

Trabajo Fin de Grado

Implementación de algoritmos de planificación de

trayectorias para robots móviles en entornos

complejos

Implementation of path planning algorithms for

mobile robots in complex environments

Autor

Javier Muñoz Mendi

Director

Eduardo Montijano Muñoz

Escuela de Ingeniería y Arquitectura de la Universidad de Zaragoza

2019

Resumen

La planificación de trayectorias en robótica es un problema que ha recibido especial

atención en los últimos años, debido a que los robots comienzan a estar muy presentes en

la industria y en los hogares. Aunque estos robots pueden ser muy diferentes unos de otros,

el problema de obtener trayectorias de un punto a otro del espacio evitando obstáculos

es similar en todos ellos, ya sea un robot aspirador doméstico, como una Roomba, o un

robot de rescate en entornos peligrosos.

Con la finalidad de aportar soluciones a este problema, este trabajo fin de grado

tiene como objetivo principal la implementación y el estudio de diferentes algoritmos de

planificación para obtener trayectorias válidas. Para ello es necesario disponer de (i) un

modelo del entorno sobre el cual realizar la tarea de planificación, (ii) un origen y (iii) un

destino.

En el TFG se comparan tres algoritmos con diferentes caracteŕısticas y comporta-

mientos. Por un lado, se ha estudiado el algoritmo A*, basado en búsqueda en grafos

y muy utilizado en la actualidad. Por otro lado, como alternativas con menor coste de

computación que el A*, se han estudiado el algoritmo basado en muestreo RRT, y una

modificación anytime-optimal del mismo, el RRT*.

Con la finalidad de evaluar los diferentes algoritmos de planificación propuestos, se

realizan ensayos en entornos de diferente tamaño y complejidad y se comparan los resul-

tados obtenidos. Estos ensayos nos permiten observar las ventajas y desventajas de los

algoritmos estudiados, pudiendo elegir el algoritmo idóneo para cada situación.

Por último, en el TFG se realiza una implementación en un robot real mediante la

plataforma ROS.

Índice general

Índice de figuras 1

1. Introducción 2

1.1. Motivación y Contexto . 2

1.2. Objetivos . 3

1.3. Alcance . 4

1.4. Estructura de la memoria . 4

2. Algoritmos de planificación de trayectorias 6

2.1. Algoritmo A* . 6

2.2. Algoritmo RRT . 8

2.3. Algoritmo RRT* . 10

3. Resultados y discusión 12

3.1. Diseño del experimento . 12

3.2. Discusión . 14

4. Implementación en robot real 17

4.1. Introducción a ROS . 17

4.2. Implementación en ROS del algoritmo RRT* 18

4.3. Resultados . 19

5. Conclusiones 21

i

ii

5.1. Ĺıneas de trabajo futuras . 22

Bibliograf́ıa 23

Índice de figuras

1.1. PRM . 3

2.1. Proyecto Shakey . 7

2.2. Discretización en celdas de una ĺınea recta 9

2.3. Variación del radio del área de recableado con el número de nodos 11

3.1. Mapas utilizados para el experimento . 12

3.2. Trayectorias para diferentes algoritmos en el mapa mediano 13

3.3. Resultados del experimento . 14

3.4. Resultados del experimento para los mapas pequeño y mediano 15

3.5. Resultados de la comparación de ambas versiones del RRT* 16

4.1. Robots modelo Turtlebot 2 . 17

4.2. Estructura de ROS . 18

4.3. Implementación en ROS . 19

4.4. Simulaciones en RViz . 20

1

Caṕıtulo 1

Introducción

1.1. Motivación y Contexto

La planificación de trayectorias en robótica es un problema que ha recibido especial

atención en los últimos años, debido a que los robots comienzan a estar muy presentes en

la industria y en los hogares. Aunque estos robots pueden ser muy diferentes unos de otros,

el problema de obtener trayectorias de un punto a otro del espacio evitando obstáculos

es similar en todos ellos, ya sea un robot aspirador doméstico, como una Roomba, o un

robot de rescate en entornos peligrosos.

Dado un robot con una descripción del entorno, un estado inicial y un estado final, el

problema de la planificación de trayectorias se puede definir como el problema de encontrar

una trayectoria que lleve al robot del estado inicial al estado final obedeciendo las normas

del entorno, e.g., no colisionar con obstáculos. Se dice que un algoritmo creado para llevar

a cabo esta planificación está completo si termina en un tiempo finito, devolviendo una

solución si esta existe, o no devolviendo nada en caso contrario.

Los planificadores prácticos aparecieron con el desarrollo de métodos de descomposi-

ción en celdas[1] [2], y campos de potencial. Estos métodos dependen de una representa-

ción expĺıcita de los obstáculos en la configuración espacial, que se usa directamente para

construir una solución. Esto puede dar como resultado un exceso de carga computacional

en un número alto de dimensiones y entornos con un gran número de obstáculos. Evitar

este tipo de representación es la principal motivación que llevó al desarrollo de algoritmos

de muestreo (sampling-based) [3].

