e Universidad
A81 Zaragoza
Trabajo Fin de Grado

Implementacion de algoritmos de planificacion de
trayectorias para robots moéviles en entornos
complejos

Implementation of path planning algorithms for
mobile robots in complex environments

Autor

Javier Munoz Mendi

Director

Eduardo Montijano Mufioz

Escuela de Ingenieria y Arquitectura de la Universidad de Zaragoza
2019

Resumen

La planificacion de trayectorias en robotica es un problema que ha recibido especial
atencion en los ultimos anos, debido a que los robots comienzan a estar muy presentes en
la industria y en los hogares. Aunque estos robots pueden ser muy diferentes unos de otros,
el problema de obtener trayectorias de un punto a otro del espacio evitando obstaculos
es similar en todos ellos, ya sea un robot aspirador doméstico, como una Roomba, o un
robot de rescate en entornos peligrosos.

Con la finalidad de aportar soluciones a este problema, este trabajo fin de grado
tiene como objetivo principal la implementacion y el estudio de diferentes algoritmos de
planificacién para obtener trayectorias vélidas. Para ello es necesario disponer de (i) un
modelo del entorno sobre el cual realizar la tarea de planificacion, (ii) un origen y (iii) un
destino.

En el TFG se comparan tres algoritmos con diferentes caracteristicas y comporta-
mientos. Por un lado, se ha estudiado el algoritmo A*, basado en bisqueda en grafos
y muy utilizado en la actualidad. Por otro lado, como alternativas con menor coste de
computacion que el A*) se han estudiado el algoritmo basado en muestreo RRT, y una
modificacién anytime-optimal del mismo, el RRT*.

Con la finalidad de evaluar los diferentes algoritmos de planificacion propuestos, se
realizan ensayos en entornos de diferente tamano y complejidad y se comparan los resul-
tados obtenidos. Estos ensayos nos permiten observar las ventajas y desventajas de los
algoritmos estudiados, pudiendo elegir el algoritmo idéneo para cada situacion.

Por ultimo, en el TFG se realiza una implementaciéon en un robot real mediante la
plataforma ROS.

Indice general

[Indice de figuras|

T icaon

[1.1. Motivacion y Contexto| o

(1.2. Objetivos|

2.

Algoritmos de planificacion de trayectorias|

[2.1. Algoritmo A™
[2.2. Algoritmo RRTT|
[2.3. Algoritmo RRT™

. Resultados y discusion|

10

12
12
14

17
17
18
19

21

II

Indice de figuras

L1 PRMo 3
7

9

11

[3.1. Mapas utilizados para el experimento| 12
[3.2. Trayectorias para diterentes algoritmos en el mapa medianof. 13
[3.3. Resultados del experimento|, 14
[3.4. Resultados del experimento para los mapas pequeno y mediano| 15
[3.5. Resultados de la comparacion de ambas versiones del RRT* 16
K1, Robots modelo Turtlebot 2. 17
M2, Estructurade ROS L 18
[4.3. Implementacion en ROS|o 19
4.4, Simulacionesen RVizl oo 20

Capitulo 1

Introduccion

1.1. Motivaciéon y Contexto

La planificacién de trayectorias en robdtica es un problema que ha recibido especial
atencién en los ultimos anos, debido a que los robots comienzan a estar muy presentes en
la industria y en los hogares. Aunque estos robots pueden ser muy diferentes unos de otros,
el problema de obtener trayectorias de un punto a otro del espacio evitando obstaculos
es similar en todos ellos, ya sea un robot aspirador doméstico, como una Roomba, o un
robot de rescate en entornos peligrosos.

Dado un robot con una descripcion del entorno, un estado inicial y un estado final, el
problema de la planificacion de trayectorias se puede definir como el problema de encontrar
una trayectoria que lleve al robot del estado inicial al estado final obedeciendo las normas
del entorno, e.g., no colisionar con obstaculos. Se dice que un algoritmo creado para llevar
a cabo esta planificacién estda completo si termina en un tiempo finito, devolviendo una
solucién si esta existe, o no devolviendo nada en caso contrario.

Los planificadores practicos aparecieron con el desarrollo de métodos de descomposi-
ci6én en celdas[I] [2], y campos de potencial. Estos métodos dependen de una representa-
cién explicita de los obstaculos en la configuracion espacial, que se usa directamente para
construir una solucién. Esto puede dar como resultado un exceso de carga computacional
en un numero alto de dimensiones y entornos con un gran niimero de obstaculos. Evitar
este tipo de representacién es la principal motivacion que llevé al desarrollo de algoritmos
de muestreo (sampling-based) [3].

