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Procesos de Regresiéon Gaussiana: Estudio de
métodos Sparse para la prediccion de tensién
futura en equipos de comunicaciones

RESUMEN

Este Trabajo Fin de Grado forma parte de la linea Smart del proyecto de investigacion
“Battery life Extensor”(BATT-Ex), cuyos principales objetivos son proporcionar
informacion relevante sobre la bateria en sistemas de telecocomunicaciones y tomar
decisiones inteligentes en base al conocimiento de su estado actual. En los ultimos anos
las baterias han recibido mucha atencién debido a las redes de comunicaciones y a la
aparicion de los Vehiculos Hibridos (HEVs) y los Vehiculos Eléctricos (EVs). Esto ha
llevado a que centros de investigacion como el Mitsubishi Electric Research Laboratories
(MERL) en Boston o empresas como la Sociedad Ibérica de Construcciones Eléctricas
(SICE) hayan querido profundizar en su investigacién y colaborar en el siguiente
trabajo de investigacién. Con el presente trabajo se pretende mejorar las técnicas de
estimacion futura de tensién en baterias por procesado de la senal de tension-corriente,
en instalaciones aisladas de comunicaciones. Para ello se han utilizado técnicas de
Inteligencia Artificial. En particular, se ha estudiado el uso de la regresién con
procesos gaussianos (GPR) como herramienta de prediccion y sus diferentes variantes
Sparse para reducir la complejidad computacional del algoritmo. Para llevar a cabo
la estimacién se necesita informacion sobre las variables de interés. Para ello, se ha
utilizado la base de datos de un sistema fotovoltaico de gran potencia ubicado en el
monte del Monasterio de Sigena la cual contiene 10 anos de datos recabados cada
15 minutos de parametros como tensién, corriente o temperatura. De forma mas
concreta, se ha evaluado el GPR en su enunciado clasico, el método FITC Sparse
y una variante con miltiples expertos GPR comparando los resultados de estimacién

de tensién aportando el perfil de corriente o temperatura futura.



Gaussian Process Regression: Study of Sparse
Methods to estimate future voltage in
communication systems

ABSTRACT

This Bachelor’s Degree Final Project is part of the Smart line of the research project
“Battery life Extensor” (BATT-Ex), that aims to provide relevant information about
the battery for the user and to make intelligent decisions based on knowledge of
its current state. In recent years batteries have received a lot of attention due to
telecommunications networks and the emergence of Hybrid Vehicles (HEVs) and
Electric Vehicles (EVs). This has led research centres such as Mitsubishi Electric
Research Laboratories (MERL) in Boston or companies such as Sociedad Ibérica de
Construcciones Eléctricas (SICE) to want to deepen their research and collaborate
in the following research work. The aim of this work is to improve the techniques for
future estimation of battery voltage by processing the voltage-current signal in isolated
communications installations. Artificial Intelligence techniques have been used for this
purpose. In particular, the use of Gaussian Process Regression (GPR) as a prediction
tool and its different Sparse variants have been studied to reduce the computational
complexity of the algorithm. In order to carry out the estimation, information on
the variables of interest is needed. For this purpose, the database of a high power
photovoltaic system located in the mountain of the Sigena Monastery has been used,
which contains 10 years of data collected every 15 minutes from parameters such as
voltage, current or temperature. More specifically, GPR has been evaluated in its
classical statement, FITC Sparse approximation method and a variant with multiple
GPR experts comparing the results of voltage estimation providing the current profile

or future temperature.
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Capitulo 1

Introduccion

El presente trabajo forma parte del proyecto de investigacién “Battery life
Extensor” (BATT-Ex, RTC-2015-3358-5) el cual se desarrolla de forma conjunta entre
el Grupo de Electrénica de Potencia y Microelectronica de la Universidad de Zaragoza
(GEPM), el Grupo de almacenamiento de Energia Eléctrica de la Universidad de
Mondragén y la empresa Sociedad Ibérica de Construcciones Eléctricas (SICE).
Ademas, para este proyecto concreto se ha contado con la colaboracién del Mitsubishi
Electric Research Laboratories (MERL). En este centro de investigacién, miembros del
equipo de trabajo han realizado diversas estancias para trabajar de forma conjunta en
profundizar el conocimiento de las baterias. Como consecuencia, se han publicado, de
forma conjunta, diversos articulos y se esta colaborando actualmente en otro abordando

los resultados obtenidos en este trabajo.

Dado el interés que este tipo de investigacion tiene en la industria, SICE ha

apoyado este trabajo a través de una beca de investigacion.

1.1. Antecedentes

El proyecto BATT-Ex se centra en solucionar los problemas que tienen los sistemas
de telecomunicaciones aislados. En este tipo de instalaciones, se hace necesario el uso
de baterfas para asegurar un correcto funcionamiento del sistema durante el dia. Los
principales problemas que presentan este tipo de sistemas conocidos como sistemas de
almacenamiento de energia (ESS, Energy Storage Systems) son el dimensionamiento,

el mantenimiento y la absorcion de energia.



Figura 1.1: Sistema de comunicaciones alimentado por placas fotovoltaicas

Debido a la ubicacién de este tipo de sistemas se hace necesario alimentarlos con
paneles fotovoltaicos (Figura 1.1). Sin embargo, este tipo de fuente de energia presenta
incertidumbre debido a los cambios meteorolégicos. Se considera un sistema estable ya
que existe una distincién clara de patrones nocturnos y diurnos pero son dependientes
de pasos por nube y distintos fenémenos meteorologicos que alteran la produccién de

la energia durante el dia. Estos patrones pueden verse en la Figura 1.2
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Figura 1.2: Patrones de corriente en funcién de la climatologia

Es por ello que con el fin de aprovechar la energia generada y ser capaces de
alimentar el sistema por la noche o en caso de fallo, se hace imprescindible el uso

de baterias con una gestion inteligente.

Un ejemplo de aplicacion de este tipo de sistemas se encuentra en las estaciones de



comunicaciones de 5G. Las nuevas bandas de frecuencia superior con menor eficiencia,
los esquemas de modulacion més eficientes, en términos de eficiencia espectral, pero
peores en eficiencia de amplificacion, la carga de computacional y el aumento de
estaciones base lleva a problemas de suministro de energia. En las ciudades y, por
lo general, en sistemas con conexién a la red no resulta un problema. Sin embargo,
si que lo es en las estaciones aisladas por lo que han de ser capaces de aprovechar
al méximo la energia almacenada con el fin de reducir costes y mejorar la calidad de

servicio.

1.2. Motivacion y Objetivos

Los sistemas de gestién de baterfas (BMS, Battery Management Systems) son
los encargados del control de la bateria y de asegurarse de su seguridad y correcto
funcionamiento. Para ello, los BMS incluyen sensores de diferentes magnitudes fisicas
como tension, corriente, temperatura, etc. Estas magnitudes son las que procesa el
BMS para tratar de estimar el estado de la bateria. Tradicionalmente, el estado de
carga (SoC, State of Charge) y el estado de salud (SoH, State of Health) han sido
los principales pardmetros a tener en cuenta a la hora de averiguar el estado de
una bateria. El SoC representa la carga interna de la bateria en funcién de su carga
maxima actual mientras que el SoH se refiere al estado en que se encuentra la bateria
respecto al estado inicial. Ambos pardmetros se encuentran al 100 % cuando la bateria
se fabrica sin defectos. Existen multitud de técnicas para estimar estos parametros.
Mayoritariamente se ha trabajado con modelos equivalentes de bateria y filtros de
Kalman [1]-[2]. Sin embargo, recientemente se estdn comenzando a usar técnicas
basadas en andlisis de datos (Data-driven methods) como las Redes Neuronales o
las Maquinas de vectores de soporte [3]-[4]. A través de este tipo de estimaciones se
obtiene un resultado mas certero. Pese a su buen funcionamiento, el envejecimiento
de las baterias provoca que este tipo de métodos requieran de un reentrenamiento
lo cual es un problema para la estimacién tanto del SoC como del SoH ya que no
hay un acceso facil a los valores reales de SoC o SoH. Es por ello, y porque en los
sistemas fotovoltaicos el parametro que limita la operaciéon del sistema es la tension
minima que admite el convertidor de potencia, que en este trabajo se trata de estimar
un parametro diferente, la tension que el sistema va a ser capaz de suministrar en
un determinado momento. Este parametro resulta de gran utilidad ya que puede ser

medido con precisién haciendo asi un reentrenamiento sencillo.