En lugar de utilizar una representación expĺıcita del entorno, los algoritmos de mues-

treo dependen de una función de detección de obstáculos que proporciona información

sobre la viabilidad de posibles trayectorias. Basándose en esta información, conectan un

número de puntos muestreados sobre el espacio libre de obstáculos con el fin de construir

2

3

un grafo de trayectorias viables. Este grafo se usa más adelante para construir la solución

al problema original de planificación de trayectorias.

Los algoritmos de muestreo proporcionan un gran ahorro computacional al evitar una

construcción expĺıcita de los obstáculos en el espacio. Estos algoritmos garantizan que

las probabilidades de que el planificador no devuelva una solución, si existe, disminuyan

hasta cero a medida que el número de muestras se aproxime al infinito. Un ejemplo de

algoritmo de muestreo es el PRM (Figura 1.1).

Figura 1.1: PRM

Sin embargo, la solución obtenida por los algoritmos basados en muestreo suele estar

lejos de la solución óptima. En muchas situaciones la optimalidad de la trayectoria obte-

nida es de vital importancia, por lo que una vez alcanzada una solución factible, se dedica

tiempo de computación adicional a mejorar la solución conseguida.

Esta idea de afinar la solución progresivamente se conoce en la literatura como algo-

ritmos anytime-optimal. Estos algoritmos devuelven una solución que es más próxima a la

óptima de forma proporcional al tiempo de ejecución. El algoritmo RRT* es una variación

del algoritmo RRT que construye un árbol de manera incremental optimizando los costes

de cada rama del árbol a medida que se va construyendo, proporcionando una solución

que va convergiendo a la solución óptima con un coste computacional bajo.

1.2. Objetivos

El objetivo principal de este proyecto es estudiar e implementar diferentes algoritmos

de planificación de trayectorias para robots móviles en entornos con obstáculos. Por un

lado, el trabajo tiene una parte de estudio teórico en la que se analizan los algoritmos

más utilizados en la literatura (A*, RRT, RRT*). Por otro lado, en base a un análisis

emṕırico, se plantea la validación del algoritmo RRT* en una plataforma robótica real.

Para ello se proponen los siguientes objetivos:

4

Estudio de soluciones al problema de planificación de trayectorias.

Selección de algoritmos de planificación a implementar.

Estudio de los algoritmos seleccionados.

Implementación y simulación de los algoritmos de planificación de trayectorias se-

leccionados en Matlab.

Implementación en robot real.

1.3. Alcance

El proyecto ha consistido en el estudio teórico y experimental de los tres algoritmos

descritos en la sección anterior: A*, RRT y RRT*.

En primer lugar se realizado un estudio teórico de cada uno de los algoritmos selec-

cionados. Los algoritmos RRT y RRT* se han estudiado directamente de la publicación

original que los propuso [3] [4]. El algoritmo A* se ha estudiado de un proyecto fin de

carrera [5].

En segundo lugar, se han implementado estos algoritmos en Matlab para realizar un

análisis emṕırico de sus propiedades basado en experimentos Montecarlo. Los algoritmos

RRT y RRT* se han implementado desde cero, mientras que la implementación del A* se

obtiene de [5]. A partir de estos experimentos se han obtenido las métricas de evaluación

deseadas: longitud de la trayectoria obtenida y tiempo de ejecución.

Por último, se ha implementado el algoritmo RRT* en un Turtlebot 2. Para ello ha sido

necesario aprender el funcionamiento del software ROS y se ha estudiado la arquitectura

de software y hardware de la plataforma disponible en el laboratorio de robótica.

1.4. Estructura de la memoria

La memoria se estructura de la siguiente manera:

Caṕıtulo 2: en este caṕıtulo se presenta el problema concreto de planificación sobre

el que se va a trabajar y los algoritmos utilizados para ello.

Caṕıtulo 3: en este caṕıtulo se realiza una comparación de los resultados obtenidos

con estos algoritmos y, en consecuencia, las aplicaciones recomendadas para cada

uno de ellos.

5

Caṕıtulo 4: en este caṕıtulo se explica la implementación de los algoritmos de plani-

ficación en un robot real, desde el estudio de la plataforma ROS hasta las pruebas

de campo realizadas y los resultados obtenidos.

Caṕıtulo 5: en este caṕıtulo se plantean las conclusiones del trabajo junto a las

dificultades que se han encontrado durante su desarrollo. También se plantean ĺıneas

de trabajo futuras que podŕıan mejorar y ampliar los resultados obtenidos en este

trabajo.

Caṕıtulo 2

Algoritmos de planificación de

trayectorias

El principal objetivo de este trabajo es resolver el problema de la planificación de

trayectorias a partir de (i) un modelo del entorno sobre el cual realizar la tarea de plani-

ficación, (ii) un origen y (iii) un destino. El problema concreto que se plantea resolver es

el de la planificación de trayectorias para un solo robot en dos dimensiones.