En lugar de utilizar una representacién explicita del entorno, los algoritmos de mues-
treo dependen de una funcion de deteccion de obstaculos que proporciona informacién
sobre la viabilidad de posibles trayectorias. Basandose en esta informacién, conectan un
nimero de puntos muestreados sobre el espacio libre de obstaculos con el fin de construir

un grafo de trayectorias viables. Este grafo se usa mas adelante para construir la solucion
al problema original de planificacién de trayectorias.

Los algoritmos de muestreo proporcionan un gran ahorro computacional al evitar una
construcciéon explicita de los obstaculos en el espacio. Estos algoritmos garantizan que
las probabilidades de que el planificador no devuelva una solucién, si existe, disminuyan
hasta cero a medida que el nimero de muestras se aproxime al infinito. Un ejemplo de
algoritmo de muestreo es el PRM (Figura .

Probabilistic Roadmap

X [meters]

Figura 1.1: PRM

Sin embargo, la solucién obtenida por los algoritmos basados en muestreo suele estar
lejos de la solucién 6ptima. En muchas situaciones la optimalidad de la trayectoria obte-
nida es de vital importancia, por lo que una vez alcanzada una solucion factible, se dedica
tiempo de computacién adicional a mejorar la soluciéon conseguida.

Esta idea de afinar la solucién progresivamente se conoce en la literatura como algo-
ritmos anytime-optimal. Estos algoritmos devuelven una solucion que es més préxima a la
6ptima de forma proporcional al tiempo de ejecucién. El algoritmo RRT™* es una variacién
del algoritmo RRT que construye un arbol de manera incremental optimizando los costes
de cada rama del arbol a medida que se va construyendo, proporcionando una solucion
que va convergiendo a la solucién éptima con un coste computacional bajo.

1.2. Objetivos

El objetivo principal de este proyecto es estudiar e implementar diferentes algoritmos
de planificacién de trayectorias para robots mdéviles en entornos con obstaculos. Por un
lado, el trabajo tiene una parte de estudio tedrico en la que se analizan los algoritmos
méas utilizados en la literatura (A*, RRT, RRT*). Por otro lado, en base a un andlisis
empirico, se plantea la validacién del algoritmo RRT* en una plataforma robdética real.
Para ello se proponen los siguientes objetivos:

= Estudio de soluciones al problema de planificacién de trayectorias.
= Seleccién de algoritmos de planificacion a implementar.
» Estudio de los algoritmos seleccionados.

= Implementacién y simulacion de los algoritmos de planificacién de trayectorias se-
leccionados en Matlab.

= Implementacién en robot real.

1.3. Alcance

El proyecto ha consistido en el estudio tedrico y experimental de los tres algoritmos
descritos en la seccién anterior: A* RRT y RRT*.

En primer lugar se realizado un estudio tedrico de cada uno de los algoritmos selec-
cionados. Los algoritmos RRT y RRT* se han estudiado directamente de la publicacién
original que los propuso [3] [4]. El algoritmo A* se ha estudiado de un proyecto fin de
carrera [9].

En segundo lugar, se han implementado estos algoritmos en Matlab para realizar un
analisis empirico de sus propiedades basado en experimentos Montecarlo. Los algoritmos
RRT y RRT* se han implementado desde cero, mientras que la implementacion del A* se
obtiene de [5]. A partir de estos experimentos se han obtenido las métricas de evaluacién
deseadas: longitud de la trayectoria obtenida y tiempo de ejecucion.

Por tltimo, se ha implementado el algoritmo RRT* en un Turtlebot 2. Para ello ha sido
necesario aprender el funcionamiento del software ROS y se ha estudiado la arquitectura
de software y hardware de la plataforma disponible en el laboratorio de robdtica.

1.4. Estructura de la memoria

La memoria se estructura de la siguiente manera:

= Capitulo 2: en este capitulo se presenta el problema concreto de planificacion sobre
el que se va a trabajar y los algoritmos utilizados para ello.

= Capitulo 3: en este capitulo se realiza una comparacion de los resultados obtenidos
con estos algoritmos y, en consecuencia, las aplicaciones recomendadas para cada
uno de ellos.

= Capitulo 4: en este capitulo se explica la implementacion de los algoritmos de plani-
ficacién en un robot real, desde el estudio de la plataforma ROS hasta las pruebas
de campo realizadas y los resultados obtenidos.

» Capitulo 5: en este capitulo se plantean las conclusiones del trabajo junto a las
dificultades que se han encontrado durante su desarrollo. También se plantean lineas
de trabajo futuras que podrian mejorar y ampliar los resultados obtenidos en este
trabajo.

