (µx + CB−1(y − yy), A− CB−1CT )
(2.5)

La utilidad de este teorema en la regresión reside en que si conocemos la distribución

de un conjunto de variables aleatorias gaussianas podemos dividirlo en dos subconjuntos

x e y donde, si conocemos los valores que toma y, podemos condicionar el valor del

subconjunto x. Como veremos más adelante, esta división en subconjuntos serán el

conjunto de datos de entrenamiento y el de test.
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2.2. Regresión con Procesos Gaussianos

Dado un conjunto de datos de entrenamiento D = (xi, yi), i = 1, . . . , n donde xi

es el vector de entrada e yi la salida real, escalar y ruidosa, buscamos calcular la

distribución de los valores de salida de test f∗ (y∗ si incluimos ruido) para una entrada

de test x∗. En el caso más simple (el cual tratamos aqúı) asumimos que el ruido es

aditivo, independiente y Gaussiano, de tal forma que la relación entre la función f(x)

y las observaciones ruidosas vienen dadas por una normal multivariante de la forma

yi = f(xi) + εi, donde εi ∼ N (0, σ2
ruido), (2.6)

donde σ2
ruido es la varianza del ruido.

La regresión con GPs es un método Bayesiano que asume un GP a priori sobre

funciones. Se asume que la distribución de los valores de las funciones se comporta de

la forma

p(f |x1,x2, . . . ,xn) = N (0, K) (2.7)

donde f = [f1, f2, . . . , fn]T es un vector de valores observables de funciones, fi = f(xi).

Remarcar que el GP trata los valores observables de funciones fi como variables

aleatorias que se relacionan con sus correspondientes entradas. Para que la expresión

anterior tenga sentido K tiene que ser una matriz de covarianza y por tanto ser simétrica

y semidefinida positiva. Esta función de covarianza, que compone la distribución a

priori, no debe depender de los datos (puede depender de parámetros adicionales como

se verá en la sección 2.4). De aqúı en adelante, por simplicidad, se omitirá la relación

condicional con las entradas ya que el modelo de GP y todas las expresiones siguientes

vienen condicionadas por esta relación.

Para estimar se ha de hacer uso del Teorema de Bayes a través del cual se parte

de una distribución a priori conjunta entre los valores de entrenamiento y los de test,

f y f∗ y se combina con la función de verosimilitud p(y|f) para obtener la distribución

posterior conjunta

p(f , f∗|y) =
p(f , f∗)p(y, f)

p(y)
(2.8)

El último paso para producir la distribución de los valores a estimar será marginalizar

los valores de entrenamiento no deseados

p(f∗|y) =

∫
p(f , f∗|y)df =

1

p(y)

∫
p(f , f∗)p(y, f)df (2.9)

Tanto la distribución de verosimilitud a priori como la distribución independiente son
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distribuciones gaussianas por lo que se puede aplicar la Propiedad [2]

p(f , f∗) = N
(

0,

[
Kf ,f K∗,f
Kf ,∗ K∗,∗

])
, y p(y, f) = N (f , σ2

ruidoI) (2.10)

donde Kf ,f = k(x,x), Kf ,∗ = k(x,x∗), K∗,f = k(x∗,x) y K∗,∗ = k(x∗,x∗)

Una vez hallada la forma de esta distribución conjunta, se debe marginalizar el valor

de las salidas f∗ con respecto del valor de las entradas f obteniendo la distribución de

predicción. Para ello, se hace uso del Teorema [1]

p(f∗,y) = N (µ∗, σ
2
∗) (2.11)

µ∗ = K∗,f (Kf ,f + σ2
ruidoI)−1y (2.12)

σ2
∗ = K∗,∗ −K∗,f (Kf ,f + σ2

ruidoI)−1Kf ,∗ (2.13)

Este resultado aporta la fórmula buscada para poder hacer estimaciones con GPR. El

valor de media es el mejor estimador de la variable f∗ y por tanto, el valor tomado

como verdadero en el proceso de predicción . Además, se tiene en cuenta el valor de

incertidumbre que la varianza aporta para fijar un intervalo de confianza. Este intervalo,

se suele tomar como dos veces la desviación t́ıpica de cada valor x.

2.3. Métodos Sparse en GPR

Tras haber obtenido una expresión cerrada del estimador GPR (Ec. 2.23) vemos

como la inversión de la matriz de tamaño n × n tiene una complejidad de O(n3),

siendo n el numero de datos de entrenamiento. Una vez calculada dicha matriz, la

estimación de la media y de la varianza tiene un coste deO(n) yO(n2) respectivamente.

Esto lleva a problemas de implementación cuando se manejan grandes volúmenes de

datos. El objetivo de los métodos de aproximación Sparse es reducir la complejidad

computacional del algoritmo GPR.

La mayoŕıa de las aproximaciones Sparse están basadas en el uso de un subconjunto

de m variables u = [u1, . . . , um]T . A este subconjunto de variables de entrenamiento se

le denomina variables inducidas (Inducing variables) y representan una generalización

del total de la base de datos. Son variables del Proceso Gaussiano (como f y f∗) y se

corresponden con los ı́ndices Xu los cuales se denominan entradas inducidas (Inducing

points). Mientas que las variables u siempre se marginalizan en la distribución de

predicción, la elección de los inducing points resulta de gran relevancia en el resultado

final de la estimación.
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Existen multitud de métodos para la elección de los Inducing points [19]. Sin

embargo, para esta explicación se parte de que este subconjunto de la base de datos ya

ha sido escogido.

Al igual que en la expresión 2.9, se puede obtener p(f∗, f) integrando sobre u la

distribución a priori conjunta p(f∗, f ,u)

p(f∗, f) =

∫
p(f∗, f ,u)du =

∫
p(f∗, f |u)p(u)du donde p(u) = N (0, Ku,u) (2.14)

La expresión anterior es exacta con Ku,u=k(Xu,Xu). Es en este punto donde se basan

la mayoŕıa de las aproximaciones Sparse. Es posible aproximar la distribución a priori

conjunta asumiendo que f y f∗ son condicionalmente independientes dado u.

p(f∗, f) ' q(f∗, f) =

∫
q(f∗|u)q(f |u)p(u)du (2.15)

El origen de que a este tipo de variables se les denomine inducidas viene por el hecho de

que f y f∗ solo se pueden comunicar a través de u por lo que u induce una dependencia

entre los datos de entrenamiento y los de test tal y como se puede ver en la Figura 2.2

Figura 2.2: Relación entre variables con aproximaciones Sparse. [20]

Es a partir de este punto del algoritmo donde se ramifican las distintas

aproximaciones Sparse. En ellas se proponen distintas hipótesis respecto las

distribuciones q(f |u) y q(f∗|u). En la práctica, la aproximación que mejor ha funcionado

ha sido la aproximación FITC (Fully Independent Training Conditional) [20]-[21] y por

este motivo es por lo que se ha utilizado en este trabajo.