En el presente trabajo, se ha estudiado la prediccion de tensién futura dados tres

perfiles de variables fisicas conocidas por el BMS:

— Perfil de corriente y temperatura futura conocido
— Perfil de corriente futura conocido pero no de temperatura

— Perfil de temperatura futura conocido pero no de corriente

Frente a otras técnicas basadas en andlisis de datos, la estimacién de tensién permite
un simple reentrenamiento por lo que puede aportar estimaciones certeras pese al
envejecimiento de la bateria. El objetivo es estimar la tensién correspondiente al tiempo
t + T asumiendo que los perfiles de alguna de las tres situaciones es conocido desde ¢
hasta t+7T'. Esta situacion de conocer patrones futuros es realista ya que, en la préctica,
un operario o el BMS puede ingresar al algoritmo distintos patrones correspondientes
a distintas situaciones, desde el funcionamiento normal al més critico. De esta forma se
sabe qué estacion de almacenamiento tiene probabilidad de fallar en caso de que suceda
dicho patrén y asi actuar en consecuencia. En este trabajo contamos con una base de
datos realista y de gran tamafo lo que ofrece un amplio espectro de posibilidades para
las técnicas basadas en analisis de datos. Se ha analizado las capacidades que tiene
el GPR en el ambito de las baterias. Ademads, se ha realizado una aproximaciéon GPR
Sparse para reducir la carga computacional que tiene el GPR con grandes volimenes de
datos. Por otro lado, debido a la variabilidad de tipos de dias que se pueden encontrar
en la base de datos, se ha hecho una clasificacién de tipos de dias a través de mapas
autoorganizados (SOM, Self-organizing map). Con los dias ya clasificados segin su
tipologia, se ha entrenado un modelo GPR con cada tipo de dia y se ha hecho un test
con un periodo distinto de la base de datos. El experto GPR que en cada muestra

obtiene menor varianza es el que se toma como véalido.

1.3. Estado del Arte

La estimacién de parametros de baterias a través de regresién con Procesos
Gaussianos de forma exacta ya ha sido probada con éxito, por parte de nuestros
companeros del MERL, en la estimacién del SoC y del SoH [5]-[6]-[7]. Tanto en [§]
como en [9] se hace uso de aproximaciones Sparse en el dmbito de las baterias para
estimar el SoC ya que en ambos articulos hacen uso de grandes volimenes de datos que

son lo suficientemente complejos como para que un GPR exacto no pueda tratarlos.
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En [10] hacen uso, al igual que en nuestro caso, de este algoritmo como estimador
de tension a través de un GPR exacto. Sin embargo, en todos estos trabajos, se han
utilizado bases de datos creadas de, forma sintética, a partir de modelos de baterias. Las
peculiaridades de una base de datos real con casuisticas de dias tan diversas no existe
en bases de datos sintéticas y por por ello no se ha abordado previamente la posibilidad
de crear expertos GPR en este ambito. Alejandonos del sector de las baterias si que
existen casos de uso de expertos GPR vistos, por ejemplo, en sintesis de voz [11]. En
este caso, existen dos expertos, uno para la duracién de las silabas y otro para la

duracion de una llamada telefénica.

1.4. Herramientas

El proyecto ha sido realizado sobre Matlab 2018a. Se ha escogido esta herramienta
porque, ademas de ofrecer un entorno de trabajo muy versatil, cuenta con la
toolbox GPML y la toolbox de SOM. La toolbox GPML desarrollada por Carl
Edward Rasmussen esta en continua actualizacion abordando cada vez maés tipos de
aproximaciones Sparse y cubre el abanico completo del GPR incluyendo funciones
de minimizacién, covarianzas, densidades de probabilidad y capacidad de testing. El
amplio abanico de posibilidades que aporta el GPML provoca que ciertos métodos se
engloben en la misma funcién y resulte ineficientes. Se ha trabajado en su mejora,
realizando los calculos matriciales necesarios. Por otro lado, la toolboxr de SOM,
desarrollada por la Universidad Tecnolégica de Helsinki [12], permite el entrenamiento

de los mapas, visualizaciones complejas, y herramientas de clustering como la K-means.






Capitulo 2

Regresion con Procesos (Gaussianos

Los Procesos Gaussianos son una herramienta matematica cuya teoria basica fue
introducida por Kolmogorov y Wiener [13]-[14] en los anos cuarenta. Sin embargo,
no fue hasta los anos setenta cuando se comenzaron a utilizar como herramienta de
regresiéon en el campo de la Geoestadistica [15] llevandose, anos mas tarde, a otros
contextos. Pese a ello, fueron C. E. Rasmussen junto a Christopher K. I. Williams, a
finales de siglo, quienes introdujeron esta técnica en el campo de la inteligencia artificial
[16] haciendo, afios mas tarde, un estudio méas profundo [17] que ha sido tomado como

objeto de estudio obligatorio para todo aquel que investigue en GPR.

Existen multiples ventajas que nos llevan a hacer uso de los Procesos Gaussianos

como herramienta de regresion:

— Expresién analitica cerrada. Dado una funcién de covarianza y observaciones,
podemos computar la distribucién a posteriori de forma cerrada. Esta propiedad

no es muy usual en modelos no paramétricos.

— No existe overfitting. Al contrario que otras técnicas como las redes neuronales,

esta técnica de regresion no hace un sobre entrenamiento de los datos.

— Aporta un intervalo de confianza. A través de la varianza de la distribucién,
se puede establecer un intervalo en el que el dato estimado se debe encontrar. Esto

aporta una informacion extra al sistema sobre cémo de buena es esta estimacion.

Su principal limitacién reside en la carga computacional y la memoria ya que crece a

razén de O(n?) siendo n el niimero de datos de entrenamiento.
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2.1. Introduccion a los Procesos Gaussianos

Tal y como define C. E. Rasmussen [17] un Proceso Gaussiano (GP) es una coleccién
de variables aleatorias, que cumplen que cualquier subconjunto finito de la coleccién,

tiene una distribucion Gaussiana

Un GP viene completamente especificado por su funcion de media y de covarianza.
Se puede definir la funcién media m(x) y la funcién de covarianza k(x,x’) de un proceso

real f(x) como

m(x) = E[f(x)] (2.1)
k(x,x') = [(f(x) = m(x))(f(x) = m(x)] (2.2)

y serd denotado como
f(x) ~ GP(m(x)), k(x,x)) (2.3)

Normalmente se asume que la media de la funcién es cero. Sin embargo, si es necesario,

se puede incorporar el conocimiento de su valor al modelo.

T T

Figura 2.1: Una representacion visual de un proceso gaussiano que modela una funcién
unidimensional. Los diferentes tonos de rojo representan el intervalo de confianza de
cada en cada punto. Las lineas de colores muestran diferentes realizaciones del proceso.
Esquina superior izquierda: Un GP no condicionado por ningun punto. Las grdficas
restantes La distribucion a posteriori tras haber sido condicionada con diferente niimero

de datos. [18]



Definicién 1 (Distribucién normal multivariante). Se dice que un vector aleatorio x
sigue una distribucion normal multivariante si tiene la siguiente funcion de densidad
de probabilidad conjunta

1 1 TN 11
fx<l'1,,xn):WeXp(—§(X—ﬂ )K (X—[,l,))

donde p = [u(z1), ..., u(z,)]" representa la esperanza de x y K = AAT es la matriz

de covarianza de las componentes de X.

Los procesos gaussianos se dice que son consistentes y por tanto cumplen la

propiedad de marginalizacién.

Definicién 2 (Propiedad de marginalizacién). Dados dos vectores x y'y aleatorios y

gaussianos:
X~ N(Hm Kl,l)

Y ~ N(py, K2 )
se cumple

) =] [l R))

Esta propiedad expresa como, al tratar de forma conjunta ambos vectores, la
distribucién resultante sera una normal que depende de los parametros de las

distribuciones de los vectores y de la correlacién entre ambos (K2 v Kop).

Con dicha propiedad y con el siguiente teorema se presenta la base de

funcionamiento del GPR.

Teorema 1. Sean x ey dos vectores aleatorios conjuntamente gaussianos

X 7. A C
]~ |G 2.4)
la distribucion marginal de xy la condicional de x dado y son
X~ N(“wv A)
(2.5)

X|y ~ N(Hm + CBil(y - Yy)v A— CB?lCT)

La utilidad de este teorema en la regresion reside en que si conocemos la distribucion
de un conjunto de variables aleatorias gaussianas podemos dividirlo en dos subconjuntos
X e y donde, si conocemos los valores que toma y, podemos condicionar el valor del
subconjunto x. Como veremos mas adelante, esta division en subconjuntos seran el

conjunto de datos de entrenamiento y el de test.
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2.2. Regresion con Procesos Gaussianos

Dado un conjunto de datos de entrenamiento D = (x;,¥;),7 = 1,...,n donde x;
es el vector de entrada e y; la salida real, escalar y ruidosa, buscamos calcular la
distribucién de los valores de salida de test f, (y. si incluimos ruido) para una entrada
de test x,. En el caso mas simple (el cual tratamos aqui) asumimos que el ruido es
aditivo, independiente y Gaussiano, de tal forma que la relacién entre la funcién f(x)

y las observaciones ruidosas vienen dadas por una normal multivariante de la forma

yi = f(x;) + €&, donde ¢~ N(0,02,4,) (2.6)

ruido

donde o2 es la varianza del ruido.

ruido

La regresién con GPs es un método Bayesiano que asume un GP a priori sobre
funciones. Se asume que la distribucién de los valores de las funciones se comporta de
la forma

p(f|x1, X, ..., %,) = N(0, K) (2.7)

donde f = [f1, fa, ..., fa]T es un vector de valores observables de funciones, f; = f(x;).
Remarcar que el GP trata los valores observables de funciones f; como variables
aleatorias que se relacionan con sus correspondientes entradas. Para que la expresion
anterior tenga sentido K tiene que ser una matriz de covarianza y por tanto ser simétrica
y semidefinida positiva. Esta funciéon de covarianza, que compone la distribucion a
priori, no debe depender de los datos (puede depender de pardmetros adicionales como
se verd en la seccién 2.4). De aqui en adelante, por simplicidad, se omitira la relacién
condicional con las entradas ya que el modelo de GP y todas las expresiones siguientes

vienen condicionadas por esta relacion.