Para obtener el modelo del entorno se parte de una imagen binaria que se discretiza

en celdas del tamaño de un ṕıxel. Estas celdas pueden ser obstáculos o celdas libres. Para

discernir entre celdas libres y obstáculos se utiliza la matriz obtenida a partir del procesado

de la imagen. Las celdas que toman valor 0 en la matriz se consideran obstáculos, y las

que toman valor 1 se consideran celdas libres.

Las celdas de origen y destino se designan mediante las correspondientes coordena-

das(x,y) en el modelo del entorno.

Para resolver el problema de planificación es necesario llevar al robot desde la cel-

da origen hasta la celda destino sin colisionar con obstáculos. Para ello se utilizan los

algoritmos de planificación A*,RRT y RRT*.

El cálculo de las acciones de bajo nivel que es necesario aplicar al robot para seguir

esta trayectoria queda fuera del alcance de este proyecto.

2.1. Algoritmo A*

El algoritmo A* fue presentado por primera vez en 1968 por Peter E. Hart, Nils J.

Nilsson y Bertram Raphael [6]. Fue desarrollado como una extensión del algoritmo de

Edsger Dijkstra [7]. El algoritmo A* tiene un mejor rendimiento que este debido a que

6

7

usa la heuŕıstica para guiar su búsqueda. Fue creado como parte del proyecto Shakey

(Figura 2.1), que teńıa el objetivo de construir un robot móvil que pudiera planificar sus

propias acciones.

Figura 2.1: Proyecto Shakey

Este algoritmo es muy utilizado en el ámbito de la planificación de trayectorias y

búsqueda en grafos debido a su eficiencia y precisión. La propiedad más destacada de este

algoritmo es que, si existe, es capaz de encontrar la trayectoria de menor coste entre dos

puntos.

En cada iteración el algoritmo decide cuál de sus caminos a expandir en función del

coste f(n). Esta función f(n) consiste en la suma de la distancia desde el nodo de inicio

hasta el nodo n (g(n)) y una estimación del coste requerido para extender la trayectoria

hasta el objetivo (h(n)).

f(n) = g(n) + h(n). (2.1)

La ecuación (2.1) describe la función de costes de cada celda.

Para comenzar la planificación se crean dos listas, la lista abierta y la lista cerrada.

La lista cerrada maneja las celdas pertenecientes a la trayectoria y la lista abierta las

celdas vecinas que se están analizando. La búsqueda parte de la celda inicial, analizando

las celdas vecinas y sus costes. A continuación se elige la celda con menor f(n) como

sucesora, se añade a la lista cerrada y se realiza el mismo análisis. Si en alguna iteración

del algoritmo se analiza una celda ya analizada previamente desde otra celda padre , su

f(n) se actualiza. Si esta f(n) es menor que la que teńıa previamente, se actualizan las

coordenadas de su celda padre y se obtiene una trayectoria de menor coste.

La búsqueda de la trayectoria termina cuando la búsqueda alcanza la celda final. La

sucesión de celdas desde la celda inicial con g(n) = 0 hasta la celda final con h(n) = 0,

pertenecientes a la lista cerrada, conforman la trayectoria final. El pseudocódigo para el

algoritmo A* se describe en Algoritmo 1.

8

Algorithm 1 Algoritmo A*

1: procedure Path(xinit, xgoal)

2: Inicializar Listas

3: Añadir xinit a la Lista Cerrada

4: while Lista Abierta no vaćıa do

5: NuevaCelda = celda con mı́nima f en la Lista Abierta

6: Mover NuevaCelda de la Lista Abierta a la Lista Cerrada

7: Hijas = celdas adyacentes a NuevaCelda

8: for Hijas de NuevaCelda que no son obstáculos

9: Calcular f(n)

10: if f(n) < anterior f(n)

11: Padre = NuevaCelda

12: Explorar siguiente vecina

13: if Lista Abierta vaćıa

14: No existe solución

15: if NuevaCelda = xgoal

16: path = path entre xinit y xgoal mediante las celdas de la Lista Cerrada

17: return path

2.2. Algoritmo RRT

Como alternativa a los algoritmos de búsqueda en grafos surgen los algoritmos basados

en muestreo. Los algoritmos de muestreo más utilizados en la actualidad son el PRM y el

RRT.

En esta sección se describe el algoritmo RRT, un algoritmo basado en muestreo

desarrollado por Steven M. LaValle y James F. Kuffner Jr. en 1998 [3] para explorar

espacios de grandes dimensiones construyendo un árbol. El árbol se construye de forma

incremental a partir de muestras aleatorias del espacio y tiende a crecer hacia grandes

áreas poco exploradas de forma inherente.

Una muestra es una celda del espacio, elegida de forma aleatoria, que no representa

un obstáculo. Después de obtener cada muestra, se intenta realizar una conexión entre

esta muestra y el nodo más cercano del árbol. Si esta conexión es factible, la muestra se

añade como un nuevo nodo al árbol. Si la conexión al nodo más cercano no es posible, la

conexión se realiza con el nodo del árbol con menor coste de entre los posibles candidatos

que permiten una conexión libre de obstáculos.