FITC hace una aproximación de la función de verosimilitud

p(y|f) ' q(y|u) = N (Kf ,uK
−1
u,uu, diag[Kf ,f −Kf ,uK

−1
u,uKu,f ] + σ2

ruidoI) (2.16)

Kf ,u = k(x,Xu). Además impone una independencia de los valores de salida f con

respecto de u (Figura 2.3)

q(f |u) =
n∏
i=1

p(fi|u) = N (Kf ,uK
−1
u,uu, diag[Kf ,f −Kf ,uK

−1
u,uKu,f ]) (2.17)
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q(f∗|u) = p(f∗|u) = N (K∗,uK
−1
u,uu, K∗,∗ −K∗,uK−1u,uKu,∗) (2.18)

Figura 2.3: FITC Sparse con independencia entre los valores de salida f y u. [20]

Al igual que se hizo en 3.7, se puede aplicar la Propiedad [2] para extraer la relación

entre los valores de salida de entrenamiento y un solo caso de test.

p(f , f∗) =

(
0,

[
Kf ,uK

−1
u,uKu,f − diag[Kf ,uK

−1
u,uKu,f −Kf ,f ] Kf ,uK

−1
u,uKu,∗

K∗,uK
−1
u,uKu,f K∗,∗

])
(2.19)

Por último, para obtener la distribución de predicción con la aproximación FITC Sparse

se debe marginalizar el valor de las salidas f∗ con respecto de el valor de las entradas

f a través del Teorema 1

p(f∗,y) = N (µ∗, σ
2
∗) (2.20)

µ∗ = K∗,uΣKu,yΛ−1y (2.21)

σ2
∗ = K∗,∗ −K∗,uK−1u,uKu,∗ +K∗,uΣKu,∗ (2.22)

Donde Λ = diag[Ky,y−Ky,uK
−1
u,uKu,y +σ2Im] y Σ = (Ku,u +Ku,yΛ−1Ky,u)−1 El valor

de media de la distribución de predicción anterior será el que utilicemos a la hora de

estimar y la varianza formará el intervalo de confianza que tenemos alrededor de ese

valor de media.

La siguiente tabla representa una comparativa de la carga computacional del

algoritmo GPR y la aproximación FITC Sparse.

Método Almacenamiento Entrenamiento Media Varianza
GPR O(n2) O(n3) O(n) O(n2)
FITC Sparse GPR O(mn) O(m2n) O(m) O(m2)

Tabla 2.1: Cargas Computacionales de las técnicas GPR
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2.4. Kernels

Los GPs hacen uso de los Kernel para definir la covarianza entre dos variables

aleatorias conjuntamente distribuidas

Cov[f(x), f(x′)] = k(x,x′) (2.23)

Se trata de una función qué indica como de relacionadas están dos variables aleatorias.

En el GPR esta función tiene un papel crucial ya que pese a que es un método

matemáticamente no dependiente de los datos se debe escoger una función de kernel

que se ajuste al comportamiento de estos. Cada kernel se corresponde con un conjunto

Nombre
del Kernel: Cuadrático-exp (SE) Periodico (Per) Lineal (Lin)

k(x, x′) = σ2
f exp

(
− (x−x′)2

2`2

)
σ2
f exp

(
− 2

`2
sin2

(
π x−x′

p

))
σ2
f (x−c)(x

′−c)

Representación

0 0

0

x− x′ x− x′ x (con x′ = 1)
↓ ↓ ↓

Funciones
f(x) obtenidas

del GP a
priori:

x x x
Tipo de

estructura: variación local repetitiva funciones lineales

Figura 2.4: Ejemplo de distintas estructuras representadas por diferentes kernels. [18]

de suposiciones que se hacen sobre la función que se quiere modelar. Resulta notorio

destacar que la mayoŕıa de los kernel hacen uso de la distancia eucĺıdea dentro de sus

expresiones como herramienta de correlación. Algunos de los kernel más utilizados en

GPR son:

− Función cuadrática exponencial, SE: Probablemente se trate del kernel más

utilizado en el ámbito del GPR.

kSE(x,x′) = σ2
f exp

(
− 1

2

d∑
k=1

(xi,k − xj,k)2

l2k

)
(2.24)
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El parámetro σ2
f es la varianza del Proceso Gaussiano mientras que el parámetro

l2k, el cual se denomina longitud caracteŕıstica, expresa la correlación en la k-ésima

dimensión del espacio de caracteŕısticas. Se trata de una función estacionaria y

anisotrópica (excepto si lk = l,∀k caso en el que es isotrópica).

− Función cuadrática racional, RQ:

kRQ(x,x′) = σ2
f

(
1 +

1

2α

d∑
k=1

(xi,k − xj,k)2

l2k

)−α
(2.25)

Este kernel se puede ver como una suma infinita de kernels SE con diferentes

longitudes caracteŕısticas. Los GPs con este kernel esperan encontrarse con

funciones que vaŕıan suavemente alrededor de estas longitudes. El parámetro

α es un factor de peso para grandes y pequeñas variaciones de escala. Cuando

α→∞ el RQ es equivalente a SE.

En caso de que la función no pueda verse caracterizada por un solo modelo, existe la

posibilidad de combinar kernels para modelar funciones más complejas a través de la

suma o producto entre ellos. El kernel resultante será capaz de modelar estructuras que

con kernels básicos no se podŕıan tratar. Sin embargo, se ha de tener en cuenta que

el incremento de complejidad del kernel se traduce en un mayor coste computacional.

La figura 2.5 muestra un ejemplo de selección de kernel de tal forma que conforme se

avanza en los niveles del árbol, la complejidad del kernel aumenta.

Sin estructura

SE RQ

SE + RQ . . . Per + RQ

SE + Per + RQ . . . SE × (Per + RQ)

. . . . . . . . .

. . .

. . . PER × RQ

Lin Per

Figura 2.5: Un ejemplo de patrón de búsqueda de kernel con un incremento de
complejidad del modelo conforme crece la expresión del kernel. [18]
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2.5. Ajuste de los hiperparámetros

A la hora de escoger un kernel para el GP hay ciertas propiedades que son sencillas

de determinar a través del contexto como puede ser si la señal es o no estacionaria.

Sin embargo, hay otras propiedades de las cuales tenemos una vaga información a

priori. Este es el caso de parámetros como la longitud caracteŕıstica o el factor de peso

vistos en la sección anterior. A este tipo de parámetros del kernel se les denomina

hiperparámetros y para que el proceso pueda ser modelado de forma adecuada han de

ajustarse a los datos. Este proceso de ajuste de hiperparámetros constituye la fase de

entrenamiento del GP. Como ejemplo de hiperparámetros, para el caso de la función

cuadrática exponencial,

H =
{
l, σ2

f , σ
2
}

(2.26)

Existen diversos métodos para optimizar estos hiperparámetros como puede ser la

búsqueda en rejilla. Sin embargo, en el caso de los GP predomina el uso de dos técnicas:

validación cruzada y selección Bayesiana de modelos [17]. En este trabajo se ha hecho

uso de esta última.

2.5.1. Selección Bayesiana de modelos

El objetivo en la Selección Bayesiana de modelos es conocer la distribución a

posteriori. Sin embargo, obtener de forma anaĺıtica esta expresión resulta en ocasiones

imposible pues implica calcular una integral que puede resultar intratable. Es por

ello que se requieren de métodos alternativos como la aproximación anaĺıtica de

la distribución o la búsqueda de parámetros, en nuestro caso hiperparámetros, que

maximicen la verosimilitud.