Para estimar se ha de hacer uso del Teorema de Bayes a través del cual se parte
de una distribucion a priori conjunta entre los valores de entrenamiento y los de test,
f y f. y se combina con la funcién de verosimilitud p(y|f) para obtener la distribucién

posterior conjunta

p(f. £)p(y. £)
p(y)

El ultimo paso para producir la distribucién de los valores a estimar serd marginalizar

p(f. £ly) = (2.8)
los valores de entrenamiento no deseados

p(Ely) = / p(E, £.]y)df = % / p(£.£.)ply. £)df (2.9)

Tanto la distribucion de verosimilitud a priori como la distribucién independiente son

10



distribuciones gaussianas por lo que se puede aplicar la Propiedad [2]

K K,
pet) =N (0 [ 5]). v D =NEw)  210)

donde Kpf = k(x,x), K¢, = k(x,X.), Kip = k(x:, %) v Ki o = k(X4 Xy)
Una vez hallada la forma de esta distribucién conjunta, se debe marginalizar el valor

de las salidas f, con respecto del valor de las entradas f obteniendo la distribucion de

prediccién. Para ello, se hace uso del Teorema [1]

p(f*:Y) :N(M*,O'f) (2'11)
Mox = K*,f(Kf,f + Usuido[)ily (2-12)
02 =Ko — Kig(Keg +020,0) " Kt (2.13)

Este resultado aporta la férmula buscada para poder hacer estimaciones con GPR. El
valor de media es el mejor estimador de la variable f, y por tanto, el valor tomado
como verdadero en el proceso de prediccién . Ademas, se tiene en cuenta el valor de
incertidumbre que la varianza aporta para fijar un intervalo de confianza. Este intervalo,

se suele tomar como dos veces la desviacion tipica de cada valor x.

2.3. Meétodos Sparse en GPR

Tras haber obtenido una expresién cerrada del estimador GPR (Ec. 2.23) vemos
como la inversién de la matriz de tamano n x n tiene una complejidad de O(n?),
siendo n el numero de datos de entrenamiento. Una vez calculada dicha matriz, la
estimacién de la media y de la varianza tiene un coste de O(n) y O(n?) respectivamente.
Esto lleva a problemas de implementacién cuando se manejan grandes volimenes de
datos. El objetivo de los métodos de aproximacion Sparse es reducir la complejidad

computacional del algoritmo GPR.

La mayoria de las aproximaciones Sparse estan basadas en el uso de un subconjunto
de m variables u = [uy, ..., u,]7. A este subconjunto de variables de entrenamiento se
le denomina variables inducidas (Inducing variables) y representan una generalizacién
del total de la base de datos. Son variables del Proceso Gaussiano (como f y f*) y se
corresponden con los indices X,, los cuales se denominan entradas inducidas (Inducing
points). Mientas que las variables u siempre se marginalizan en la distribucién de
prediccion, la eleccién de los inducing points resulta de gran relevancia en el resultado

final de la estimacién.
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Existen multitud de métodos para la eleccién de los Inducing points [19]. Sin
embargo, para esta explicacién se parte de que este subconjunto de la base de datos ya

ha sido escogido.

Al igual que en la expresién 2.9, se puede obtener p(f,,f) integrando sobre u la

distribucién a priori conjunta p(f,, f, u)

p(f,, f) = /p(f*,f,u)du:/p(f*,f|u)p(u)du donde p(u) =N(0,Kyu) (2.14)

La expresién anterior es exacta con Ky w=k(Xy, Xy). Es en este punto donde se basan
la mayoria de las aproximaciones Sparse. Es posible aproximar la distribucién a priori

conjunta asumiendo que f y f, son condicionalmente independientes dado u.

p(E,£) = q(£..F) = / (. w)g(F[u)p(u)du (2.15)

El origen de que a este tipo de variables se les denomine inducidas viene por el hecho de
que f y £, solo se pueden comunicar a través de u por lo que u induce una dependencia

entre los datos de entrenamiento y los de test tal y como se puede ver en la Figura 2.2

AN N

-fl_fz-...-f_f- -fl_f')-...-

Figura 2.2: Relacién entre variables con aproximaciones Sparse. [20]

Es a partir de este punto del algoritmo donde se ramifican las distintas
aproximaciones Sparse. En ellas se proponen distintas hipdtesis respecto las
distribuciones ¢(f|u) y ¢(fi|u). En la practica, la aproximacién que mejor ha funcionado
ha sido la aproximacién FITC (Fully Independent Training Conditional) [20]-[21] y por

este motivo es por lo que se ha utilizado en este trabajo.

FITC hace una aproximacién de la funcién de verosimilitud

p(ylf) ~ q(ylu) = N(Keu Ky yu, diag[Ke s — Keu Ko wKug] + 07iao]) (2.16)

ruido

K¢w = k(x,Xy). Ademds impone una independencia de los valores de salida f con

respecto de u (Figura 2.3)

g(flu) = [ [ p(filw) = N (K¢ oK 0, diag[Kee — Kp ok Kug)) (2.17)

i=1
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q(£.Ju) = p(f,Ju) = /\/'(K*MK;tu, K..— K*,HK;{IKM) (2.18)

AN

Figura 2.3: FITC Sparse con independencia entre los valores de salida f y u. [20]

Al igual que se hizo en 3.7, se puede aplicar la Propiedad [2] para extraer la relacién

entre los valores de salida de entrenamiento y un solo caso de test.

_ KeuK gy Kus — diag[Ke o K ( Kae — Keg] KeoKQ LKy
p(f, f) = (0, { KoK Ko K (2.19)
Por ultimo, para obtener la distribucion de prediccién con la aproximacion FITC Sparse

se debe marginalizar el valor de las salidas f, con respecto de el valor de las entradas

f a través del Teorema 1

p(f*, Y) = N(:u*: O'f) (2'20)
e = K, u XKy yA™ly (2.21)
02 =K.y — KooKy Kus + Ko uZ Ky (2.22)

Donde A = diag[Ky y — Ky oK1 Kuy + 0%,y = (Kyu+ KuyA 'Ky )~ ! El valor
de media de la distribucién de prediccion anterior sera el que utilicemos a la hora de
estimar y la varianza formara el intervalo de confianza que tenemos alrededor de ese

valor de media.

La siguiente tabla representa una comparativa de la carga computacional del

algoritmo GPR y la aproximacion FITC Sparse.

Método ‘ Almacenamiento Entrenamiento Media Varianza
GPR O(n?) O(n?) O(n) O(n?)
FITC Sparse GPR | O(mn) O(m?n) O(m) O(m?)

Tabla 2.1: Cargas Computacionales de las técnicas GPR

13



2.4. Kernels

Los GPs hacen uso de los Kernel para definir la covarianza entre dos variables

aleatorias conjuntamente distribuidas
Coulf(x), f(x)] = k(x,%) (2.23)

Se trata de una funcion qué indica como de relacionadas estan dos variables aleatorias.
En el GPR esta funcién tiene un papel crucial ya que pese a que es un método
matematicamente no dependiente de los datos se debe escoger una funcién de kernel

que se ajuste al comportamiento de estos. Cada kernel se corresponde con un conjunto

Nombre
del Kernel: | Cuadratico-exp (SE) Periodico (Per) Lineal (Lin)
k?(ZL’, IL‘,) = 0'2 exp (12;2)2 0'2 exp = 2 sin? ﬂzfz/ f(a: c)(z'—c)
Representacion / \ V\/\Ml\ V
T — x T — :C (con 2’ =1)

!

Funciones

f(x) obtenidas Vad Vad Vad VA Voad \
del GP a
priori:

X

Tipo de
estructura: variacién local repetitiva funciones lineales

Figura 2.4: Ejemplo de distintas estructuras representadas por diferentes kernels. [18]

de suposiciones que se hacen sobre la funcién que se quiere modelar. Resulta notorio
destacar que la mayoria de los kernel hacen uso de la distancia euclidea dentro de sus
expresiones como herramienta de correlacién. Algunos de los kernel mas utilizados en

GPR son:

— Funcion cuadratica exponencial, SE: Probablemente se trate del kernel mas

utilizado en el ambito del GPR.

Zd: ik %’f 2) (2.24)

k=1

[\:)I>—t

ksp(x,x') = o7 exp (
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El parametro a]% es la varianza del Proceso Gaussiano mientras que el parametro
[2, el cual se denomina longitud caracteristica, expresa la correlacion en la k-ésima
dimension del espacio de caracteristicas. Se trata de una funciéon estacionaria y

anisotrépica (excepto si l, = [, Vk caso en el que es isotropica).