Para detectar obstáculos entre dos puntos del espacio se utiliza el algoritmo de Bresen-

ham [8]. Este algoritmo fue diseñado originalmente para dibujar ĺıneas rectas en imágenes

9

binarias. En este trabajo se utiliza su capacidad de discretizar ĺıneas rectas en celdas de la

imagen binaria (Figura 2.2), con el fin de analizar si alguna de esas celdas es un obstáculo,

y dar por imposible la conexión entre dos muestras del espacio.

Figura 2.2: Discretización en celdas de una ĺınea recta

Utilizando un muestreo uniforme del espacio, la probabilidad de expandir un estado

existente es proporcional al tamaño de su región de Voronoi. Debido a que las regiones

de Voronoi más grandes pertenecen a los nodos en la frontera de la búsqueda, el árbol se

expande de forma preferente hacia grandes áreas inexploradas.

El principal inconveniente de este algoritmo es que la solución suele diferir en gran

medida de la solución óptima.

El pseudocódigo para el algoritmo RRT se describe en el Algoritmo 2. La función

RANDOM STATE toma una muestra aleatoria del mapa para su posterior análisis. La

función NEAREST NEIGHBOR encuentra el nodo del árbol más cercano a la muestra.

La función DETECT OBSTACLE detecta si hay un obstáculo entre ambos. La función

GET PATH se encarga de computar la trayectoria a partir de las casillas inicial y final y

las ramas del árbol que los unen.

Algorithm 2 Algoritmo RRT

1: procedure Path(xinit, xgoal)

2: Añadir xinit al árbol

3: while destino no alcanzado do

4: xrand = RANDOM STATE(Mapa)

5: xnear = NEAREST NEIGHBOR(xrand, árbol)

6: obstáculo = DETECT OBSTACLE(xrand, xnear, Mapa)

7: if not obstáculo

8: xnew = xrand

9: Añadir xnew al árbol

10: path = GET PATH(árbol, xinit, xgoal)

11: return path

10

2.3. Algoritmo RRT*

En esta sección se describe el algoritmo RRT*, que hereda todas las propiedades del

RRT y funciona de manera similar. Sin embargo, introduce dos nuevas caracteŕısticas:

búsqueda de vecinos cercanos y recableado(rewiring).

La búsqueda de vecinos cercanos encuentra el mejor nodo padre para el nuevo nodo

antes de insertarlo en el árbol. La operación de recableado reconstruye las ramas del

árbol que están dentro de esta área para mantener el mı́nimo coste posible entre los nodos

del árbol. Esta reconstrucción sirve para eliminar las ramas redundantes, i.e., ramas que

no forman parte de la trayectoria de menor coste entre la ráız del árbol y un nodo. El

proceso de reconstrucción asegura que la distancia desde la ráız del árbol hasta cada uno

de sus nodos es siempre la mı́nima posible. A medida que se incrementa el número de

nodos del árbol, el algoritmo RRT* mejora su trayectoria y su coste gradualmente debido

a su comportamiento asintótico. Este comportamiento supone una mejora respecto al

algoritmo RRT,que no mejora su trayectoria dentada y subóptima.

El pseudocódigo para el algoritmo RRT* se describe en Algoritmo 3. Las funciones

RANDOM STATE y GET PATH realizan la misma función que en el algoritmo RRT. La

función CHOOSE PARENT conecta la muestra obtenida al nodo del árbol que garantiza

el menor coste. REWIRE TREE recablea los nodos en un área alrededor del nuevo nodo

de forma que las ramas del árbol siempre garantizan el menor coste posible. La implemen-

tación de esta función se ha realizado mediante un bucle for que recorre todas las celdas

del espacio dentro del área de recableado en busca de nodos del árbol existentes. Estos

nodos se añaden a una lista para su análisis. A continuación se recalculan las distancias

desde cada nodo hasta la ráız del árbol a través del nuevo nodo añadido. Si esta distancia

es menor que la distancia obtenida anteriormente, se elimina la antigua conexión de dicho

nodo y se conecta al nuevo nodo añadido al árbol. PATH START busca el nodo de menor

coste entre los nodos que han alcanzado la celda final.

Algorithm 3 Algoritmo RRT*

1: procedure Path(xinit, xgoal, tiempo)

2: Añadir xinit al árbol

3: while tiempo de ejecución < tiempo do

4: xrand = RANDOM STATE(Mapa)

5: xnew = CHOOSE PARENT(xrand, árbol)

6: REWIRE TREE(xnew, árbol)

7: Añadir xnew al árbol

8: pathstart = PATH START(xgoal, árbol)

9: path = GET PATH(árbol, pathstart, xinit, xgoal)

10: return path

11

El radio del área de recableado es una variable que disminuye conforme aumenta el

tamaño del árbol. El valor de esta variable se obtiene de [4] y se muestra en (2.2).

r(n) = γRRT ∗(log(n)/n)1/d, (2.2)

donde n es el número de nodos del árbol, γRRT ∗ es una constante que depende de las

dimensiones del mapa y d es el número de dimensiones del mapa, 2 en nuestro caso.