A través del Teorema de Bayes, se puede expresar la distribución a posteriori de los

hiperparámetros como

p(H|X,y) =
p(y|X,H)p(H)

p(y|X)
(2.27)

Donde p(y|X,H) es la verosimilitud marginal que se debe maximizar y p(H) es la

distribución a priori de los hiperparámetros que describe el conocimiento previo que se

tiene de estos. Como normalmente ese conocimiento es escaso o nulo, se suele dotar de

una distribución uniforme para todo el rango de valores.

Esta verosimilitud marginal puede calcularse a través de la expresión:

p(y|X,H) =

∫
p(y|f,X,H)p(f |X,H)df (2.28)
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Aplicando la hipótesis de que sigue una distribución normal llegamos a la conclusión

de que y ∼ N (0, Kyy), y con ello se puede obtener anaĺıticamente el resultado de la

integral cuyo logaritmo es:

log p(y|X,H) = −1

2
yTK−1yyy − 1

2
log |Kyy| −

n

2
log 2π (2.29)

donde Kyy = Kff + σ2
ruidoI es la matriz de covarianza de los valores de salida y

(y Kff es la matriz de covarianza de la salida sin ruido). A esta función se le suele

denominar logaritmo negativo de la función de probabilidad conjunta (NLL, Negative

Log-Likehood). Los tres términos de la expresión pueden tener una interpretación: el

primer término representa como el modelo se ajusta a los datos, el segundo representa

la complejidad del método dependiendo únicamente del kernel y las entradas al sistema

y el tercero es una constante de normalización.

Por tanto, al no poder calcular la distribución a posteriori anaĺıticamente, se opta

por maximizar la verosimilitud con respecto a los hiperparámetros. Para ello, se hace

necesario calcular su gradiente con respecto al i-ésimo elemento de H de la forma:

∂ log p(y|X,H)

∂Hi

= −1

2
tr

(
K−1yy

∂Kyy

∂Hi

)
+

1

2
yTK−1yy

∂Kyy

∂Hi

K−1yyy (2.30)

Esta forma permite el uso de cualquier optimización basada en método de gradiente. La

función objetivo no es necesariamente convexa por lo que el método puede converger en

máximos locales. Una posible solución a este problema seŕıa iniciar múltiples búsquedas

basadas en gradiente y luego escoger el punto óptimo que más maximice la distribución

marginal. Es en este punto del algoritmo donde se debe tener en cuenta el coste

computacional del algoritmo ya que este método requiere de la inversión de la matriz

Kyy de tamaño n × n, y, por tanto, un coste de O(n3). Con el objetivo de disminuir

dicho coste, es común que dado que la matriz de covarianza es simétrica y semidefinida

positiva, hacer uso de la Factorización de Cholesky [22] en el proceso de inversión de

la matriz.
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Caṕıtulo 3

Estimación de tensión futura con
GPR

La presente sección trata de abordar la explicación de cómo, a través del GPR, se

puede estimar la tensión futura de una bateŕıa dada las siguientes casúısticas:

− Perfil de corriente y temperatura futura conocido

− Perfil de corriente futura conocido pero no de temperatura

− Perfil de temperatura futura conocido pero no de corriente

Como explicación más genérica se trata el caso de perfil de corriente y temperatura

futuro conocido siendo los otros casos completamente análogos a este. Se asume que

se cuenta con los valores de tensión, corriente y temperatura del pasado de la bateŕıa

ya que será necesario apoyarse en ellos para hacer tanto el entrenamiento como la

predicción. Los datos recogidos en la base de datos están tomados cada 15 minutos.

Sin embargo, se ha comprobado que submuestrear la base de datos en un factor 4,

obteniéndose aśı muestras de 1 hora reduce la carga del algoritmo sin deteriorar, de

forma apreciable, los resultados.

En el proceso de entrenamiento es donde se han de ajustar los valores de los

hiperparámetros del kernel. Para ello, si los datos de entrada están muestreados cada

1 hora, se entrena al modelo GPR para ser capaz de predecir la tensión de la bateŕıa

en una muestra futura.

Se denotan de la forma Vt, It y Tt a los valores discretos de tensión, corriente y

temperatura en el instante de referencia t. El objetivo es estimar la tensión futura de
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la bateŕıa en los instantes t + 1, . . . , t + L. El valor de L representa el horizonte de

predicción y, en el caso concreto de un sistema fotovoltaico, se fija a 48 horas ya que,

como se ha estudiado en el marco del proyecto, que este es el tiempo que precisaŕıa el

sistema para tomar las medidas necesarias (como subir la tensión de flotación) en caso

de una posible cáıda de la instalación. Para poder realizar la estimación, se debe contar

con los valores futuros de corriente y temperatura en dichos instantes. Por tanto, con

el fin de estimar la tensión futura Vt+1, . . . , Vt+L, se hace uso de los valores corriente

It+1, . . . , It+L y de temperatura Tt+1, . . . , Tt+L.

3.0.1. Predicción de tensión a una muestra

Antes de abordar el caso más complejo de estimar a L muestras futuras, se plantea el

caso más simple de predicción a una única muestra. Esta técnica, denominada One-step

voltage prediction [10], busca estimar la muestra de tensión correspondiente al tiempo

t + 1 a través de las muestras pasadas de t, . . . , t −M . Nos referiremos a M como la

longitud de memoria (Memory length) y representa el número de muestras pasadas

utilizadas para la estimación de tensión.

Se agrupan las medidas pasadas y los valores futuros de corriente y temperatura en

un vector xt de longitud 3M + 2 de la forma

xt = [It+1 Tt+1 Vt It Tt . . . Vt−M It−M Tt−M ]T (3.1)

La salida yt es la tensión obtenida en el instante t+1 donde no se considera la existencia

de ruido

yt = Vt+1 (3.2)

La esencia del algoritmo reside en modelar la función de probabilidad conjunta de n

salidas yt1, yt2, . . . , ytn como una gaussiana de la forma

p(yt1, yt2, . . . , ytn) ∼ N (0, Kf ,f ) (3.3)

donde se toma media nula ya que, al inicio del proceso, se puede sustraer su valor de

todos los valores de entrenamiento y se puede volver a incluir en la solución final. La

matriz de covarianza Kf ,f ∈ Rn×n viene dada por[
Kf ,f

]
ij

= k(xti ,xtj) (3.4)

donde Kf ,f es el kernel que modela la similitud entre las variables xti y xtj . En este

caso, entradas de tensión, corriente y temperatura similares provocarán una estimación

de tensión similar.
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Los hiperparámetros H del kernel se ajustan directamente a través de los valores

de entrenamiento. Los datos de entrada de la optimización de descenso por gradiente

serán n pares de entradas y salidas D = (xti , yti) donde i = 1, . . . , n. El logaritmo

negativo de la función de probabilidad conjunta de los datos de entrenamiento viene

dado a partir de la distribución 3.3. De esta optimización resultan unos nuevos valores

de hiperparámetros Ĥ.