— Funcioén cuadratica racional, RQ:

1 ke — )2\ 0
kno(x, %) = 02 (1 + =Y (“z—fjk)) (2.25)
k

d
2w
k=1

Este kernel se puede ver como una suma infinita de kernels SE con diferentes
longitudes caracteristicas. Los GPs con este kernel esperan encontrarse con
funciones que varian suavemente alrededor de estas longitudes. El parametro
a es un factor de peso para grandes y pequenas variaciones de escala. Cuando

a — oo el RQ es equivalente a SE.

En caso de que la funciéon no pueda verse caracterizada por un solo modelo, existe la
posibilidad de combinar kernels para modelar funciones mas complejas a través de la
suma o producto entre ellos. El kernel resultante sera capaz de modelar estructuras que
con kernels basicos no se podrian tratar. Sin embargo, se ha de tener en cuenta que
el incremento de complejidad del kernel se traduce en un mayor coste computacional.
La figura 2.5 muestra un ejemplo de seleccion de kernel de tal forma que conforme se

avanza en los niveles del arbol, la complejidad del kernel aumenta.

| Sin estructura |

RQ Lin Per
SE + RQ Per + RQ PER x RQ
SE + Per + RQ SE x (Per + RQ)

Figura 2.5: Un ejemplo de patron de busqueda de kernel con un incremento de
complejidad del modelo conforme crece la expresién del kernel. [18]
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2.5. Ajuste de los hiperparametros

A la hora de escoger un kernel para el GP hay ciertas propiedades que son sencillas
de determinar a través del contexto como puede ser si la senal es o no estacionaria.
Sin embargo, hay otras propiedades de las cuales tenemos una vaga informacién a
priori. Este es el caso de parametros como la longitud caracteristica o el factor de peso
vistos en la seccién anterior. A este tipo de parametros del kernel se les denomina
hiperparametros y para que el proceso pueda ser modelado de forma adecuada han de
ajustarse a los datos. Este proceso de ajuste de hiperparametros constituye la fase de
entrenamiento del GP. Como ejemplo de hiperparametros, para el caso de la funcion
cuadratica exponencial,

H={l,07,0%} (2.26)

Existen diversos métodos para optimizar estos hiperparametros como puede ser la
busqueda en rejilla. Sin embargo, en el caso de los GP predomina el uso de dos técnicas:
validacién cruzada y seleccién Bayesiana de modelos [17]. En este trabajo se ha hecho

uso de esta ultima.

2.5.1. Seleccion Bayesiana de modelos

El objetivo en la Seleccién Bayesiana de modelos es conocer la distribucion a
posteriori. Sin embargo, obtener de forma analitica esta expresion resulta en ocasiones
imposible pues implica calcular una integral que puede resultar intratable. Es por
ello que se requieren de métodos alternativos como la aproximacién analitica de
la distribucion o la buisqueda de parametros, en nuestro caso hiperparametros, que

maximicen la verosimilitud.

A través del Teorema de Bayes, se puede expresar la distribucién a posteriori de los

hiperparametros como

_ pyIX, H)p(H)
PR =)

Donde p(y|X,H) es la verosimilitud marginal que se debe maximizar y p(H) es la

(2.27)

distribucién a priori de los hiperparametros que describe el conocimiento previo que se
tiene de estos. Como normalmente ese conocimiento es escaso o nulo, se suele dotar de

una distribucién uniforme para todo el rango de valores.
Esta verosimilitud marginal puede calcularse a través de la expresion:
pulX.30) = [ 31X, Hp(FIX, H)f (228)
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Aplicando la hipdtesis de que sigue una distribucién normal llegamos a la conclusion
de que y ~ N (0, Kyy), v con ello se puede obtener analiticamente el resultado de la

integral cuyo logaritmo es:

1 _ 1 n
log p(y|X, H) = —§yTKyy1y — 5 log |Kyy| = 5 log2m (2:29)
donde Kyy = Ky + 02,5, es la matriz de covarianza de los valores de salida y

(y Kys es la matriz de covarianza de la salida sin ruido). A esta funcién se le suele
denominar logaritmo negativo de la funcién de probabilidad conjunta (NLL, Negative
Log-Likehood). Los tres términos de la expresion pueden tener una interpretacion: el
primer término representa como el modelo se ajusta a los datos, el segundo representa
la complejidad del método dependiendo tinicamente del kernel y las entradas al sistema

y el tercero es una constante de normalizacion.

Por tanto, al no poder calcular la distribucién a posteriori analiticamente, se opta
por maximizar la verosimilitud con respecto a los hiperparametros. Para ello, se hace

necesario calcular su gradiente con respecto al i-ésimo elemento de ‘H de la forma:

dlog p(y| X, H 1 _ 0K 1 0K, _
(M) R Ry e

Esta forma permite el uso de cualquier optimizacion basada en método de gradiente. La
funcién objetivo no es necesariamente convexa por lo que el método puede converger en
méaximos locales. Una posible solucién a este problema seria iniciar multiples busquedas
basadas en gradiente y luego escoger el punto 6ptimo que més maximice la distribucién
marginal. Es en este punto del algoritmo donde se debe tener en cuenta el coste
computacional del algoritmo ya que este método requiere de la inversion de la matriz
Ky de tamarnio n X n, y, por tanto, un coste de O(n*). Con el objetivo de disminuir
dicho coste, es comin que dado que la matriz de covarianza es simétrica y semidefinida
positiva, hacer uso de la Factorizaciéon de Cholesky [22] en el proceso de inversién de

la matriz.
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Capitulo 3

Estimacion de tension futura con

GPR

La presente secciéon trata de abordar la explicacion de cémo, a través del GPR, se

puede estimar la tension futura de una bateria dada las siguientes casuisticas:

— Perfil de corriente y temperatura futura conocido
— Perfil de corriente futura conocido pero no de temperatura

— Perfil de temperatura futura conocido pero no de corriente

Como explicacién mas genérica se trata el caso de perfil de corriente y temperatura
futuro conocido siendo los otros casos completamente andlogos a este. Se asume que
se cuenta con los valores de tension, corriente y temperatura del pasado de la bateria
ya que sera necesario apoyarse en ellos para hacer tanto el entrenamiento como la
prediccién. Los datos recogidos en la base de datos estan tomados cada 15 minutos.
Sin embargo, se ha comprobado que submuestrear la base de datos en un factor 4,
obteniéndose asi muestras de 1 hora reduce la carga del algoritmo sin deteriorar, de

forma apreciable, los resultados.

En el proceso de entrenamiento es donde se han de ajustar los valores de los
hiperparametros del kernel. Para ello, si los datos de entrada estan muestreados cada
1 hora, se entrena al modelo GPR para ser capaz de predecir la tension de la bateria

en una muestra futura.

Se denotan de la forma V;, I, y T; a los valores discretos de tension, corriente y

temperatura en el instante de referencia t. El objetivo es estimar la tension futura de
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la bateria en los instantes t + 1,...,¢ 4+ L. El valor de L representa el horizonte de
prediccién y, en el caso concreto de un sistema fotovoltaico, se fija a 48 horas ya que,
como se ha estudiado en el marco del proyecto, que este es el tiempo que precisaria el
sistema para tomar las medidas necesarias (como subir la tension de flotacién) en caso
de una posible caida de la instalacion. Para poder realizar la estimacion, se debe contar
con los valores futuros de corriente y temperatura en dichos instantes. Por tanto, con
el fin de estimar la tension futura Vi, q,..., Vi, se hace uso de los valores corriente

Livq,... Iy v de temperatura Ty q, ..., Ty .

3.0.1. Prediccion de tension a una muestra

Antes de abordar el caso mas complejo de estimar a L muestras futuras, se plantea el
caso mas simple de prediccion a una unica muestra. Esta técnica, denominada One-step
voltage prediction [10], busca estimar la muestra de tensién correspondiente al tiempo
t 4+ 1 a través de las muestras pasadas de t,...,t — M. Nos referiremos a M como la
longitud de memoria (Memory length) y representa el nimero de muestras pasadas

utilizadas para la estimacion de tension.

Se agrupan las medidas pasadas y los valores futuros de corriente y temperatura en

un vector x; de longitud 3M + 2 de la forma
xt=[Ly1 Tri Vi L To ... View Ly Toul” (3.1)

La salida y; es la tension obtenida en el instante ¢4 1 donde no se considera la existencia

de ruido
Yr = Vit (32)
La esencia del algoritmo reside en modelar la funcion de probabilidad conjunta de n
salidas v1, Ys2, - - -, Yt cOmMo una gaussiana de la forma
p(ytl>yt27"'7ytn) NN(OaKﬁf) (33)

donde se toma media nula ya que, al inicio del proceso, se puede sustraer su valor de
todos los valores de entrenamiento y se puede volver a incluir en la solucién final. La

matriz de covarianza Ky € R™*" viene dada por
[Kf’f} ij = k(Xti, th) (34)

donde Ky es el kernel que modela la similitud entre las variables x;, y x;,. En este
caso, entradas de tension, corriente y temperatura similares provocaran una estimaciéon

de tension similar.