La variación del radio del área de recableado con el número de nodos del árbol para

el mapa mediano se muestra en la Figura 2.3. Se observa que al inicio del proceso de

planificación, cuando el árbol tiene pocos nodos, el radio del área de recableado es muy

grande. Conforme se van añadiendo nodos al árbol, el radio de recableado disminuye.

Figura 2.3: Variación del radio del área de recableado con el número de nodos

Caṕıtulo 3

Resultados y discusión

3.1. Diseño del experimento

Para realizar un análisis emṕırico de los algoritmos planteados en el caṕıtulo anterior,

se han implementado y validado en Matlab. A continuación, se han construido 3 mapas

de diferente complejidad y tamaño (Figura 3.1) para analizar el comportamiento de los

algoritmos en diferentes entornos. Estos mapas corresponden a un entorno sencillo (mapa

pequeño con unas dimensiones de 53x42 ṕıxeles), al plano de un edificio (mapa mediano

con unas dimensiones de 320x317 ṕıxeles) y al mapa de una ciudad (mapa grande con

unas dimensiones de 1069x861 ṕıxeles). Estos mapas se discretizan en celdas del tamaño

de un ṕıxel, los ṕıxeles blancos representan celdas libres de obstáculos y los ṕıxeles negros

representan obstáculos.

(a) Mapa pequeño (b) Mapa Mediano (c) Mapa Grande

Figura 3.1: Mapas utilizados para el experimento

Para realizar el experimento se ejecuta cada algoritmo un número determinado de veces

en cada mapa, a excepción del A* que solo se ejecuta en los mapas pequeño y mediano

debido a su carga computacional en mapas grandes. Se ejecutan dos versiones del RRT*:

la versión con área de recableado fija y la versión con área de recableado variable. El

12

13

número de ejecuciones es diferente para cada mapa: 1000 para el mapa pequeño, 500 para

el mapa mediano y 100 para el mapa grande. Este número depende del tamaño del mapa

debido a que las ejecuciones de los algoritmos son mucho más rápidas en el mapa pequeño

que en el mapa grande. Por ello se elige un número de ejecuciones proporcional al tamaño

del mapa. Para cada mapa se generan tantos valores aleatorios de celdas iniciales y finales

como número de ejecuciones se van a realizar. Las métricas de evaluación son el tiempo de

computación para cada trayectoria obtenida y la longitud de dicha trayectoria. Se eligen

estas dos métricas porque se quiere contrastar la rapidez en el cálculo de la trayectoria

con la optimalidad de la misma.

El experimento se ha realizado en un portátil Mountain Onyx con un procesador

Intel(R) Core(TM) i7-4720HQ CPU 2.60GHz.

En la Figura 3.2 se muestra el comportamiento de cada algoritmo en el mapa mediano.

Se observa como las ramas del árbol generado por el algoritmo RRT* devuelven un menor

coste que las del RRT para la misma trayectoria. También se observa la diferencia entre

ejecutar el algoritmo RRT* el mı́nimo tiempo necesario para calcular una trayectoria

válida y fijar un tiempo de computación mayor para obtener una trayectoria óptima.

(a) A* (b) RRT

(c) RRT* minNodos (d) RRT* 10000 nodos

Figura 3.2: Trayectorias para diferentes algoritmos en el mapa mediano

14

3.2. Discusión

En la Figura 3.3 se pueden observar los resultados del experimento. En las gráficas se

muestra la media y la desviación estándar de las longitudes de las trayectorias obtenidas y

del tiempo de computación utilizado por el algoritmo A* en los mapas pequeño y mediano,

y para el resto de algoritmos en los tres mapas.

(a) Tiempos de ejecución (b) Longitud de las trayectorias obtenidas

Figura 3.3: Resultados del experimento

El algoritmo RRT es el que menores tiempos de computación consigue en todos los

mapas. Se observa una media de 0.038 s en el mapa mediano frente a los 1.67 s del

algoritmo RRT* con área fija y los 2.89 s del algoritmo A*. Sin embargo, la longitud

de las trayectorias obtenidas es mayor que en el resto de algoritmos en todos los mapas,

una media de 347.2 en el mapa mediano frente a los 213.7 del algoritmo RRT* con área

fija. Estos resultados demuestran que aunque el algoritmo RRT tiene unos tiempos de

computación muy bajos debido a que está basado en muestreo, su solución está lejos de

ser la óptima. Por ello es necesario la utilización de modificaciones anytime-optimal como

el RRT*.

También destacan las diferencias entre el algoritmo RRT* con área fija y el algoritmo

RRT* con área variable. La media de las longitudes de las trayectorias obtenidas para

el algoritmo RRT* con área variable en el mapa grande es un 88% de la media para

algoritmo RRT* con área fija, pero su tiempo de computación medio es de 214 s frente a

los 61.74 s de la versión con área fija.