NLL(D,H) = −1

2
yTK−1f ,f y − 1

2
log |Kf ,f | −

n

2
log 2π (3.5)

donde y = [yt1, yt2, . . . , ytn]T y los valores de la matriz Kf ,f vienen rellenados a través de

3.4 para los hiperparámetros H. Tras el proceso de gradiente descendiente, se obtiene

un argumento que minimiza el NLL

Ĥ = argmin NLL(D,H) (3.6)

Algoritmo 1 Fase de entrenamiento en GPR predictor a una muestra

1: Entrada: Datos de entrenamiento D = (xt1 , yt1), . . . , (xtN , ytn)

2: Entrada: Kernel k(., .) e hiperparámetros Ĥ
3: Ejecución de la optimización: Ĥ = argmin NLL(D,H)

4: Cálculo de la inversa de la matriz de covarianza K−1f ,f para Ĥ usando 3.4

5: Salida: Hiperparámetros óptimos Ĥ
6: Salida: Matriz de covarianza inversa K−1f ,f

Con el objetivo de estimar en la fase de test la salida de tensión en el instante yt

utilizaremos los valores de hiperparámetros optimizados Ĥ y los datos de entrenamiento

D. Como se ve en la ecuación 3.7, a través de la propiedad [2] se puede expresar la

distribución conjunta de las salidas yt1, yt2, . . . , ytN y de la salida objetivo yt como una

nueva distribución gaussiana.

p(yt1, yt2, . . . , ytn, yt) = N
(

0,

[
Kf ,f K∗,f
Kf ,∗ K∗,∗

])
(3.7)

donde Kf ,f fue obtenida en la expresión 3.4, K∗,f ∈ Rn×1 es el vector de covarianza

evaluado en cada entrada xtide la base de datos de entrenamiento D y la entrada de

test xt

K∗,f = k(xti ,xt), i = 1, . . . , n (3.8)

mientras que K∗,∗ = k(xt,xt) Es importante remarcar que tanto Kf ,∗ como K∗,f y

K∗,∗ han hecho uso de los nuevos hiperparámetros Ĥ. Como vimos en 2.23, como la

distribución conjunta es gaussiana, la distribución condicional también lo es,

p(yt|yt1, yt2, . . . , ytn) = N (µt, σ
2
t ) (3.9)
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donde la media µt y la varianza σ2
t vienen dados por

µt = K∗,fK
−1
f ,f y (3.10)

σ2
t = K∗,∗ −K∗,fK−1f ,f Kf ,∗ (3.11)

El valor de media de la nueva distribución es el mejor estimador de la tensión a una

muestra,

V̂t+1 = µt (3.12)

mientras que la varianza es la incertidumbre de la predicción y puede ser utilizada para

especificar un intervalo de confianza del 95 %

[µt − 1,96σt, µt + 1,96σt] (3.13)

Algoritmo 2 Fase de test en GPR Predictor a una muestra

1: Entrada: Datos de entrenamiento D = (xt1 , yt1), . . . , (xtN , ytn)

2: Entrada: Kernel k(., .) e hiperparámetros Ĥ
3: Entrada: Matriz de covarianza inversa K−1f ,f

4: Entrada: Mediciones Vt, It, Tt . . . Vt−M,It−M , Tt−M
5: Entrada: Corriente y temperatura futura It+1, Tt+1

6: y = [yt1, yt2, . . . , ytn]T

7: xt = [It+1 Tt+1 Vt It Tt . . . Vt−M It−M Tt−M ]T

8: K∗,f = k(xti ,xt), i = 1, . . . , N
9: K∗,∗ = k(xt,xt)
10: µt = K∗,fK

−1
f ,f y

11: σ2
t = K∗,∗ −K∗,fK−1f ,f Kf ,∗

12: Salida: Media y varianza estimada µt y σ2
t

3.0.2. Predicción recursiva multipaso de tensión (R-MSVP)

El objetivo del R-MSVP es ser capaz de estimar el valor de tensión de la muestra

t + L. Para ello, la idea es tratar la tensión estimada y
(m)
t = Vt+m | m = 1, . . . , L

como si fuera una tensión real a la hora de estimar y
(m+1)
t = Vt+m+1. El estimador

de tensión a una muestra en un instante t estima el valor de media de tensión µ
(1)
t a

través de la ecuación 3.10. El R-MSVP, con el fin de estimar la tensión correspondiente

al instante t + 2, se apoya en la tensión predicha en t + 1, µ
(1)
t tomándola como un

valor realmente medido. Este valor, junto a los demás parámetros de tensión corriente

y temperatura, en los instantes t, t−1, . . . , t−M se reinyecta a los valores de corriente

y temperatura It+1, It+2, Tt+1 y Tt+2 en un algoritmo de estimador de tensión a una
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muestra para aśı obtener µ
(2)
t . Siguiendo este proceso, es posible llegar a predecir L

muestras de tensión futuras para poder aśı llegar a las 48 horas de margen de reacción

de BMS frente a posibles carencias de enerǵıa . Esta técnica ha sido utilizada con éxito

en [10]-[7].

El proceso de entrenamiento del R-MSVP es el mismo que en el algoritmo de

estimación a una muestra. Por otro lado, en el proceso de test, el R-MSVP en un

instante t estima, de forma ordenada, las tensiones correspondientes a las muestras

t+1, . . . , t+L. La predicción de tensión correspondiente a los instantes t+m se realiza

a través del algoritmo de estimación a una muestra cambiando, en cada iteración, la

entrada al sistema de la forma

xt = [It+m Tt+m V
(m)
t I

(m)
t T

(m)
t ]T (3.14)

donde

V
(m)
t = [µ

(m−1)
t . . . µ

(1)
t Vt . . . Vt−M+m−1]

T (3.15)

I
(m)
t = [It+m−1 . . . It+1 It . . . It−M+m−1]

T (3.16)

T
(m)
t = [Tt+m−1 . . . Tt+1 Tt . . . Tt−M+m−1]

T (3.17)

El proceso de test, se ilustra en el algoritmo 3

Algoritmo 3 Fase de test en R-MSVP

1: Entrada: Datos de entrenamiento D = (xt1 , yt1), . . . , (xtN , ytn)

2: Entrada: Kernel k(., .) e hiperparámetros Ĥ
3: Entrada: Matriz de covarianza inversa K−1f ,f

4: Entrada: Mediciones Vt, It, Tt . . . Vt−M,It−M , Tt−M
5: Entrada: Corriente y temperatura futura It+1, Tt+1, . . . , It+L, Tt+L
6: y = [yt1, yt2, . . . , ytn]T

7: for m = 0 to L do
8: Reajustar x

(m)
t como en 3.14

9: K∗,f = k(x
(m)
t ,xti), i = 1, . . . , N

10: K∗,∗ = k(x
(m)
t ,x

(m)
t )

11: µ
(m)
t = K∗,fK

−1
f ,f y

12: σ2(m)

t = K∗,∗ −K∗,fK−1f ,f Kf ,∗
13: end for
14: Salida: Media y varianza de tensión estimada V̂t+m = µ

(m)
t , m = 1, . . . , L

Este algoritmo recursivo es el que ha sido utilizado en la totalidad de las pruebas

de este trabajo ya que es el método que mejores resultados ha obtenido en la literatura

frente a otros métodos como el Predictor paralelo multipaso de tensión (P-MSVP)
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[10]. Habiendo fijado el parámetro de horizonte de predicción a L = 48 muestras

con el objetivo de que el BMS sea capaz de adaptarse en función de las estimaciones

de predicción, quedarán por fijar los parámetros de longitud de memoria (M), el

kernel utilizado y los d́ıas escogidos tanto para el entrenamiento como para el test

del algoritmo. Para ello, es importante tener en cuenta que el objetivo final de nuestro

sistema es que sea implementable y por ello ha de existir un compromiso entre la carga

computacional y las métricas de resultados.