Capitulo 2

Algoritmos de planificacion de
trayectorias

El principal objetivo de este trabajo es resolver el problema de la planificacién de
trayectorias a partir de (i) un modelo del entorno sobre el cual realizar la tarea de plani-
ficacion, (ii) un origen y (iii) un destino. El problema concreto que se plantea resolver es
el de la planificaciéon de trayectorias para un solo robot en dos dimensiones.

Para obtener el modelo del entorno se parte de una imagen binaria que se discretiza
en celdas del tamano de un pixel. Estas celdas pueden ser obstdculos o celdas libres. Para
discernir entre celdas libres y obstdculos se utiliza la matriz obtenida a partir del procesado
de la imagen. Las celdas que toman valor 0 en la matriz se consideran obstaculos, y las
que toman valor 1 se consideran celdas libres.

Las celdas de origen y destino se designan mediante las correspondientes coordena-
das(x,y) en el modelo del entorno.

Para resolver el problema de planificaciéon es necesario llevar al robot desde la cel-
da origen hasta la celda destino sin colisionar con obstaculos. Para ello se utilizan los
algoritmos de planificaciéon A* RRT y RRT*.

El calculo de las acciones de bajo nivel que es necesario aplicar al robot para seguir
esta trayectoria queda fuera del alcance de este proyecto.

2.1. Algoritmo A*

El algoritmo A* fue presentado por primera vez en 1968 por Peter E. Hart, Nils J.
Nilsson y Bertram Raphael [6]. Fue desarrollado como una extensién del algoritmo de
Edsger Dijkstra [7]. El algoritmo A* tiene un mejor rendimiento que este debido a que

usa la heuristica para guiar su busqueda. Fue creado como parte del proyecto Shakey
(Figura [2.1)), que tenia el objetivo de construir un robot mévil que pudiera planificar sus
propias acciones.

Figura 2.1: Proyecto Shakey

Este algoritmo es muy utilizado en el dambito de la planificacion de trayectorias y
busqueda en grafos debido a su eficiencia y precision. La propiedad mas destacada de este
algoritmo es que, si existe, es capaz de encontrar la trayectoria de menor coste entre dos
puntos.

En cada iteracién el algoritmo decide cual de sus caminos a expandir en funcién del
coste f(n). Esta funcién f(n) consiste en la suma de la distancia desde el nodo de inicio
hasta el nodo n (g(n)) y una estimacién del coste requerido para extender la trayectoria
hasta el objetivo (h(n)).

f(n) =g(n) + h(n). (2.1)
La ecuacion ({2.1]) describe la funcién de costes de cada celda.

Para comenzar la planificacién se crean dos listas, la lista abierta y la lista cerrada.
La lista cerrada maneja las celdas pertenecientes a la trayectoria y la lista abierta las
celdas vecinas que se estan analizando. La busqueda parte de la celda inicial, analizando
las celdas vecinas y sus costes. A continuacion se elige la celda con menor f(n) como
sucesora, se anade a la lista cerrada y se realiza el mismo analisis. Si en alguna iteracion
del algoritmo se analiza una celda ya analizada previamente desde otra celda padre , su
f(n) se actualiza. Si esta f(n) es menor que la que tenfa previamente, se actualizan las
coordenadas de su celda padre y se obtiene una trayectoria de menor coste.

La busqueda de la trayectoria termina cuando la busqueda alcanza la celda final. La
sucesiéon de celdas desde la celda inicial con g(n) = 0 hasta la celda final con h(n) = 0,
pertenecientes a la lista cerrada, conforman la trayectoria final. El pseudocédigo para el
algoritmo A* se describe en Algoritmo

Algorithm 1 Algoritmo A*

1: procedure PATH(Z;pit, Tgoar)

2 Inicializar Listas

3 Anadir x;,; a la Lista Cerrada

4 while Lista Abierta no vacia do

5: NuevaCelda = celda con minima f en la Lista Abierta

6 Mover NuevaCelda de la Lista Abierta a la Lista Cerrada
7 Hijas = celdas adyacentes a NuevaCelda

8 for Hijas de NuevaCelda que no son obstaculos

9: Calcular f(n)
10: if f(n) < anterior f(n)
11: Padre = NuevaCelda

12: Explorar siguiente vecina

13: if Lista Abierta vacia

14: No existe solucién
15: if NuevaCelda = 2404
16: path = path entre ;n y Tg0s mediante las celdas de la Lista Cerrada

17: return path

2.2. Algoritmo RRT

Como alternativa a los algoritmos de buisqueda en grafos surgen los algoritmos basados
en muestreo. Los algoritmos de muestreo més utilizados en la actualidad son el PRM y el
RRT.