Para el algoritmo A*, se demuestra que la longitud de la trayectoria obtenida es

siempre la mı́nima posible y que los tiempos de computación son mayores que los de los

algoritmos basados en muestreo, a excepción del RRT* con área variable. En comparación

con el RRT*, el algoritmo A* no consigue unos tiempos de computación aceptables para

mapas grandes, mientras que el algoritmo RRT* śı lo hace, y eligiendo un tiempo de

15

ejecución adecuado, podemos obtener una trayectoria con longitud mı́nima.

(a) Tiempos de ejecución (b) Longitud de las trayectorias obtenidas

Figura 3.4: Resultados del experimento para los mapas pequeño y mediano

En la Figura 3.4 se observa que la longitud media de las trayectorias obtenidas me-

diante el algoritmo RRT* es ligeramente menor que para el algoritmo A*. Esto se debe a

que el algoritmo A* solo calcula distancias a lo largo de la diagonal o de los laterales de

la celda, mientras que el RRT* simplemente conecta puntos del mapa y mide la distancia

entre ellos. Por tanto, el algoritmo RRT es útil si se quieren planificar trayectorias en el

mı́nimo tiempo posible y no importa la longitud de la trayectoria obtenida, mientras que

el RRT* es una muy buena opción si se quiere tener en cuenta la longitud de la trayectoria

, ya que se puede elegir el tiempo de computación en función de la optimalidad de la tra-

yectoria deseada. El algoritmo A* es muy útil cuando se quiere planificar una trayectoria

óptima en mapas de tamaño moderado, ya que en estos casos el tiempo de computación

no es muy elevado.

También se observa que los tiempos de computación del algoritmo RRT* con área

variable son mucho mayores que los del RRT* con área fija, e incluso más altos que los del

algoritmo A*, lo que no responde a las propiedades de un algoritmo basado en muestreo.

Este resultado puede deberse a una implementación poco eficiente de la función de reca-

bleado del árbol. Podŕıan utilizarse técnicas más avanzadas de búsqueda o representación

de variables para obtener mejores resultados.

A continuación se realiza una comparación en profundidad de las dos versiones del

algoritmo RRT*. Se toman los tiempos de computación de cada uno de las versiones

cuando alcanzan el objetivo (t) y la ejecución continúa hasta alcanzar un tiempo de

ejecución (2t) para observar el comportamiento anytime-optimal del algoritmo RRT*. Se

recogen el número de nodos añadidos al árbol y la longitud de la trayectoria obtenida

para cada trayectoria cuando el tiempo transcurrido es t, 1.5t, 1.75t y 2t.

El primer dato a comentar es el del número de nodos generado por cada algoritmo.

16

En la Figura 3.5 se muestra el número de nodos generado por cada algoritmo en cada

mapa. Para el algoritmo RRT* con área fija la diferencia de nodos entre los instantes

t = tfija y t = 2tfija es de 29798 en el mapa grande, mientras que la diferencia entre los

instantes t = tfija y t = 2tfija es de 10108. Este resultado se debe a que a medida que se

añaden más nodos al árbol, más tiempo se invierte en el recableado del árbol, y menos

en la generación de nuevos nodos. Para el caso del RRT* con área variable, el área se

reduce conforme aumenta el número de nodos, obteniendo una diferencia de nodos entre

los instantes t = tvariable y T = tvariable de 38743 en el mapa grande, mientras que la

diferencia entre los instantes t = tvariable y t = 2tvariable es de 18976. Esto se debe a que el

tiempo de computación invertido en el recableado se reduce conforme aumenta el tamaño

del árbol.

(a) Número de nodos añadidos al árbol (b) Longitud de las trayectorias obtenidas

Figura 3.5: Resultados de la comparación de ambas versiones del RRT*

En la Figura 3.5 también se muestran las longitudes de las trayectorias obtenidas por

cada versión del algoritmo en cada mapa. La media de la longitud de la primera trayectoria

generada por el RRT* con área fija en un tiempo tfija en el mapa grande es de 632.4, y

se reduce a 616.9 para un tiempo 2tfija. Para la versión del RRT* con área variable la

media de la longitud de la primera trayectoria obtenida en un tiempo tvariable es de 557.4,

y se reduce a 544.9 en un tiempo 2tvariable. Esta reducción de la longitud de la trayectoria

no es muy significativa con respecto al coste de computación asociado. Como se observa

en la Figura 3.4, el RRT* con área variable ya obtiene una trayectoria muy cercana a la

óptima con un tiempo de ejecución tvariable.

En conclusión, la versión del algoritmo RRT* con área variable obtiene trayectorias

más cercanas a la óptima que la versión con área fija, pero su tiempo de ejecución es mucho

mayor, lo que no compensa esta mejora en la longitud de la trayectoria. Sin embargo,

este resultado puede deberse a una mala implementación del algoritmo RRT*. Además,

eligiendo un área de recableado fija adecuada podemos reducir la longitud de la trayectoria

con unos tiempos de ejecución bajos.