20



Los hiperparametros H del kernel se ajustan directamente a través de los valores
de entrenamiento. Los datos de entrada de la optimizacién de descenso por gradiente
seran n pares de entradas y salidas D = (xy,,v,) donde i = 1,...,n. El logaritmo
negativo de la funcién de probabilidad conjunta de los datos de entrenamiento viene
dado a partir de la distribucién 3.3. De esta optimizacion resultan unos nuevos valores

de hiperparametros H.

1 _ 1 n
NLL(D,H) = —§yTKf7f1y — 5 log | Keg| — 5 log 27 (3.5)

dondey = [ys1, Ys2, - - -, Yin)” y los valores de la matriz K¢ ¢ vienen rellenados a través de
3.4 para los hiperparametros H. Tras el proceso de gradiente descendiente, se obtiene
un argumento que minimiza el NLL

~

‘H = argmin NLL(D, H) (3.6)

Algoritmo 1 Fase de entrenamiento en GPR predictor a una muestra

Entrada: Datos de entrenamiento D = (x4, Y, ), - - - (Teys Yt,,)
Entrada: Kernel &(.,.) e hiperpardmetros H

Ejecucién de la optimizacién: H = argmin NLL(D,H)

Célculo de la inversa de la matriz de covarianza K. ¢ para H usando 3.4

Salida: Hiperparametros 6ptimos H
Salida: Matriz de covarianza inversa K, fl

Con el objetivo de estimar en la fase de test la salida de tensién en el instante y;
utilizaremos los valores de hiperparametros optimizados H y los datos de entrenamiento
D. Como se ve en la ecuacién 3.7, a través de la propiedad [2] se puede expresar la
distribucion conjunta de las salidas 41, 442, . . ., y:n v de la salida objetivo y; como una

nueva distribucién gaussiana.

K K,
p(ytla Y2, -+ -, Yin, yt) = N (Oa |:K::i K*:£:| > (37)

donde K¢y fue obtenida en la expresion 3.4, K, ¢ € R™! es el vector de covarianza
evaluado en cada entrada z;,de la base de datos de entrenamiento D y la entrada de
test x;

Kif=k(xy,x),i=1,...,n (3.8)

mientras que K,, = k(x;,x;) Es importante remarcar que tanto K¢, como K,¢ y
K, . han hecho uso de los nuevos hiperpardmetros H. Como vimos en 2.23, como la

distribucién conjunta es gaussiana, la distribucién condicional también lo es,

P(yt|yt1, Y2, - - - aytn) = N(,utv 0,:2) (3-9)
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donde la media y; y la varianza o? vienen dados por

=K. s K gy (3.10)
0; = Kuo — K, ¢ Kg g Ky (3.11)

El valor de media de la nueva distribucion es el mejor estimador de la tension a una

muestra,

Vier = (3.12)

mientras que la varianza es la incertidumbre de la prediccién y puede ser utilizada para

especificar un intervalo de confianza del 95 %

[Mt — 1,960}, Lt + 1,960'15] (313)

Algoritmo 2 Fase de test en GPR Predictor a una muestra

1: Entrada: Datos de entrenamiento D = (X¢,, Yt, ) - - -5 (Xens Ut,,)
2: Entrada: Kernel k(.,.) e hiperpardmetros H

3: Entrada: Matriz de covarianza inversa K N

4: Entrada: Mediciones V;, I;, Ty ... Viear Ii—pr, Ti— s

5. Entrada: Corriente y temperatura futura ;1,741

6: Y = (Y1 Yazs - - s Yen) "

nxe=Ly T Vi L T, ... Vim Lew Tiom)®
8 K =k(x¢,x¢),i=1,...,N

9: Ky = k(x¢,X¢)

10: py = K*,fo_’fly

11: O’t2 = K*7* — K*nygflKﬂ*

12: Salida: Media y varianza estimada p; y o2

3.0.2. Prediccién recursiva multipaso de tensién (R-MSVP)

El objetivo del R-MSVP es ser capaz de estimar el valor de tensién de la muestra

t + L. Para ello, la idea es tratar la tension estimada yt(m) =Viem | m=1,...,L
como si fuera una tensién real a la hora de estimar y§m+1) = Vitma1. El estimador

de tension a una muestra en un instante ¢ estima el valor de media de tensién ME ) a

través de la ecuacién 3.10. E1 R-MSVP, con el fin de estimar la tension correspondiente
al instante ¢ 4+ 2, se apoya en la tensién predicha en ¢ + 1, ,ugl) tomandola como un
valor realmente medido. Este valor, junto a los demas parametros de tension corriente
y temperatura, en los instantes ¢, —1,...,¢t — M se reinyecta a los valores de corriente

y temperatura I;q, I11o,Tir1 v Tiio en un algoritmo de estimador de tensién a una
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muestra para asi obtener ,u?). Siguiendo este proceso, es posible llegar a predecir L
muestras de tensién futuras para poder asi llegar a las 48 horas de margen de reaccion
de BMS frente a posibles carencias de energia . Esta técnica ha sido utilizada con éxito
en [10]-[7].

El proceso de entrenamiento del R-MSVP es el mismo que en el algoritmo de
estimacién a una muestra. Por otro lado, en el proceso de test, el R-MSVP en un
instante t estima, de forma ordenada, las tensiones correspondientes a las muestras
t+1,...,t+ L. La prediccién de tension correspondiente a los instantes t +m se realiza
a través del algoritmo de estimacién a una muestra cambiando, en cada iteracién, la

entrada al sistema de la forma

X = [Iym Tipm Vi L7 T (3.14)
donde
VI = Y v Vil wme)T (3.15)
Igm) - []t-l—m—l e ]t+1 It e ]t_M+m_1]T (316)
T = [Tyma - Tex T oo Toprpmei)” (3.17)

El proceso de test, se ilustra en el algoritmo 3

Algoritmo 3 Fase de test en R-MSVP

1: Entrada: Datos de entrenamiento D = (X4, Yt ), - - - » (Xt Ut

2: Entrada: Kernel k(.,.) e hiperparametros H

3: Entrada: Matriz de covarianza inversa Ky fl

4: Entrada: Mediciones Vi, I, Ty . .. Vicar Le— i, Ti— s

5. Entrada: Corriente y temperatura futura I, 1, Tyiq, ..., Liop, Tiap
6: y = [y Yezs - - s Yem) "

7: for m =0to L do

8: Reajustar xgm) como en 3.14

9. K.e=kx".x)i=1,.._.N
10 K, .= k(xgm), X,Em))

11: ugm) = K*,ngfly

122 02" = K,, — K, ¢K;} K.

13: end for 7
14: Salida: Media y varianza de tensién estimada ‘//\;er = ,ugm) ,m=1,...,L

Este algoritmo recursivo es el que ha sido utilizado en la totalidad de las pruebas
de este trabajo ya que es el método que mejores resultados ha obtenido en la literatura

frente a otros métodos como el Predictor paralelo multipaso de tensién (P-MSVP)
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[10]. Habiendo fijado el pardmetro de horizonte de prediccién a L = 48 muestras
con el objetivo de que el BMS sea capaz de adaptarse en funcion de las estimaciones
de prediccién, quedardn por fijar los parametros de longitud de memoria (M), el
kernel utilizado y los dias escogidos tanto para el entrenamiento como para el test
del algoritmo. Para ello, es importante tener en cuenta que el objetivo final de nuestro
sistema es que sea implementable y por ello ha de existir un compromiso entre la carga

computacional y las métricas de resultados.

Teniendo en cuenta que nuestra base de datos cuenta con multitud de anos
completos se ha considerado apropiado escoger como base de datos de entrenamiento
un ano completo. En concreto, se ha escogido 2008 ya que es el ano que mas estabilidad
presenta en la base de datos puesto que la bateria se acababa de renovar y partiamos

de su estado 6ptimo.

60 T T T T T T T T

58 .

56

54

Tensién (V)

50

48

46 Il Il Il Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000 7000 8000 900C

Periodo de Entrenamiento

Figura 3.1: Tension en la bateria en el ano 2008

Debido a que el GPR tiene una complejidad de O(n?), tratar mas de un millar de
muestras en la fase de entrenamiento se vuelve inviable sin requerir de aproximaciones.
Es por ello que, dentro de ese ano de entrenamiento se han escogido muestras aleatorias
de tal forma que en total conformen el tamafnio equivalente a un mes (720 muestras

de tensién corriente y temperatura). Escogiéndose de forma uniforme a lo largo de
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un ano, y no solamente un mes seguido, le damos la oportunidad al algoritmo de
visualizar el comportamiento de la tension en multiples casuisticas de forma que sea
capaz de tratarlas en la fase de test. Se ha probado a elegir un mes completo como
enero obteniéndose buenos resultados en la estacién de invierno. Sin embargo, en el
momento en el que tratamos de abordar un dia de verano sin reentrenar la estimacién

empeora de forma considerable.

En la Figura 3.2 se puede ver de forma visual el conjunto matricial que se utiliza
como entrada al algoritmo. Se ha probado a normalizar los valores de entrada sin
apreciar una mejora apreciable, por lo que se ha preferido que mantengan sus escalas

originales.