En esta seccion se describe el algoritmo RRT, un algoritmo basado en muestreo
desarrollado por Steven M. LaValle y James F. Kuffner Jr. en 1998 [3] para explorar
espacios de grandes dimensiones construyendo un arbol. El darbol se construye de forma
incremental a partir de muestras aleatorias del espacio y tiende a crecer hacia grandes
areas poco exploradas de forma inherente.

Una muestra es una celda del espacio, elegida de forma aleatoria, que no representa
un obstaculo. Después de obtener cada muestra, se intenta realizar una conexion entre
esta muestra y el nodo mas cercano del arbol. Si esta conexién es factible, la muestra se
anade como un nuevo nodo al arbol. Si la conexién al nodo mas cercano no es posible, la
conexion se realiza con el nodo del arbol con menor coste de entre los posibles candidatos
que permiten una conexion libre de obstaculos.

Para detectar obstaculos entre dos puntos del espacio se utiliza el algoritmo de Bresen-
ham [§]. Este algoritmo fue disenado originalmente para dibujar lineas rectas en imégenes

binarias. En este trabajo se utiliza su capacidad de discretizar lineas rectas en celdas de la
imagen binaria (Figura[2.2)), con el fin de analizar si alguna de esas celdas es un obstaculo,
y dar por imposible la conexion entre dos muestras del espacio.

e

Figura 2.2: Discretizacion en celdas de una linea recta

Utilizando un muestreo uniforme del espacio, la probabilidad de expandir un estado
existente es proporcional al tamano de su region de Voronoi. Debido a que las regiones
de Voronoi mas grandes pertenecen a los nodos en la frontera de la buisqueda, el arbol se
expande de forma preferente hacia grandes areas inexploradas.

El principal inconveniente de este algoritmo es que la solucién suele diferir en gran
medida de la solucién 6ptima.

El pseudocddigo para el algoritmo RRT se describe en el Algoritmo [2 La funcién
RANDOM_STATE toma una muestra aleatoria del mapa para su posterior analisis. La
funciéon NEAREST_NEIGHBOR encuentra el nodo del arbol més cercano a la muestra.
La funcién DETECT_OBSTACLE detecta si hay un obstaculo entre ambos. La funcién
GET_PATH se encarga de computar la trayectoria a partir de las casillas inicial y final y
las ramas del arbol que los unen.

Algorithm 2 Algoritmo RRT

1: procedure PATH(Znit, Tgoal)

2 Anadir x;,; al arbol

3 while destino no alcanzado do

4: Trana = RANDOM_STATE(Mapa)

5: Tnear = NEAREST NEIGHBOR(z,4n4, drbol)

6 obstdculo = DETECT_OBSTACLE(%4nd, Tnear, Mapa)
7 if not obstaculo

8

9

Tnew = Lrand

: Anadir x,,., al arbol
10: path = GET_PATH (4rbol, Zinit, Zg0a1)
11: return path

10

2.3. Algoritmo RRT*

En esta seccién se describe el algoritmo RRT*, que hereda todas las propiedades del
RRT y funciona de manera similar. Sin embargo, introduce dos nuevas caracteristicas:
bisqueda de vecinos cercanos y recableado(rewiring).

La busqueda de vecinos cercanos encuentra el mejor nodo padre para el nuevo nodo
antes de insertarlo en el arbol. La operacién de recableado reconstruye las ramas del
arbol que estan dentro de esta area para mantener el minimo coste posible entre los nodos
del arbol. Esta reconstruccion sirve para eliminar las ramas redundantes, 7.e., ramas que
no forman parte de la trayectoria de menor coste entre la raiz del arbol y un nodo. El
proceso de reconstruccién asegura que la distancia desde la raiz del arbol hasta cada uno
de sus nodos es siempre la minima posible. A medida que se incrementa el nimero de
nodos del arbol, el algoritmo RRT* mejora su trayectoria y su coste gradualmente debido
a su comportamiento asintotico. Este comportamiento supone una mejora respecto al
algoritmo RRT,que no mejora su trayectoria dentada y subdptima.

El pseudocddigo para el algoritmo RRT* se describe en Algoritmo [3] Las funciones
RANDOM _STATE y GET_PATH realizan la misma funcién que en el algoritmo RRT. La
funcién CHOOSE_PARENT conecta la muestra obtenida al nodo del arbol que garantiza
el menor coste. REWIRE_TREE recablea los nodos en un area alrededor del nuevo nodo
de forma que las ramas del arbol siempre garantizan el menor coste posible. La implemen-
tacion de esta funcion se ha realizado mediante un bucle for que recorre todas las celdas
del espacio dentro del area de recableado en busca de nodos del arbol existentes. Estos
nodos se anaden a una lista para su analisis. A continuacion se recalculan las distancias
desde cada nodo hasta la raiz del arbol a través del nuevo nodo anadido. Si esta distancia
es menor que la distancia obtenida anteriormente, se elimina la antigua conexion de dicho
nodo y se conecta al nuevo nodo anadido al arbol. PATH_START busca el nodo de menor
coste entre los nodos que han alcanzado la celda final.