Teniendo en cuenta que nuestra base de datos cuenta con multitud de años

completos se ha considerado apropiado escoger como base de datos de entrenamiento

un año completo. En concreto, se ha escogido 2008 ya que es el año que más estabilidad

presenta en la base de datos puesto que la bateŕıa se acababa de renovar y part́ıamos

de su estado óptimo.
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Figura 3.1: Tensión en la bateŕıa en el año 2008

Debido a que el GPR tiene una complejidad de O(n3), tratar más de un millar de

muestras en la fase de entrenamiento se vuelve inviable sin requerir de aproximaciones.

Es por ello que, dentro de ese año de entrenamiento se han escogido muestras aleatorias

de tal forma que en total conformen el tamaño equivalente a un mes (720 muestras

de tensión corriente y temperatura). Escogiéndose de forma uniforme a lo largo de

24



un año, y no solamente un mes seguido, le damos la oportunidad al algoritmo de

visualizar el comportamiento de la tensión en múltiples casúısticas de forma que sea

capaz de tratarlas en la fase de test. Se ha probado a elegir un mes completo como

enero obteniéndose buenos resultados en la estación de invierno. Sin embargo, en el

momento en el que tratamos de abordar un d́ıa de verano sin reentrenar la estimación

empeora de forma considerable.

En la Figura 3.2 se puede ver de forma visual el conjunto matricial que se utiliza

como entrada al algoritmo. Se ha probado a normalizar los valores de entrada sin

apreciar una mejora apreciable, por lo que se ha preferido que mantengan sus escalas

originales.

Figura 3.2: Representación visual de la base de datos de entrenamiento del algoritmo.
Incluye como parámetros de entrada a la tensión, la corriente y la temperatura. El eje
y representa las 720 muestras de entrenamiento. El eje x representa las M muestras
pasadas en cada instante, incluyendo las muestras t+ 1 para el caso de la temperatura
y la corriente. El eje z representa el valor de las amplitudes de las ondas de entrada:
voltios, amperios y grados cent́ıgrados

En la fase de test, pese a que la estimación se realiza a 48 horas futuras se suele,

al finalizar la estimación, repetir el proceso desplazando la posición actual de t a t+ 1
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llegándose a desplazar muestra a muestra hasta un mes de tal forma que se simule un

sistema real donde el algoritmo estima a 48 horas, una hora más tarde repite el proceso

y aśı sucesivamente. A la hora de elegir dicho mes, al haber escogido una base de

entrenamiento que toma muestras de todo el año, no existe una diferencia significativa

entre un mes u otro del año. Por eso, y por escoger datos pertenecientes a un año

diferente al de entrenamiento (validación cruzada) de la misma manera que se haŕıa en

un sistema realista, se ha escogido el mes de mayo de 2009 como objetivo de estimación.
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Figura 3.3: Forma de onda de tensión en la bateŕıa en el mes de test

3.0.3. Elección Kernel

La elección del kernel es compleja ya que se trata del único parámetro que realmente

se escoge en función del tipo de datos. En [10] proponen una kernel compuesto por la

suma de dos SE y un kernel de red neuronal. Siendo que se trata de una función

formada a través de la suma de tres kernels elementales el objetivo era abordar un

amplio espectro de posibles no linealidades. Sin embargo, este tipo de kernels complejos

aumentan la coste computacional conforme mayor es su estructura (Figura 2.5). Se ha

probado el uso de este kernel pero su complejidad computacional y los resultados poco

certeros aportados, han llevado a su descarte.
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En este trabajo se ha observado como, para la base de datos concreta que se maneja,

un kernel con estructura simple como el RQ es capaz de modelar el comportamiento

de la señal de tensión siguiendo, incluso, las variaciones que un paso por nube puede

producir. Matlab aporta una herramienta llamada “Profiler”que ayuda a ver, en un

scripts concreto, dónde se gasta la mayor parte del tiempo de ejecución. Como vemos,

en la Figura 3.4, la llamada a la función del kernel (“covRQard”) es la que más tiempo

ha consumido en la totalidad de la ejecución resultando aśı un factor cŕıtico en el

proceso de implementación real.

Figura 3.4: Sección del Profiler ilustrando el tiempo consumido por cada función del
algoritmo

3.0.4. Elección memoria pasada, M

Por otro lado, resulta necesario fijar un valor de memoria pasada, M. Este valor

determina la ventana de muestras pasadas que toma la muestra t para estimar t + 1.

En [7]-[10] se plantea la posibilidad de que este parámetro esté relacionado con la

constante de tiempo de la dinámica de la bateŕıa (y, en consecuencia, de su qúımica).

Sin embargo, tras haberse realizado, como puede verse en la Figura 3.5, un barrido

de distintos valores se ha detectado que no existe una variación real en la estimación

provocada por este parámetro. Se ha observado que para valores de M < 15 los valores

de la matriz de covarianza de los datos de entrenamiento Kf ,f son tan similares que

Matlab no es capaz de aportar una solución exacta a su inversión. Este problema

desaparece en caso de hacer uso de la función gp() de la libreŕıa GPML que aporta

directamente los valores de media y varianza estimados. Pese a esta posibilidad que la
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función gp() aporta, al computar todo el cálculo matricial en una misma función, se

está recalculando en cada iteración el valor de K−1f ,f siendo que es constante. Es por ello,

que pese a la posibilidad de reducir el valor de M , y a la vista de que las métricas son

similares con valores M ≥ 15 se ha preferido no hacer uso de dicha función y realizar

los cálculos matriciales sin libreŕıa y escoger M = 15 como parámetro fijo con el fin de

reducir el tiempo de cómputo.
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Figura 3.5: Barrido a lo largo de los posibles valores de memoria pasada M a través de
la función gp()

3.0.5. Múltiples Expertos GPR como estimador de tensión

Debido a la multitud de tipos de d́ıas que existen a lo largo de un año completo, y con

la intención de reducir el esfuerzo computacional que realiza un único algoritmo GPR

al estimar con un solo entrenamiento una base de datos con amaneceres y anocheceres

tan diversos, se ha realizado una implementación diferente a la habitual donde existen

expertos GPR. Estos expertos GPR son especialistas en un tipo de d́ıa cada uno. Pese

a que a priori se pueda pensar que para un año existen 4 tipos de d́ıas correspondientes

cada uno de ellos con una estación del año, se ha comprobado que esta no es la forma

de clasificación más precisa ya que no existe una diferencia real entre d́ıas de verano
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y d́ıas de primavera. Con el objetivo de mejorar esta clasificación, se ha hecho uso de

mapas autoorganizados (Anexo ??) [12] y del algoritmo de K-means (Anexo ??). La

clasificación de la base de datos fue desarrollada por el grupo de investigación en [23]

y este trabajo se centra en su aplicación al GPR. A través de esta clasificación, se

pueden agrupar los distintos tipos de d́ıas que realmente afectan al comportamiento de

la bateŕıa.