Figura 3.2: Representacion visual de la base de datos de entrenamiento del algoritmo.
Incluye como parametros de entrada a la tension, la corriente y la temperatura. El eje
y representa las 720 muestras de entrenamiento. El eje x representa las M muestras
pasadas en cada instante, incluyendo las muestras ¢ 4+ 1 para el caso de la temperatura
y la corriente. El eje z representa el valor de las amplitudes de las ondas de entrada:
voltios, amperios y grados centigrados

En la fase de test, pese a que la estimacién se realiza a 48 horas futuras se suele,

al finalizar la estimacién, repetir el proceso desplazando la posicion actual de t a ¢t + 1
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llegdndose a desplazar muestra a muestra hasta un mes de tal forma que se simule un
sistema real donde el algoritmo estima a 48 horas, una hora mas tarde repite el proceso
y asi sucesivamente. A la hora de elegir dicho mes, al haber escogido una base de
entrenamiento que toma muestras de todo el ano, no existe una diferencia significativa
entre un mes u otro del ano. Por eso, y por escoger datos pertenecientes a un ano
diferente al de entrenamiento (validacién cruzada) de la misma manera que se haria en

un sistema realista, se ha escogido el mes de mayo de 2009 como objetivo de estimacion.
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Figura 3.3: Forma de onda de tensién en la bateria en el mes de test

3.0.3. Eleccion Kernel

La eleccion del kernel es compleja ya que se trata del tinico parametro que realmente
se escoge en funcién del tipo de datos. En [10] proponen una kernel compuesto por la
suma de dos SE y un kernel de red neuronal. Siendo que se trata de una funcion
formada a través de la suma de tres kernels elementales el objetivo era abordar un
amplio espectro de posibles no linealidades. Sin embargo, este tipo de kernels complejos
aumentan la coste computacional conforme mayor es su estructura (Figura 2.5). Se ha
probado el uso de este kernel pero su complejidad computacional y los resultados poco

certeros aportados, han llevado a su descarte.
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En este trabajo se ha observado como, para la base de datos concreta que se maneja,
un kernel con estructura simple como el RQ es capaz de modelar el comportamiento
de la senal de tensién siguiendo, incluso, las variaciones que un paso por nube puede
producir. Matlab aporta una herramienta llamada “Profiler”que ayuda a ver, en un
scripts concreto, donde se gasta la mayor parte del tiempo de ejecucion. Como vemos,
en la Figura 3.4, la llamada a la funcién del kernel (“covRQard”) es la que més tiempo
ha consumido en la totalidad de la ejecucién resultando asi un factor critico en el

proceso de implementaciéon real.
Profile Summary

Function Mame Calls Total Time Self Time™  Total Time Flot
(dark band = self time)

GFR_WITH_T_AND_C 1 79.968 s 11.604 s IR
covRQard G5577 | 56.186 s 3072 s I
covScale B5577 | 83.114 s 14564 = R
covRQ 131054 | 38.550 s 4478 s [ D
covivlaha 1310584 | 34.072 s 8.941 = | L
covilaha=maha B5477 | 18.399 s 115976s N

minimize 1 16.340 s 0.403 = [

ap 100 15.843 s 0.168 s |

infExact 100 15.365 s 0.022 s |

Figura 3.4: Seccién del Profiler ilustrando el tiempo consumido por cada funcion del
algoritmo

3.0.4. Eleccién memoria pasada, M

Por otro lado, resulta necesario fijar un valor de memoria pasada, M. Este valor
determina la ventana de muestras pasadas que toma la muestra ¢ para estimar ¢ + 1.
En [7]-[10] se plantea la posibilidad de que este pardametro esté relacionado con la
constante de tiempo de la dindmica de la baterfa (y, en consecuencia, de su quimica).
Sin embargo, tras haberse realizado, como puede verse en la Figura 3.5, un barrido
de distintos valores se ha detectado que no existe una variacién real en la estimacion
provocada por este pardametro. Se ha observado que para valores de M < 15 los valores
de la matriz de covarianza de los datos de entrenamiento K¢¢ son tan similares que
Matlab no es capaz de aportar una solucion exacta a su inversién. Este problema
desaparece en caso de hacer uso de la funcién gp() de la librerfa GPML que aporta

directamente los valores de media y varianza estimados. Pese a esta posibilidad que la
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funcién gp() aporta, al computar todo el cdlculo matricial en una misma funcién, se
estd recalculando en cada iteracion el valor de K. ¢ siendo que es constante. Es por ello,
que pese a la posibilidad de reducir el valor de M, y a la vista de que las métricas son
similares con valores M > 15 se ha preferido no hacer uso de dicha funcién y realizar
los célculos matriciales sin libreria y escoger M = 15 como parametro fijo con el fin de

reducir el tiempo de cémputo.
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Memoria Pasada (M)

Figura 3.5: Barrido a lo largo de los posibles valores de memoria pasada M a través de
la funcién gp()

3.0.5. Multiples Expertos GPR como estimador de tensién

Debido a la multitud de tipos de dias que existen a lo largo de un ano completo, y con
la intencién de reducir el esfuerzo computacional que realiza un inico algoritmo GPR
al estimar con un solo entrenamiento una base de datos con amaneceres y anocheceres
tan diversos, se ha realizado una implementacion diferente a la habitual donde existen
expertos GPR. Estos expertos GPR son especialistas en un tipo de dia cada uno. Pese
a que a priori se pueda pensar que para un ano existen 4 tipos de dias correspondientes
cada uno de ellos con una estacion del ano, se ha comprobado que esta no es la forma

de clasificacién mas precisa ya que no existe una diferencia real entre dias de verano
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y dias de primavera. Con el objetivo de mejorar esta clasificacién, se ha hecho uso de
mapas autoorganizados (Anexo ?7) [12] y del algoritmo de K-means (Anexo ?7). La
clasificacién de la base de datos fue desarrollada por el grupo de investigacién en [23]
y este trabajo se centra en su aplicacién al GPR. A través de esta clasificacién, se
pueden agrupar los distintos tipos de dias que realmente afectan al comportamiento de

la bateria.

Para ello, se hace uso de la base de datos de Sigena de los anos 2007 a 2009 y se

toman como variables de entrada:

— Tensién de inicio de descarga

Tension de final de descarga
— Horas de carga
— Horas de descarga

— Carga almacenada

Tras entrenar el algoritmo, el mapa autoorganizado resultante y las distribuciones de

las variables se representan en la Figura 3.6.

U-matrix Tension inicio descarga Tension final descarga
0.127 0.985
0.995
0.0721 0.972 0.99
’ 0.985
0.0178 0.959
Horas de carga Horas de descarga Carga almacenada

: 08
06
0.4 05

07
0.4

0.35

06 03
03 0.2

Figura 3.6: SOM de las variables
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El algoritmo de agrupacion K-means requiere que se le fije, a priori, el nimero de
clusters a realizar. Este proceso se ha realizado de forma iterativa y se ha comprobado
que a partir de 5 clusters no existia mucha diferencia en los tipos de dias que aportaba.

Estos clusters se pueden ver representados en la Figura 3.7.

5 clusters

4.5

3.5

25

1.5

1

Figura 3.7: Agrupaciones del SOM

Se puede hacer una representacion de la forma de onda media de cada agrupacion,

Figura 3.8.

— Dia malo

— Dia de Invierno con la bateria en flotacién

— Dia de Invierno sin la bateria en flotacion

— Dia de Primavera con la bateria en flotacién

— Dia de Verano con la tension en flotacion
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Figura 3.8: Tipos de dias en la base de datos obtenidos a partir del uso del SOM y del
algoritmo K-means

Una vez obtenidas las 5 bases de datos con los diferentes tipos de dias, se entrena con
cada una de ellas un GPR de forma individual de la misma forma que se hizo en los
apartados previos obteniendo asi diferentes valores de hiperparametros para cada uno
de los 5 expertos. Todos ellos comparten los pardmetros que ya fijamos con anterioridad
(Kernel, M, L). En la ejecuciéon de la fase de test, se toma como valido el resultado del
experto GPR que obtenga menor varianza en su estimacién. Esta forma de eleccién del
valor estimado es la més simple y a su vez la que mejores prestaciones ha aportado.
Otra de las aproximaciones planteadas ha sido entrenar una pequena red neuronal, de
tipo perceptron multicapa, que tomara como entradas las medias y las varianzas de
cada experto y diera una salida que fuera tomada como la éptima. Sin embargo, los

resultados eran similares y aumentaba el coste computacional.

3.0.6. Sparse GPR como estimador de tensién

Con el objetivo de abordar un mayor numero de casuisticas en la fase de
entrenamiento y con el fin de mantener un coste computacional reducido se hace uso de
la herramienta de aproximacion FITC Sparse. El proceso de estimacién es equivalente

al tratado en la seccion 3.0.2 pero haciendo uso de la expresion de media y varianza
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obtenida en 2.21. Como parametros adicionales a las secciones previas, se incluye elegir
el nimero (m) y la posicién de las inducing points X, que representan un subconjunto
de la base de datos de entrenamiento. En la literatura, existen diversos métodos para
obtener dicho subconjunto. El algoritmo de agrupacién de puntos lejanos (FPC, Farthes
Point Clustering) [19] con un coste computacional de O(nm) es el mas complejo de
todos ellos. Sin embargo, la mayor parte de la literatura opta por la seleccién de puntos
o de forma aleatoria o equiespaciados en la base de datos, ambos con un coste de O(m).
Se ha escogido este ultimo por la sencillez de implementacién y por su extendido uso
en el sector. Una vez escogido el subconjunto, es posible optimizarlo si se pasa como
parametro, junto a los hiperparametros, al algoritmo de gradiente descendente de tal

forma que juntos minimicen la funcién objetivo.