Algorithm 3 Algoritmo RRT*

1. procedure PATH(Z;pit, Tgoal, tiempo)

2 Anadir x;,; al arbol

3 while tiempo de ejecucion < tiempo do

4: Trana = RANDOM_STATE(Mapa)

5: Tpew = CHOOSE_PARENT (2,44, 4rbol)

6 REWIRE_TREE(z/,, arbol)

7 Anadir x,,, al arbol

8 pathsiare = PATH_START (2 40q;, drbol)

9: path = GET_PATH(4rbol, pathgart, Tinits Tgoal)
10: return path

11

El radio del area de recableado es una variable que disminuye conforme aumenta el
tamano del arbol. El valor de esta variable se obtiene de [4] y se muestra en ([2.2)).

r(n) = yrrr-(log(n) /n)"/*, (2.2)

donde n es el nimero de nodos del arbol, vgrr+ es una constante que depende de las
dimensiones del mapa y d es el nimero de dimensiones del mapa, 2 en nuestro caso.

La variacion del radio del area de recableado con el nimero de nodos del arbol para
el mapa mediano se muestra en la Figura [2.3] Se observa que al inicio del proceso de
planificacién, cuando el arbol tiene pocos nodos, el radio del area de recableado es muy
grande. Conforme se van anadiendo nodos al arbol, el radio de recableado disminuye.

Variacion del radio con el nimero de nodos

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Nimero de nodos

Figura 2.3: Variacion del radio del area de recableado con el niimero de nodos

Capitulo 3

Resultados y discusion

3.1. Diseno del experimento

Para realizar un analisis empirico de los algoritmos planteados en el capitulo anterior,
se han implementado y validado en Matlab. A continuacion, se han construido 3 mapas
de diferente complejidad y tamano (Figura para analizar el comportamiento de los
algoritmos en diferentes entornos. Estos mapas corresponden a un entorno sencillo (mapa
pequeno con unas dimensiones de 53x42 pixeles), al plano de un edificio (mapa mediano
con unas dimensiones de 320x317 pixeles) y al mapa de una ciudad (mapa grande con
unas dimensiones de 1069x861 pixeles). Estos mapas se discretizan en celdas del tamano
de un pixel, los pixeles blancos representan celdas libres de obstaculos y los pixeles negros
representan obstaculos.

N
S
]

-
\\
¥

el [XS i
53 }'“
I 1 }AQL .‘5&
| I—‘J‘ | hﬁ| | H
P e ——— i

e

12

o

_i
"\; e =L Ad’ -‘ X
-——-4 -— \J » A== A!‘\\ “\

(a) Mapa pequeno (b) Mapa Mediano (c) Mapa Grande

Figura 3.1: Mapas utilizados para el experimento

Para realizar el experimento se ejecuta cada algoritmo un niimero determinado de veces
en cada mapa, a excepcién del A* que solo se ejecuta en los mapas pequeno y mediano
debido a su carga computacional en mapas grandes. Se ejecutan dos versiones del RRT™*:
la versién con area de recableado fija y la versién con area de recableado variable. El

12

13

nimero de ejecuciones es diferente para cada mapa: 1000 para el mapa pequeno, 500 para
el mapa mediano y 100 para el mapa grande. Este nimero depende del tamano del mapa
debido a que las ejecuciones de los algoritmos son mucho mas rapidas en el mapa pequeno
que en el mapa grande. Por ello se elige un ntimero de ejecuciones proporcional al tamano
del mapa. Para cada mapa se generan tantos valores aleatorios de celdas iniciales y finales
como numero de ejecuciones se van a realizar. Las métricas de evaluacién son el tiempo de
computacién para cada trayectoria obtenida y la longitud de dicha trayectoria. Se eligen
estas dos métricas porque se quiere contrastar la rapidez en el calculo de la trayectoria
con la optimalidad de la misma.

El experimento se ha realizado en un portatil Mountain Onyz con un procesador
Intel(R) Core(TM) i7-4720HQ CPU 2.60GHz.

En la Figura se muestra el comportamiento de cada algoritmo en el mapa mediano.
Se observa como las ramas del drbol generado por el algoritmo RRT* devuelven un menor
coste que las del RRT para la misma trayectoria. También se observa la diferencia entre
ejecutar el algoritmo RRT* el minimo tiempo necesario para calcular una trayectoria
valida y fijar un tiempo de computacién mayor para obtener una trayectoria 6ptima.