Caṕıtulo 4

Implementación en robot real

En este caṕıtulo se muestran los resultados de la implementación del algoritmo RRT*

en un robot Turtlebot 2 (Figura 4.1) para comprobar su aplicación en un entorno real.

La prueba se realiza conectando el planificador implementado en Matlab con el robot real

mediante el software ROS (Robot Operating System) [9] y la Robotics Toolbox de Matlab.

Figura 4.1: Robots modelo Turtlebot 2

4.1. Introducción a ROS

ROS provee libreŕıas y herramientas para ayudar a los desarrolladores de software a

crear aplicaciones para robots. ROS provee abstracción de hardware, controladores de

dispositivos, libreŕıas, herramientas de visualización, comunicación por mensajes, admi-

nistración de paquetes y más.

La estructura de ROS se muestra en la Figura 4.2. Los conceptos básicos necesarios

para entender el funcionamiento de esta estructura son:

17

18

Figura 4.2: Estructura de ROS

Master: proporciona servicios de denominación y registro al resto de los nodos del

sistema ROS. También se encarga de establecer las conexiones entre los nodos.

El Master es necesario en todo sistema que use ROS, ya que sin él es imposible

establecer una comunicación entre nodos.

Nodos: los nodos son los procesos encargados de realizar la computación. Es muy

común que en los sistemas que utilizan ROS existan varios nodos, cada uno en-

cargado de una función espećıfica. Para el caso de un robot móvil, un nodo puede

encargarse del sensor láser, otro de la odometŕıa, otro de la localización, etc.

Tópicos: los tópicos son buses mediante los cuales los nodos intercambian informa-

ción. Los nodos pueden suscribirse o publicar a un tópico.

4.2. Implementación en ROS del algoritmo RRT*

El algoritmo seleccionado para la implementación en robots reales es el RRT*, debido

a su gran versatilidad, ya que nos permite elegir el tiempo máximo que queremos dedicarle

a la obtención de una trayectoria. Como se ha explicado en el caṕıtulo anterior, la calidad

de la trayectoria obtenida dependerá de dicho tiempo.

Dado que el objetivo de este trabajo de fin de grado es el estudio de algoritmos

de planificación de trayectorias, para la gestión a bajo nivel de los robots y realizar la

comunicación con Matlab se utiliza el software existente en el equipo de robótica. El

trabajo realizado en este TFG ha sido llevar a cabo la comunicación entre el algoritmo

RRT* y la capa de bajo nivel de los robots.

En la Figura 4.3 se muestra el esquema de la arquitectura necesaria para la implemen-

tación en un robot.

AMCL: este nodo se encarga de la localización del robot en un mapa previamente

calculado mediante un sensor láser y el algoritmo AMCL (Adaptative Monte Carlo

Localization) y la publica en el tópico amcl pose.

19

Figura 4.3: Implementación en ROS

MATLAB NODE: se suscribe al tópico amcl pose para obtener la localización y la

orientación del robot, y utiliza esta información para realizar la planificación con el

algoritmo RRT*. La trayectoria obtenida se publica en el tópico matlab path.

path follower: se sucribe a matlab path y obtiene la trayectoria que el robot debe

seguir.

move base: usa un planificador local para llevar al robot a los diferentes puntos de

la trayectoria. Debido a este planificador local, en ocasiones el robot no sigue la

trayectoria planificada de forma estricta.

La simulación del movimiento de los robots se realiza en Stage y RViz. Stage es un

simulador de robots que provee un mundo virtual poblado por robots móviles y sensores,

junto a objetos que los robots pueden detectar y manipular. RViz es un visualizador 3D

para la infraestructura ROS. Para ello ha sido necesaria la adaptación de los mapas a

Stage y RViz mediante la modificación de los correspondientes archivos .world y .yaml.

Las simulaciones se realizan para cada uno de los mapas usando tres robots. Utilizando

como base el software comentado anteriormente, se generan trayectorias para cada uno de

ellos mediante el algoritmo RRT*. Estas trayectorias tienen como celda inicial la posición

del robot, y como celda final una localización aleatoria del mapa. A continuación, cada

robot sigue su trayectoria hasta alcanzar la celda final. Cuando uno de los robots alcanza

su destino, se genera una nueva trayectoria y el robot comienza a moverse de nuevo.

4.3. Resultados

La Figura 4.4 muestra los resultados obtenidos para tres robots en los diferentes mapas

en los que se han realizado las pruebas. En las imágenes se muestra la trayectoria asignada

a cada robot.

20

(a) Mapa pequeño (b) Mapa Mediano (c) Mapa Grande

Figura 4.4: Simulaciones en RViz

Los resultados obtenidos demuestran la viabilidad de implementar el planificador en

robots reales, debido a que la comunicación entre la simulación y el robot real es transpa-

rente. Las trayectorias obtenidas permiten a los robots alcanzar su destino sin colisionar

con obstáculos y recorriendo la mı́nima distancia posible para el tiempo asignado.