En lo respectivo a la cantidad m de inducing points a seleccionar se ha realizado
un barrido para explorar los resultados que FITC Sparse aporta en funcién de m. Los
valores RMSE que se pueden ver en la Figura 3.10 tienden a variar ligeramente en
la primera centena de inducing points manteniéndose practicamente constantes de ahi
en adelante. En la Figura 3.9 se puede ver el coste computacional tanto de la fase
de entrenamiento como de test. Por tener el minimo valor de error en el rango de la
centena a la vez que mantiene un coste computacionalmente reducido, se ha escogido

m = 80 como parametro fijo para las pruebas.

300 ‘
— enna)
@ fannIn)
o
2 200 :
ks
£
g
3 100 :
=
w
0
100 200 300 400 500 600 700

100 200 300 400 500 600 700
Numero de variables inducidas (m)

Figura 3.9: Duracién de las fases de entrenamiento en segundos y de test en minutos
para distinto nimero de inducing points
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Figura 3.10: La figura superior representa el RMSE promedio en voltios de las
estimaciones del mes completo. La figura inferior representa los maximos picos de
error en voltios encontrados en la estimacién del mes completo. Ambas se representan
en funcion del nimero de inducing points

Algoritmo 4 Flujo del Sparse FITC

1: Entrenamiento: Datos de entrenamiento. D = (X4, Ys, ), - - - » (Xt Ut
2: Paso 1: Elegir el kernel e inicializar los hiperparametros a cero.
3: Paso 2: Eleccién aleatoria de m inducing points Xy
4: Paso 3: Método de gradiente que obtenga los valores éptimos de hiperparametros
y inducing points de tal forma que se minimice el NLL(D,H,X,)
5. Test: Se precomputan las matrices que no incluyan los valores de test
6: y = [yer, Yezs - - - Yen] "
7 Kyu=k(Xyu, X4)
8: Kvy7u = kJ(X, Xu)
9: X = (Kyu+ KuyA 'Ky u)™
10: A = diag[Kyy — Ky oK 1 Kuyl
11: A1
12: for m =0 to L do
13: Reajustar x\™ como en 3.14

140 Kope=kx".x),i=1...N

15: K, .= k(xgm),xgm))

16: e = K*,UEKuyyA_ly

17 02 = Kaw — KuyKol K + Koy 3Ky,
18: end for

19: Salida: Media y varianza estimada p; y o2
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Capitulo 4

Resultados y Métricas

En este capitulo se resumen los resultados obtenidos en los algoritmos desarrollados.
Para la verificacion, se ha seleccionado un patrén estable de comparacién, que permita
evaluar cualitativamente y cuantitativamente cada uno de los métodos. Se exponen de
forma gréfica y mediante métricas de error los tres métodos: GPR Bésico, Miltiples
Expertos y Sparse GPR. La estimacion se ha realizado con distintos patrones futuros

conocidos, los cuales seran comparados en las siguientes secciones.

— Perfil de corriente y temperatura futura conocido: Contiene los valores

pasados y futuros de tension, corriente y temperatura.

— Perfil de corriente futura conocido pero no de temperatura: Contiene
tanto los valores pasados de tension, corriente y temperatura como los valores

futuros de corriente.

— Perfil de temperatura futura conocido pero no de corriente: Contiene
tanto los valores pasados de tension y temperatura como los valores futuros de

temperatura

Para evaluar los resultados del sistema, resulta preciso hacer uso de métricas de error.

Neest
1 ~
RMSE(m) = > Vi = Vigm)? (4.1)
test
MAE(m) = i:{naj\‘}t , = "/t-‘rm - ‘/Zﬁ+m| (42)

donde Ny se refiere a el nimero de muestras de test y m = 1,... L. Para evaluar
el error nos interesa conocer la desviacién de la forma de onda estimada frente a la

real, tanto para dias homogéneos como para cambios bruscos en la insolacion. Ademas,
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resulta necesario establecer métricas cercanas al problema planteado. Desde un punto
de vista de implementacion futura, el BMS podria centrar la prediccién futura en la
muestra de final de dia. La pregunta que el operario, o el sistema automaético, debe
realizarse es qué tensién minima va a ser capaz de suministrar el sistema en la hipdtesis
de que ya no se pueda absorber mas energia del sol. Es por ello que su medida es de

gran importancia.

RMSE (m) = Viewn — Viem )2 4.3
Fz‘nalDia( ) Ndias 1 (an;glw wa;ngm) ( )
MAE (m)= max =]V, -V 4.4
FmalDia( ) i=1,...Ndjas ‘Fmtc;;gw Fmttiggbza’ ( )

Para poder medir el coste del algoritmo se ha incluido en las métricas de error el tiempo
de computo de las fases de entrenamiento y de test. Aunque se ha de tener en cuenta
que es una medida dependiente del ordenador con el que se ha realizado y sirve cémo

método de comparacion relativa entre la complejidad entre un modelo y otro.

Especificaciones GPR Basico

— Datos de entrenamiento: 720 horas equiespaciadas de 2008
— Mes de test: Mayo de 2009
— Kernel escogido: Racional Cuadratico (RQ)

— Memoria pasada: M=15

Horizonte de prediccion: L=48

Especificaciones Miiltiples Expertos GPR

— Datos de entrenamiento: 720 horas equiespaciadas a cada experto GPR con su

especialidad de dia
— Mes de test: Mayo de 2009
— Kernel escogido: Racional Cuadratico (RQ)
— Memoria pasada: M=15
— Horizonte de prediccion: L=48
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Especificaciones Sparse GPR

— Datos de entrenamiento: 2008 completo y optimizado en la fase de entrenamiento
— Mes de test: Mayo de 2009

— Kernel escogido: Racional Cuadratico (RQ)

— Memoria pasada: M=15

— Horizonte de prediccion: L=48

4.1. Perfil de corriente y temperatura futura
conocido

En este seccion se trata el caso de estimacion de tension futura con los perfiles de
corriente y temperatura conocidos. Se busca estudiar el impacto que tiene la corriente y
la temperatura en la prediccion de tensién. Es esperable que, al alimentar el algoritmo
con el perfil de corriente futuro, la estimacién sea buena ya que en la corriente reside

la informacién de carga de la baterfa (concepto de Coulomb Counting [24]).

GPR basico con perfil de corriente y temperatura futura conocido
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Figura 4.1: Formas de onda del GPR con corriente y temperatura futura conocidos

37



En la Figura 4.1 se puede ver cémo el modelo GPR ha sido capaz de reproducir la
forma de onda. Este modelo ha sido capaz de seguir las caidas de tensién producidos

en los dias de insolaciones iniciales y finales de forma certera.

Por otro lado, las métricas de error de la Figura 4.2 muestran cémo existe un patrén
periédico de error localizado en lo alto de la forma de onda. Este fenémeno es producido
ya que es el momento de maxima incertidumbre del algoritmo (maximo intervalo de

confianza) y el dato es menos fiable.

GPR basico con perfil de corriente y temperatura futura conocido
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Figura 4.2: Métricas de error del GPR con corriente y temperatura futura conocidos

En el caso de los Miultiples Expertos, la evolucién de tension en la Figura 4.3 también
es buena, con defectos y virtudes similares al GPR Baésico. Se sigue apreciando cémo

el modelo se ha ajustado a la onda real,
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Multiples Expertos GPR con perfil de corriente y temperatura futura conocido
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Figura 4.3: Formas de onda del ME con corriente y temperatura futura conocidos
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Figura 4.4: Métricas de error del ME GPR con corriente y temperatura futura conocidos
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Los problemas de errores periédicos vistos en el caso del GPR Basico se han
atenuado tal y como se puede ver en la Figura 4.4. Sin embargo, siguen siendo

apreciables y se tendra que evaluar su importancia en el sistema.

Sparse GPR con perfil de corriente y temperatura futura conocido
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Figura 4.5: Formas de onda del Sparse con corriente y temperatura futura conocidos

Sparse GPR con perfil de corriente y temperatura futura conocido
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Figura 4.6: Métricas de error del Sparse con corriente y temperatura futura conocidos
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En el caso de el Sparse GPR, se puede ver en la Figura 4.5 como la onda de tension

estimada sigue, de forma precisa, la forma de onda original.

Los errores obtenidos en la Figura 4.6 muestra como este método también consigue
atenuar los errores observados en el GPR Baésico obteniéndose como méaximo picos de

2V de error en situaciones de insolacion.