(c) RRT* minNodos (d) RRT* 10000 nodos

Figura 3.2: Trayectorias para diferentes algoritmos en el mapa mediano

14

3.2. Discusion

En la Figura se pueden observar los resultados del experimento. En las graficas se
muestra la media y la desviacion estandar de las longitudes de las trayectorias obtenidas y
del tiempo de computacion utilizado por el algoritmo A* en los mapas pequeno y mediano,
y para el resto de algoritmos en los tres mapas.

Tiempos algoritmos Distancias algoritmos

800 T 1600 .
——a —F— A
| |=—f—RRT] | |=—E=—rrT
=0 RRT* AreaFija 1400 RRT* AreaFija
—— RRT* AreaVariable —— RRT* AreaVariabls

400 [b 1200 |
2 £
E 300f & 1000
g 5
= 200 T 800T
@ o
2 g
_E 100 [5 600
L o

ot 400
100 | 1 200 |
200 s 4 . a : .
Pequerio Mediano Grande Pequerio Mediano Grande
Mapa Mapa
(a) Tiempos de ejecucién (b) Longitud de las trayectorias obtenidas

Figura 3.3: Resultados del experimento

El algoritmo RRT es el que menores tiempos de computacion consigue en todos los
mapas. Se observa una media de 0.038 s en el mapa mediano frente a los 1.67 s del
algoritmo RRT* con drea fija y los 2.89 s del algoritmo A*. Sin embargo, la longitud
de las trayectorias obtenidas es mayor que en el resto de algoritmos en todos los mapas,
una media de 347.2 en el mapa mediano frente a los 213.7 del algoritmo RRT* con area
fija. Estos resultados demuestran que aunque el algoritmo RRT tiene unos tiempos de
computacién muy bajos debido a que esta basado en muestreo, su solucién esta lejos de
ser la éptima. Por ello es necesario la utilizacion de modificaciones anytime-optimal como

el RRT*.

También destacan las diferencias entre el algoritmo RRT™* con area fija y el algoritmo
RRT™* con é4rea variable. La media de las longitudes de las trayectorias obtenidas para
el algoritmo RRT™* con drea variable en el mapa grande es un 88 % de la media para
algoritmo RRT* con drea fija, pero su tiempo de computaciéon medio es de 214 s frente a
los 61.74 s de la versién con area fija.

Para el algoritmo A* se demuestra que la longitud de la trayectoria obtenida es
siempre la minima posible y que los tiempos de computaciéon son mayores que los de los
algoritmos basados en muestreo, a excepcién del RRT* con drea variable. En comparacién
con el RRT*, el algoritmo A* no consigue unos tiempos de computacién aceptables para
mapas grandes, mientras que el algoritmo RRT* si lo hace, y eligiendo un tiempo de

15

ejecucion adecuado, podemos obtener una trayectoria con longitud minima.

Tiempos algoritmos Distancias algoritmos
25 T T 600 T
—5—n e
—F—rRrT —f—RRT
20t RRT*" AreaFija] s00 F RRT* AreaFija
=f— RRT* AreaVariable —— RRT* AreaVariable

Tiempo en segundos
=] o

Distancia en unidades
w .
<]]
(=] [=]

o
n
1=}
=]

e B

o
=1
=1

T

n

Pequerioc Mediano Pequero Mediano
Mapa Mapa

(a) Tiempos de ejecucién (b) Longitud de las trayectorias obtenidas

Figura 3.4: Resultados del experimento para los mapas pequeno y mediano

En la Figura [3.4] se observa que la longitud media de las trayectorias obtenidas me-
diante el algoritmo RRT* es ligeramente menor que para el algoritmo A*. Esto se debe a
que el algoritmo A* solo calcula distancias a lo largo de la diagonal o de los laterales de
la celda, mientras que el RRT* simplemente conecta puntos del mapa y mide la distancia
entre ellos. Por tanto, el algoritmo RRT es 1til si se quieren planificar trayectorias en el
minimo tiempo posible y no importa la longitud de la trayectoria obtenida, mientras que
el RRT* es una muy buena opcién si se quiere tener en cuenta la longitud de la trayectoria
, ya que se puede elegir el tiempo de computacién en funcion de la optimalidad de la tra-
yectoria deseada. El algoritmo A* es muy ttil cuando se quiere planificar una trayectoria
optima en mapas de tamano moderado, ya que en estos casos el tiempo de computacion
no es muy elevado.

También se observa que los tiempos de computacién del algoritmo RRT* con area
variable son mucho mayores que los del RRT* con 4rea fija, e incluso més altos que los del
algoritmo A*, lo que no responde a las propiedades de un algoritmo basado en muestreo.
Este resultado puede deberse a una implementacion poco eficiente de la funcién de reca-
bleado del arbol. Podrian utilizarse técnicas mas avanzadas de busqueda o representacion
de variables para obtener mejores resultados.