Para ello, se hace uso de la base de datos de Sigena de los años 2007 a 2009 y se

toman como variables de entrada:

− Tensión de inicio de descarga

− Tensión de final de descarga

− Horas de carga

− Horas de descarga

− Carga almacenada

Tras entrenar el algoritmo, el mapa autoorganizado resultante y las distribuciones de

las variables se representan en la Figura 3.6.
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Figura 3.6: SOM de las variables
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El algoritmo de agrupación K-means requiere que se le fije, a priori, el número de

clusters a realizar. Este proceso se ha realizado de forma iterativa y se ha comprobado

que a partir de 5 clusters no exist́ıa mucha diferencia en los tipos de d́ıas que aportaba.

Estos clusters se pueden ver representados en la Figura 3.7.

5 clusters
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Figura 3.7: Agrupaciones del SOM

Se puede hacer una representación de la forma de onda media de cada agrupación,

Figura 3.8.

− Dı́a malo

− Dı́a de Invierno con la bateŕıa en flotación

− Dı́a de Invierno sin la bateŕıa en flotación

− Dı́a de Primavera con la bateŕıa en flotación

− Dı́a de Verano con la tensión en flotación
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Figura 3.8: Tipos de d́ıas en la base de datos obtenidos a partir del uso del SOM y del
algoritmo K-means

Una vez obtenidas las 5 bases de datos con los diferentes tipos de d́ıas, se entrena con

cada una de ellas un GPR de forma individual de la misma forma que se hizo en los

apartados previos obteniendo aśı diferentes valores de hiperparámetros para cada uno

de los 5 expertos. Todos ellos comparten los parámetros que ya fijamos con anterioridad

(Kernel, M, L). En la ejecución de la fase de test, se toma como válido el resultado del

experto GPR que obtenga menor varianza en su estimación. Esta forma de elección del

valor estimado es la más simple y a su vez la que mejores prestaciones ha aportado.

Otra de las aproximaciones planteadas ha sido entrenar una pequeña red neuronal, de

tipo perceptrón multicapa, que tomara como entradas las medias y las varianzas de

cada experto y diera una salida que fuera tomada como la óptima. Sin embargo, los

resultados eran similares y aumentaba el coste computacional.

3.0.6. Sparse GPR como estimador de tensión

Con el objetivo de abordar un mayor número de casúısticas en la fase de

entrenamiento y con el fin de mantener un coste computacional reducido se hace uso de

la herramienta de aproximación FITC Sparse. El proceso de estimación es equivalente

al tratado en la sección 3.0.2 pero haciendo uso de la expresión de media y varianza
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obtenida en 2.21. Como parámetros adicionales a las secciones previas, se incluye elegir

el número (m) y la posición de las inducing points Xu que representan un subconjunto

de la base de datos de entrenamiento. En la literatura, existen diversos métodos para

obtener dicho subconjunto. El algoritmo de agrupación de puntos lejanos (FPC, Farthes

Point Clustering) [19] con un coste computacional de O(nm) es el más complejo de

todos ellos. Sin embargo, la mayor parte de la literatura opta por la selección de puntos

o de forma aleatoria o equiespaciados en la base de datos, ambos con un coste de O(m).

Se ha escogido este último por la sencillez de implementación y por su extendido uso

en el sector. Una vez escogido el subconjunto, es posible optimizarlo si se pasa como

parámetro, junto a los hiperparámetros, al algoritmo de gradiente descendente de tal

forma que juntos minimicen la función objetivo.

En lo respectivo a la cantidad m de inducing points a seleccionar se ha realizado

un barrido para explorar los resultados que FITC Sparse aporta en función de m. Los

valores RMSE que se pueden ver en la Figura 3.10 tienden a variar ligeramente en

la primera centena de inducing points manteniéndose prácticamente constantes de ah́ı

en adelante. En la Figura 3.9 se puede ver el coste computacional tanto de la fase

de entrenamiento como de test. Por tener el mı́nimo valor de error en el rango de la

centena a la vez que mantiene un coste computacionalmente reducido, se ha escogido

m = 80 como parámetro fijo para las pruebas.
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Figura 3.9: Duración de las fases de entrenamiento en segundos y de test en minutos
para distinto número de inducing points
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Figura 3.10: La figura superior representa el RMSE promedio en voltios de las
estimaciones del mes completo. La figura inferior representa los máximos picos de
error en voltios encontrados en la estimación del mes completo. Ambas se representan
en función del número de inducing points

Algoritmo 4 Flujo del Sparse FITC

1: Entrenamiento: Datos de entrenamiento. D = (xt1 , yt1), . . . , (xtN , ytn)
2: Paso 1: Elegir el kernel e inicializar los hiperparámetros a cero.
3: Paso 2: Elección aleatoria de m inducing points Xu

4: Paso 3: Método de gradiente que obtenga los valores óptimos de hiperparámetros
y inducing points de tal forma que se minimice el NLL(D,H,Xu)

5: Test: Se precomputan las matrices que no incluyan los valores de test
6: y = [yt1, yt2, . . . , ytN ]T

7: Ku,u=k(Xu,Xu)
8: Ky,u = k(x,Xu)
9: Σ = (Ku,u +Ku,yΛ−1Ky,u)−1

10: Λ = diag[Ky,y −Ky,uK
−1
u,uKu,y]

11: Λ−1

12: for m = 0 to L do
13: Reajustar x

(m)
t como en 3.14

14: K∗,f = k(x
(m)
t ,xti), i = 1, . . . , N

15: K∗,∗ = k(x
(m)
t ,x

(m)
t )

16: µt = K∗,uΣKu,yΛ−1y
17: σ2

t = K∗,∗ −K∗,uK−1u,uKu,∗ +K∗,uΣKu,∗
18: end for
19: Salida: Media y varianza estimada µt y σ2

t
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Caṕıtulo 4

Resultados y Métricas

En este caṕıtulo se resumen los resultados obtenidos en los algoritmos desarrollados.

Para la verificación, se ha seleccionado un patrón estable de comparación, que permita

evaluar cualitativamente y cuantitativamente cada uno de los métodos. Se exponen de

forma gráfica y mediante métricas de error los tres métodos: GPR Básico, Múltiples

Expertos y Sparse GPR. La estimación se ha realizado con distintos patrones futuros

conocidos, los cuales serán comparados en las siguientes secciones.

− Perfil de corriente y temperatura futura conocido: Contiene los valores

pasados y futuros de tensión, corriente y temperatura.

− Perfil de corriente futura conocido pero no de temperatura: Contiene

tanto los valores pasados de tensión, corriente y temperatura como los valores

futuros de corriente.

− Perfil de temperatura futura conocido pero no de corriente: Contiene

tanto los valores pasados de tensión y temperatura como los valores futuros de

temperatura

Para evaluar los resultados del sistema, resulta preciso hacer uso de métricas de error.