GPR Basico | Multiples Expertos GPR | Sparse GPR
RMSE
0.5898 0.5193 0.4695
V)
MAE
1.6033 0.2275 2.1305
V)
RMSE
FinalDia 0.2799 0.1803 0.2379
(V)
MAE
FinalDia 0.0020 0.3075 0.1275
(V)
Duracion
Entrenamiento 14 62 24
(s)
Duracion
Test (s) 55 446 46

Tabla 4.1: Métricas de error con perfil de corriente y temperatura conocido

Como se puede ver en las figuras, los tres métodos han sido capaces de seguir de
forma precisa, en mayor o menor medida, de seguir el patron tension en un mes con
sucesos heterogéneos como insolaciones. Los maximos puntos de error se encuentran a
en el pico de onda ya que es en ese momento cuando la incertidumbre es maxima. La
Tabla de métricas de error 4.1 muestra como el GPR Bésico ha sido el que mayor error
ha cometido en el conjunto de onda. Sin embargo, ha alcanzado gran capacidad para
no producir picos de error al final del dia y es el que menor coste de entrenamiento ha
requerido. Por otro lado, los Miultiples Expertos logran su funcién de reducir el error
del GPR basico pero a costa de un incremento elevado tanto en el entrenamiento como
en el test. El Sparse GPR ha sido el método que mejores métricas ha obtenido con un

tiempo de test similar al basico y de entrenamiento algo superior.
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4.2. Perfil de corriente futura conocido pero no de
temperatura

En este seccidn se trata el caso en el que se cuenta con tanto los valores pasados
de tensién, corriente y temperatura como los valores futuros de corriente. Se busca

estudiar, con respecto a la seccion anterior, el impacto que tiene la corriente y la

temperatura en la prediccién de tension.

GPR basico con perfil de corriente futura conocido pero no de temperatura
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Figura 4.7: Formas de onda del GPR con corriente futura conocida

Los resultados apreciables resultan ser similares a los obtenidos en la seccién previa,

tanto en la forma de onda como en las métricas representadas.
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GPR basico con perfil de corriente futura conocido pero no de temperatura
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Figura 4.8: Métricas de error del GPR con corriente futura conocida

Multiples Expertos GPR con con perfil de corriente futura conocido pero no de temperatura
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Figura 4.9: Formas de onda del ME GPR con corriente futura conocida
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Multiples Expertos GPR con con perfil de corriente futura conocido pero no de temper:
5 T T T T T T

>

c

he)

[%2)

C

(0]

'_

0 100 200 300 400 500 600 700
S Muestras (horas)
©
-6 Q ? T T T T
()
S 0 Q © ©
5 é 566564 oooooo@@ééo @
= 05f
fé R 1 1 1 1
GC) 0 5 10 15 20 30
= Muestras (dias)
_05F 0 ' P .
=
L
%)
=
e
0
0 5 10 15 20 25 30 35 40 45 50

Horizonte de prediccion (L)

Figura 4.10: Métricas de error del ME GPR con corriente futura conocida

Spggse GPR con con perfil de corriente futura conocido pero no de temperatura
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Figura 4.12: Métricas de error del Sparse GPR con corriente futura conocida

GPR Basico | Multiples Expertos GPR | Sparse GPR
RMSE 0.5898 0.5173 0.4685
(V)
MAE
1.6033 2.7508 2.1378
(V)
RMSE
Final Dia 0.2799 0.1898 0.2384
(V)
MAE
FinalDia 0.0020 0.3081 0.1266
(V)
Duracion
Entrenamiento 14 60 24
(s)
Duracion
Test (s) 55 416 47

Tabla 4.2: Métricas de error con perfil de corriente conocido

Como se puede ver tanto en las Figuras previas como en la Tabla de métricas
de error 4.2,las evoluciones de las forma de onda, se han mantenido practicamente
invariantes con respecto a la seccién previa donde se introducia la temperatura. Es

por ello, que es posible extraer la conclusion de que la temperatura no aporta un peso

45



significativo en la estimacién. Las causas de ello podrian estar relacionadas con la alta
inercia térmica del pack de baterias, o con la independencia del comportamiento de
carga con la temperatura. Este resultado facilita que, en la practica, puedan llevarse a
cabo este tipo de algoritmos mediante solamente dos variables, ya que el BMS puede

focalizarse en un perfil de corriente hipotético sin dependencia térmica.

4.3. Perfil de temperatura futura conocido

En este seccién se aborda el caso en el que se prescinde de la corriente en la
predicciéon y se hace uso de, exclusivamente, la tension y temperatura pasadas y el

perfil de temperatura futuro.

GPR basico con perfil de temperatura futura conocido pero no de corriente
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Figura 4.13: Formas de onda del Sparse GPR con temperatura futura conocida

Como se puede apreciar en la Figura 4.13, pese a no contar con el perfil de corriente,
el modelo ha sido capaz de reproducir un patrén de onda similar al obtenido en las
baterias. Sin embargo, como en la temperatura no reside la informacion de la carga,

no es capaz de reproducir correctamente el modelo.
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Figura 4.14: Métricas de error del GPR con temperatura futura conocida
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S18arse GPR con con perfil de temperatura futura conocido pero no de corrien
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Figura 4.18: Métricas de error del Sparse GPR con temperatura futura conocida

Los Multiples Expertos 4.15 siguen el mismo patrén que el GPR Bésico
reproduciendo una forma de onda escasamente correlada con la real. Por otro lado,
el resultado resultante del modelo de Sparse GPR no ha sido capaz ni de encontrar el

patron periodico.

GPR Basico | Multiples Expertos GPR | Sparse GPR
RMSE 2.3036 2.6616 3.4191
(V)
MAE 5.6754 7.2880 6.4276
(V)
RMSE
FinalDia 0.2771 1.7369 2.3347
V)
MAE
FinalDia 0.0316 0.5838 6.3401
(V)
Duracién
Entrenamiento 14 58 20
(s)
Duracion
Test (s) 52 391 37

Tabla 4.3: Métricas de error con perfil de temperatura conocido
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Como se puede ver tanto en las figuras como en la tabla de errores 4.3 prescindir
de la corriente en la estimacion hace que no sea posible estimar de forma adecuada la
tension. Sin embargo, frente a los casos previos, el GPR Basico resulta ser capaz de

formar una onda similar que consigue un error reducido al final de dia.
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Capitulo 5

Conclusiones

Se ha abordado el problema de estimacion de tension futura en baterias a través
del uso de los Procesos Gaussianos como herramienta de regresiéon. Para ello se ha
partido de un nuevo algoritmo: R-MVSP, que hasta ahora solamente se habia ensayado

en bases de datos pequenas y artificiales.

Con el fin de entender qué limites, ventajas y optimizaciones pueden aplicar este
algoritmo a la estimacion de tension futura, se han realizado tres implementaciones
diferentes de GPR: GPR bésico, Miltiples Expertos GPR y Sparse GPR basado en
FITC.

Los algoritmos GPR suponen una mejora respecto a otras técnicas, por presentar
menores problemas de overfitting y disponer de una pardmetro de calidad de la

estimacién (intervalo de confianza).

Se han desarrollado los algoritmos en Matlab. Para su evaluacién se ha utilizado
una base de datos realista y de gran tamano recogida en los repetidores de la red
de comunicaciones de la Confederacion Hidrografica de Ebro. El objetivo ha sido
determinar si este tipo de algoritmos pueden proporcionar estimaciones fiables a futuro

para evitar fallos criticos en sistemas de comunicaciones no conectados a la red eléctrica.

Los resultados muestran como para la estimacién futura de tensién es imprescindible
el uso del perfil de corriente y que la influencia de la temperatura en la estimacién
no es representativa. Por otro lado se demuestra que es posible implementar, como
continuacion de este trabajo, un sistema de gestién del riesgo de las instalaciones basado

en las técnicas GPR.

Si bien la carga computacional es relativamente elevada, durante el trabajo
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se ha desarrollado una optimizaciéon de las librerias iniciales permitiendo asi una
implementacién eficiente del método. Asi mismo La utilizacién de las variantes Sparse
y el uso de kernels de estructura simple permiten optimizar el tiempo de ejecucion,
extendiendo la base de datos de entrenamiento y aumentando asi las casuisticas que el

modelo es capaz de abordar.

Se estd trabajando actualmente en un articulo (JCR-Q1) sobre los resultados

obtenidos en este trabajo.

Lineas Futuras

La linea futura mas inmediata es la del uso de esta misma base de datos y algoritmos
en la estimacion del SOH Y del SoC de la misma forma que se ha hecho en otros articulos

con métodos similares.

Implementacion de los algoritmos en Phyton para cémputo en la nube ya que este
tipo de instalaciones de comunicaciones tiene acceso a internet. Otra posibilidad seria
la de llevar estos algoritmos a un Single Board Computer (SBC) y procesar los datos

de forma local.

Utilizacion de herramientas de kernel automaticas que se ajustan a tu base de datos.
Se esta desarrollando actualmente un modelo de generacion automatica de funciones

de covarianza que permite modelar de forma éptima tu base de datos [18].

Extender el nimero de variables que se inyectan al GPR Sparse para poder ver el
envejecimiento de las baterias mediante reentrenamientos periddicos. La base de datos

crece conforme se tomen nuevas medidas en los sensores.

Realizar una clasificacion de tipos de dias usando como parametros de entrada ,del
algoritmo K-means u otro, valores relacionados con la estimacion futura. En definitiva,

cambiar la perspectiva a la hora de etiquetar.
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