A continuacion se realiza una comparacion en profundidad de las dos versiones del
algoritmo RRT*. Se toman los tiempos de computacién de cada uno de las versiones
cuando alcanzan el objetivo (¢) y la ejecucién contintia hasta alcanzar un tiempo de
ejecucién (2t) para observar el comportamiento anytime-optimal del algoritmo RRT*. Se
recogen el nimero de nodos anadidos al arbol y la longitud de la trayectoria obtenida
para cada trayectoria cuando el tiempo transcurrido es ¢, 1.5¢, 1.75t y 2t.

El primer dato a comentar es el del nimero de nodos generado por cada algoritmo.

16

En la Figura [3.5] se muestra el nimero de nodos generado por cada algoritmo en cada
mapa. Para el algoritmo RRT* con éarea fija la diferencia de nodos entre los instantes
t =tija Yyt =2t es de 29798 en el mapa grande, mientras que la diferencia entre los
instantes ¢ = ;5o ¥ t = 2t g5 es de 10108. Este resultado se debe a que a medida que se
anaden mas nodos al arbol, més tiempo se invierte en el recableado del arbol, y menos
en la generacion de nuevos nodos. Para el caso del RRT* con area variable, el drea se
reduce conforme aumenta el nimero de nodos, obteniendo una diferencia de nodos entre
los instantes t = tyariapte Y 1 = typariavie de 38743 en el mapa grande, mientras que la
diferencia entre los instantes t = t,uriapte ¥ t = 2toarianie €8 de 18976. Esto se debe a que el
tiempo de computacion invertido en el recableado se reduce conforme aumenta el tamano

del arbol.

<10 Nodos algoritmos Distancias algoritmos
12 T T 1200 T T
—F— RRT" Fija t —F—RRT* Fijat
itk —— RRT" Fija 2t] =i RRT* Fija 1.5t
RRT* Variable t 1000 [RRT* Fija 1.75t

—— RRT" Variabls 2t == RRT" Fija 2t
] —— RRT* Variable t
RRT” Variable 1.5t
=—f— RRT" Variable 1.75t
——RRT* Variable 21

800

600 [

o

8 a0t
2 1 P

200

Nimero de nodos
Distancia en unidades

Pequerio Mediano Grande Pequerio Mediano Grande
Mapa Mapa

(a) Numero de nodos anadidos al arbol (b) Longitud de las trayectorias obtenidas

Figura 3.5: Resultados de la comparacion de ambas versiones del RRT*

En la Figura también se muestran las longitudes de las trayectorias obtenidas por
cada version del algoritmo en cada mapa. La media de la longitud de la primera trayectoria
generada por el RRT* con drea fija en un tiempo ¢4, en el mapa grande es de 632.4, y
se reduce a 616.9 para un tiempo 2t;;,. Para la versién del RRT* con érea variable la
media de la longitud de la primera trayectoria obtenida en un tiempo t,qriape €8 de 557.4,
y se reduce a 544.9 en un tiempo 2t,4iane- Esta reduccion de la longitud de la trayectoria
no es muy significativa con respecto al coste de computacién asociado. Como se observa
en la Figura[3.4] el RRT* con drea variable ya obtiene una trayectoria muy cercana a la
optima con un tiempo de ejecucion t,q iapie-

En conclusién, la version del algoritmo RRT™* con drea variable obtiene trayectorias
mas cercanas a la 6ptima que la version con area fija, pero su tiempo de ejecucion es mucho
mayor, lo que no compensa esta mejora en la longitud de la trayectoria. Sin embargo,
este resultado puede deberse a una mala implementacién del algoritmo RRT*. Ademads,
eligiendo un area de recableado fija adecuada podemos reducir la longitud de la trayectoria
con unos tiempos de ejecucién bajos.

Capitulo 4

Implementacion en robot real

En este capitulo se muestran los resultados de la implementacién del algoritmo RRT*
en un robot Turtlebot 2 (Figura para comprobar su aplicacién en un entorno real.
La prueba se realiza conectando el planificador implementado en Matlab con el robot real
mediante el software ROS (Robot Operating System) [9] y la Robotics Toolbox de Matlab.

Figura 4.1: Robots modelo Turtlebot 2

4.1. Introduccion a ROS

ROS provee librerias y herramientas para ayudar a los desarrolladores de software a
crear aplicaciones para robots. ROS provee abstraccién de hardware, controladores de
dispositivos, librerias, herramientas de visualizacién, comunicacién por mensajes, admi-

nistracién de paquetes y mas.