RMSE(m) =

√√√√ 1

Ntest

Ntest∑
1

(Vt+m − V̂t+m)2 (4.1)

MAE(m) = max
i=1,...Ntest

= |Vt+m − V̂t+m| (4.2)

donde Ntest se refiere a el número de muestras de test y m = 1, . . . L. Para evaluar

el error nos interesa conocer la desviación de la forma de onda estimada frente a la

real, tanto para d́ıas homogéneos cómo para cambios bruscos en la insolación. Además,
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resulta necesario establecer métricas cercanas al problema planteado. Desde un punto

de vista de implementación futura, el BMS podŕıa centrar la predicción futura en la

muestra de final de d́ıa. La pregunta que el operario, o el sistema automático, debe

realizarse es qué tensión mı́nima va a ser capaz de suministrar el sistema en la hipótesis

de que ya no se pueda absorber más enerǵıa del sol. Es por ello que su medida es de

gran importancia.

RMSE
FinalDia

(m) =

√√√√ 1

Ndias

Ntest∑
1

( Vt+m
FinalDia

− V̂t+m
FinalDia

)2 (4.3)

MAE
FinalDia

(m) = max
i=1,...Ndias

= | Vt+m
FinalDia

− V̂t+m
FinalDia

| (4.4)

Para poder medir el coste del algoritmo se ha incluido en las métricas de error el tiempo

de cómputo de las fases de entrenamiento y de test. Aunque se ha de tener en cuenta

que es una medida dependiente del ordenador con el que se ha realizado y sirve cómo

método de comparación relativa entre la complejidad entre un modelo y otro.

Especificaciones GPR Básico

− Datos de entrenamiento: 720 horas equiespaciadas de 2008

− Mes de test: Mayo de 2009

− Kernel escogido: Racional Cuadrático (RQ)

− Memoria pasada: M=15

− Horizonte de predicción: L=48

Especificaciones Múltiples Expertos GPR

− Datos de entrenamiento: 720 horas equiespaciadas a cada experto GPR con su

especialidad de d́ıa

− Mes de test: Mayo de 2009

− Kernel escogido: Racional Cuadrático (RQ)

− Memoria pasada: M=15

− Horizonte de predicción: L=48
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Especificaciones Sparse GPR

− Datos de entrenamiento: 2008 completo y optimizado en la fase de entrenamiento

− Mes de test: Mayo de 2009

− Kernel escogido: Racional Cuadrático (RQ)

− Memoria pasada: M=15

− Horizonte de predicción: L=48

4.1. Perfil de corriente y temperatura futura

conocido

En este sección se trata el caso de estimación de tensión futura con los perfiles de

corriente y temperatura conocidos. Se busca estudiar el impacto que tiene la corriente y

la temperatura en la predicción de tensión. Es esperable que, al alimentar el algoritmo

con el perfil de corriente futuro, la estimación sea buena ya que en la corriente reside

la información de carga de la bateŕıa (concepto de Coulomb Counting [24]).

GPR básico con perfil de corriente y temperatura futura conocido
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Figura 4.1: Formas de onda del GPR con corriente y temperatura futura conocidos
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En la Figura 4.1 se puede ver cómo el modelo GPR ha sido capaz de reproducir la

forma de onda. Este modelo ha sido capaz de seguir las cáıdas de tensión producidos

en los d́ıas de insolaciones iniciales y finales de forma certera.

Por otro lado, las métricas de error de la Figura 4.2 muestran cómo existe un patrón

periódico de error localizado en lo alto de la forma de onda. Este fenómeno es producido

ya que es el momento de máxima incertidumbre del algoritmo (máximo intervalo de

confianza) y el dato es menos fiable.
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Figura 4.2: Métricas de error del GPR con corriente y temperatura futura conocidos

En el caso de los Múltiples Expertos, la evolución de tensión en la Figura 4.3 también

es buena, con defectos y virtudes similares al GPR Básico. Se sigue apreciando cómo

el modelo se ha ajustado a la onda real,
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Múltiples Expertos GPR con perfil de corriente y temperatura futura conocido
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Figura 4.3: Formas de onda del ME con corriente y temperatura futura conocidos
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Figura 4.4: Métricas de error del ME GPR con corriente y temperatura futura conocidos
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Los problemas de errores periódicos vistos en el caso del GPR Básico se han

atenuado tal y como se puede ver en la Figura 4.4. Sin embargo, siguen siendo

apreciables y se tendrá que evaluar su importancia en el sistema.
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Figura 4.5: Formas de onda del Sparse con corriente y temperatura futura conocidos
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Figura 4.6: Métricas de error del Sparse con corriente y temperatura futura conocidos
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En el caso de el Sparse GPR, se puede ver en la Figura 4.5 como la onda de tensión

estimada sigue, de forma precisa, la forma de onda original.

Los errores obtenidos en la Figura 4.6 muestra como este método también consigue

atenuar los errores observados en el GPR Básico obteniéndose como máximo picos de

2V de error en situaciones de insolación.

GPR Básico Múltiples Expertos GPR Sparse GPR
RMSE

(V)
0.5898 0.5193 0.4695

MAE
(V)

1.6033 0.2275 2.1305

RMSE
FinalDia

(V)
0.2799 0.1803 0.2379

MAE
FinalDia

(V)
0.0020 0.3075 0.1275

Duración
Entrenamiento

(s)
14 62 24

Duración
Test (s)

55 446 46

Tabla 4.1: Métricas de error con perfil de corriente y temperatura conocido

Como se puede ver en las figuras, los tres métodos han sido capaces de seguir de

forma precisa, en mayor o menor medida, de seguir el patrón tensión en un mes con

sucesos heterogéneos como insolaciones. Los máximos puntos de error se encuentran a

en el pico de onda ya que es en ese momento cuando la incertidumbre es máxima. La

Tabla de métricas de error 4.1 muestra como el GPR Básico ha sido el que mayor error

ha cometido en el conjunto de onda. Sin embargo, ha alcanzado gran capacidad para

no producir picos de error al final del d́ıa y es el que menor coste de entrenamiento ha

requerido. Por otro lado, los Múltiples Expertos logran su función de reducir el error

del GPR básico pero a costa de un incremento elevado tanto en el entrenamiento como

en el test. El Sparse GPR ha sido el método que mejores métricas ha obtenido con un

tiempo de test similar al básico y de entrenamiento algo superior.
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4.2. Perfil de corriente futura conocido pero no de

temperatura

En este sección se trata el caso en el que se cuenta con tanto los valores pasados

de tensión, corriente y temperatura como los valores futuros de corriente. Se busca

estudiar, con respecto a la sección anterior, el impacto que tiene la corriente y la

temperatura en la predicción de tensión.
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Figura 4.7: Formas de onda del GPR con corriente futura conocida

Los resultados apreciables resultan ser similares a los obtenidos en la sección previa,

tanto en la forma de onda como en las métricas representadas.
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Figura 4.8: Métricas de error del GPR con corriente futura conocida

Múltiples Expertos GPR con con perfil de corriente futura conocido pero no de temperatura
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Figura 4.9: Formas de onda del ME GPR con corriente futura conocida
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Figura 4.10: Métricas de error del ME GPR con corriente futura conocida

Sparse GPR con con perfil de corriente futura conocido pero no de temperatura
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Figura 4.11: Formas de onda del Sparse GPR con corriente futura conocida
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Figura 4.12: Métricas de error del Sparse GPR con corriente futura conocida

GPR Básico Múltiples Expertos GPR Sparse GPR
RMSE

(V)
0.5898 0.5173 0.4685

MAE
(V)

1.6033 2.7508 2.1378

RMSE
FinalDia

(V)
0.2799 0.1898 0.2384

MAE
FinalDia

(V)
0.0020 0.3081 0.1266

Duración
Entrenamiento

(s)
14 60 24

Duración
Test (s)

55 416 47

Tabla 4.2: Métricas de error con perfil de corriente conocido

Como se puede ver tanto en las Figuras previas como en la Tabla de métricas

de error 4.2,las evoluciones de las forma de onda, se han mantenido prácticamente

invariantes con respecto a la sección previa donde se introdućıa la temperatura. Es

por ello, que es posible extraer la conclusión de que la temperatura no aporta un peso
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significativo en la estimación. Las causas de ello podŕıan estar relacionadas con la alta

inercia térmica del pack de bateŕıas, o con la independencia del comportamiento de

carga con la temperatura. Este resultado facilita que, en la práctica, puedan llevarse a

cabo este tipo de algoritmos mediante solamente dos variables, ya que el BMS puede

focalizarse en un perfil de corriente hipotético sin dependencia térmica.