Se observa que los robots tienen problemas de localización en el mapa grande, debido

a que existen varias áreas del mapa con geometŕıas similares. Este problema podŕıa so-

lucionarse mediante el ajuste adecuado del algoritmo de localización Montecarlo(AMCL)

utilizado.

Como consecuencia de haber realizado pruebas con tres robots en paralelo, pueden

existir colisiones entre los mismos, ya que no se utiliza ningún algoritmo que las evite.

También se observa que el tamaño real de los robots es mayor que una celda, por lo

que trayectorias viables para un “robot teórico” con el tamaño de una celda pueden no

ser viables para un robot real.

Caṕıtulo 5

Conclusiones

El objetivo principal de este proyecto ha sido estudiar e implementar diferentes algo-

ritmos de planificación de trayectorias para robots móviles en entornos con obstáculos.

Por un lado, el trabajo ha tenido una parte de estudio teórico en la que se han analizado

los algoritmos más utilizados en la literatura (A*, RRT, RRT*). Por otro lado, en base a

un análisis emṕırico, se ha planteado la validación del algoritmo RRT* en una plataforma

robótica real.

La implementación en Matlab de los algoritmos A*, RRT y RRT* ha permitido estu-

diar su comportamiento en diferentes entornos.

El algoritmo A* ha demostrado ser muy eficiente en los mapas pequeño y mediano,

pero su tiempo de computación es mayor que el de los algoritmos de muestreo, lo que

imposibilita su utilización en mapas de grandes dimensiones.

El algoritmo RRT ha presentado unos tiempos de computación muy bajos en compa-

ración con el algoritmo A*. Sin embargo, devuelve una trayectoria que, por lo general,

está muy lejos de la óptima.

El algoritmo RRT* ha obtenido unos resultados mejores que los del algoritmo RRT,

debido a la optimización de la trayectoria que realiza en cada iteración. Adicionalmente,

el tiempo de computación elegido por el usuario determina la optimalidad de la solución

obtenida. Por tanto, eligiendo un tiempo de computación adecuado podemos obtener una

trayectoria óptima con un tiempo de computación menor que el del algoritmo A*. Se ha

observado que en términos de tiempo de ejecución es mejor elegir un área de recableado

fija adecuada, lo que devuelve buenos resultados y tiene un tiempo de ejecución menor que

el de la versión del algoritmo RRT* con un área de recableado variable. Este resultado,

sin embargo, puede deberse a una mala implementación de la función de recableado del

árbol.

21

Los resultados obtenidos a partir de la implementación en ROS han demostrado la

viabilidad de utilizar el planificador en robots reales, debido a que la comunicación entre

la simulación y los robots reales es transparente. Las trayectorias obtenidas permiten a los

robots alcanzar su destino sin colisionar con obstáculos y recorriendo la mı́nima distancia

posible para el tiempo asignado.

5.1. Ĺıneas de trabajo futuras

Hay varios puntos fuera del alcance de este trabajo, cuyo estudio seŕıa interesante para

mejorar los resultados obtenidos.

Como posible ĺınea de trabajo futura se plantea una mejor implementación del algo-

ritmo RRT*, en concreto de la función de recableado del árbol.

También se podŕıan estudiar otros algoritmos de muestreo como el PRM, y realizar

una comparación con los algoritmos RRT y RRT*.

Otra posible ĺınea de trabajo podŕıa ser mejorar la integración del planificador con los

robots, e implementar un algoritmo que evite colisiones entre ellos.

Bibliograf́ıa

[1] John Canny. The complexity of robot motion planning. MIT press, 1988.

[2] Rodney A Brooks and Tomas Lozano-Perez. A subdivision algorithm in configuration

space for findpath with rotation. IEEE Transactions on Systems, Man, and Cyberne-

tics, (2):224–233, 1985.

[3] Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.

1998.

[4] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion

planning. The international journal of robotics research, 30(7):846–894, 2011.

[5] Davinia Vera Soriano. Planificación y control con restricciones de formaciones de

robots. 2011 Recuperado el 10 de febrero de 2017, de https://zaguan.unizar.es/

record/6479?ln=es.

[6] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems Science and

Cybernetics, 4(2):100–107, 1968.

[7] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[8] Jack E Bresenham. Algorithm for computer control of a digital plotter. IBM Systems

journal, 4(1):25–30, 1965.

[9] Ros website. http://wiki.ros.org/.

23

https://zaguan.unizar.es/record/6479?ln=es
https://zaguan.unizar.es/record/6479?ln=es
http://wiki.ros.org/

	Índice de figuras
	Introducción
	Motivación y Contexto
	Objetivos
	Alcance
	Estructura de la memoria

	Algoritmos de planificación de trayectorias
	Algoritmo A*
	Algoritmo RRT
	Algoritmo RRT*

	Resultados y discusión
	Diseño del experimento
	Discusión

	Implementación en robot real
	Introducción a ROS
	Implementación en ROS del algoritmo RRT*
	Resultados

	Conclusiones
	Líneas de trabajo futuras

	Bibliografía