4.3. Perfil de temperatura futura conocido

En este sección se aborda el caso en el que se prescinde de la corriente en la

predicción y se hace uso de, exclusivamente, la tensión y temperatura pasadas y el

perfil de temperatura futuro.

GPR básico con perfil de temperatura futura conocido pero no de corriente

100 200 300 400 500 600

Muestras (horas)

48

50

52

54

56

58

T
e

n
s
ió

n
 (

V
)

560 580 600 620 640 660 680

Muestras (horas)

50

55

60

T
e

n
s
ió

n
 (

V
)

Intervalo de confianza

Tensión medida

Tensión estimada

Final de dia

Figura 4.13: Formas de onda del Sparse GPR con temperatura futura conocida

Como se puede apreciar en la Figura 4.13, pese a no contar con el perfil de corriente,

el modelo ha sido capaz de reproducir un patrón de onda similar al obtenido en las

bateŕıas. Sin embargo, como en la temperatura no reside la información de la carga,

no es capaz de reproducir correctamente el modelo.
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Figura 4.14: Métricas de error del GPR con temperatura futura conocida

Múltiples Expertos GPR con perfil de temperatura futura conocido pero no de corriente
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Figura 4.15: Formas de onda del ME GPR con temperatura futura conocida
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Figura 4.16: Métricas de error del ME GPR con temperatura futura conocida

Sparse GPR con con perfil de temperatura futura conocido pero no de corriente

100 200 300 400 500 600

Muestras (horas)

45

50

55

60

T
e

n
s
ió

n
 (

V
)

560 580 600 620 640 660 680

Tiempo (s)

45

50

55

T
e

n
s
ió

n
 (

V
)

Intervalo de confianza

Tensión medida

Tensión estimada

Final de dia

Figura 4.17: Formas de onda del Sparse GPR con temperatura futura conocida
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Figura 4.18: Métricas de error del Sparse GPR con temperatura futura conocida

Los Múltiples Expertos 4.15 siguen el mismo patrón que el GPR Básico

reproduciendo una forma de onda escasamente correlada con la real. Por otro lado,

el resultado resultante del modelo de Sparse GPR no ha sido capaz ni de encontrar el

patrón periódico.

GPR Básico Múltiples Expertos GPR Sparse GPR
RMSE

(V)
2.3036 2.6616 3.4191

MAE
(V)

5.6754 7.2880 6.4276

RMSE
FinalDia

(V)
0.2771 1.7369 2.3347

MAE
FinalDia

(V)
0.0316 0.5838 6.3401

Duración
Entrenamiento

(s)
14 58 20

Duración
Test (s)

52 391 37

Tabla 4.3: Métricas de error con perfil de temperatura conocido
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Como se puede ver tanto en las figuras como en la tabla de errores 4.3 prescindir

de la corriente en la estimación hace que no sea posible estimar de forma adecuada la

tensión. Sin embargo, frente a los casos previos, el GPR Básico resulta ser capaz de

formar una onda similar que consigue un error reducido al final de d́ıa.
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Caṕıtulo 5

Conclusiones

Se ha abordado el problema de estimación de tensión futura en bateŕıas a través

del uso de los Procesos Gaussianos como herramienta de regresión. Para ello se ha

partido de un nuevo algoritmo: R-MVSP, que hasta ahora solamente se hab́ıa ensayado

en bases de datos pequeñas y artificiales.

Con el fin de entender qué ĺımites, ventajas y optimizaciones pueden aplicar este

algoritmo a la estimación de tensión futura, se han realizado tres implementaciones

diferentes de GPR: GPR básico, Múltiples Expertos GPR y Sparse GPR basado en

FITC.

Los algoritmos GPR suponen una mejora respecto a otras técnicas, por presentar

menores problemas de overfitting y disponer de una parámetro de calidad de la

estimación (intervalo de confianza).

Se han desarrollado los algoritmos en Matlab. Para su evaluación se ha utilizado

una base de datos realista y de gran tamaño recogida en los repetidores de la red

de comunicaciones de la Confederación Hidrográfica de Ebro. El objetivo ha sido

determinar si este tipo de algoritmos pueden proporcionar estimaciones fiables a futuro

para evitar fallos cŕıticos en sistemas de comunicaciones no conectados a la red eléctrica.

Los resultados muestran como para la estimación futura de tensión es imprescindible

el uso del perfil de corriente y que la influencia de la temperatura en la estimación

no es representativa. Por otro lado se demuestra que es posible implementar, como

continuación de este trabajo, un sistema de gestión del riesgo de las instalaciones basado

en las técnicas GPR.

Si bien la carga computacional es relativamente elevada, durante el trabajo
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se ha desarrollado una optimización de las libreŕıas iniciales permitiendo aśı una

implementación eficiente del método. Aśı mismo La utilización de las variantes Sparse

y el uso de kernels de estructura simple permiten optimizar el tiempo de ejecución,

extendiendo la base de datos de entrenamiento y aumentando aśı las casúısticas que el

modelo es capaz de abordar.

Se está trabajando actualmente en un art́ıculo (JCR-Q1) sobre los resultados

obtenidos en este trabajo.

Lineas Futuras

La ĺınea futura más inmediata es la del uso de esta misma base de datos y algoritmos

en la estimación del SoH Y del SoC de la misma forma que se ha hecho en otros art́ıculos

con métodos similares.

Implementación de los algoritmos en Phyton para cómputo en la nube ya que este

tipo de instalaciones de comunicaciones tiene acceso a internet. Otra posibilidad seŕıa

la de llevar estos algoritmos a un Single Board Computer (SBC) y procesar los datos

de forma local.

Utilización de herramientas de kernel automáticas que se ajustan a tu base de datos.

Se está desarrollando actualmente un modelo de generación automática de funciones

de covarianza que permite modelar de forma óptima tu base de datos [18].

Extender el número de variables que se inyectan al GPR Sparse para poder ver el

envejecimiento de las bateŕıas mediante reentrenamientos periódicos. La base de datos

crece conforme se tomen nuevas medidas en los sensores.

Realizar una clasificación de tipos de d́ıas usando como parámetros de entrada ,del

algoritmo K-means u otro, valores relacionados con la estimación futura. En definitiva,

cambiar la perspectiva a la hora de etiquetar.
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