La estructura de ROS se muestra en la Figura [£.2] Los conceptos bésicos necesarios
para entender el funcionamiento de esta estructura son:

17

18

s Master T e
- ~
L >~
Advertising Subscription
N

7

/ N\
/ \
! \
Node i Node
Publication Calloack -

Figura 4.2: Estructura de ROS

= Master: proporciona servicios de denominacion y registro al resto de los nodos del
sistema ROS. También se encarga de establecer las conexiones entre los nodos.
El Master es necesario en todo sistema que use ROS, ya que sin él es imposible
establecer una comunicacion entre nodos.

= Nodos: los nodos son los procesos encargados de realizar la computacién. Es muy
comun que en los sistemas que utilizan ROS existan varios nodos, cada uno en-
cargado de una funciéon especifica. Para el caso de un robot mévil, un nodo puede
encargarse del sensor ldser, otro de la odometria, otro de la localizacion, etc.

= Topicos: los topicos son buses mediante los cuales los nodos intercambian informa-
cién. Los nodos pueden suscribirse o publicar a un tépico.

4.2. Implementacion en ROS del algoritmo RRT*

El algoritmo seleccionado para la implementacién en robots reales es el RRT*, debido
a su gran versatilidad, ya que nos permite elegir el tiempo méximo que queremos dedicarle
a la obtencion de una trayectoria. Como se ha explicado en el capitulo anterior, la calidad
de la trayectoria obtenida dependera de dicho tiempo.

Dado que el objetivo de este trabajo de fin de grado es el estudio de algoritmos
de planificacion de trayectorias, para la gestion a bajo nivel de los robots y realizar la
comunicacion con Matlab se utiliza el software existente en el equipo de robdtica. El
trabajo realizado en este TFG ha sido llevar a cabo la comunicacion entre el algoritmo
RRT* y la capa de bajo nivel de los robots.

En la Figura 4.3 se muestra el esquema de la arquitectura necesaria para la implemen-
tacion en un robot.

= AMCL: este nodo se encarga de la localizacion del robot en un mapa previamente
calculado mediante un sensor laser y el algoritmo AMCL (Adaptative Monte Carlo
Localization) y la publica en el tépico amcl_pose.

19

Robot_0
amcl_pose
amcl_0
PC
v ROS
path_follower_0 MATLAB_NODE
-t

Figura 4.3: Implementacion en ROS

= MATLAB_NODE: se suscribe al tépico amcl_pose para obtener la localizacion y la
orientacion del robot, y utiliza esta informacion para realizar la planificacion con el
algoritmo RRT*. La trayectoria obtenida se publica en el topico matlab_path.

= path_follower: se sucribe a matlab_path y obtiene la trayectoria que el robot debe
seguir.

= move_base: usa un planificador local para llevar al robot a los diferentes puntos de
la trayectoria. Debido a este planificador local, en ocasiones el robot no sigue la
trayectoria planificada de forma estricta.

La simulacién del movimiento de los robots se realiza en Stage y RViz. Stage es un
simulador de robots que provee un mundo virtual poblado por robots modviles y sensores,
junto a objetos que los robots pueden detectar y manipular. RViz es un visualizador 3D
para la infraestructura ROS. Para ello ha sido necesaria la adaptacion de los mapas a
Stage y RViz mediante la modificacion de los correspondientes archivos .world y .yaml.

Las simulaciones se realizan para cada uno de los mapas usando tres robots. Utilizando
como base el software comentado anteriormente, se generan trayectorias para cada uno de
ellos mediante el algoritmo RRT*. Estas trayectorias tienen como celda inicial la posicién
del robot, y como celda final una localizaciéon aleatoria del mapa. A continuacién, cada
robot sigue su trayectoria hasta alcanzar la celda final. Cuando uno de los robots alcanza
su destino, se genera una nueva trayectoria y el robot comienza a moverse de nuevo.

4.3. Resultados

La Figura[4.4 muestra los resultados obtenidos para tres robots en los diferentes mapas
en los que se han realizado las pruebas. En las imégenes se muestra la trayectoria asignada
a cada robot.

20

(a) Mapa pequeno (b) Mapa Mediano (c) Mapa Grande

Figura 4.4: Simulaciones en RViz

Los resultados obtenidos demuestran la viabilidad de implementar el planificador en
robots reales, debido a que la comunicacion entre la simulacién y el robot real es transpa-
rente. Las trayectorias obtenidas permiten a los robots alcanzar su destino sin colisionar
con obstaculos y recorriendo la minima distancia posible para el tiempo asignado.

Se observa que los robots tienen problemas de localizacién en el mapa grande, debido
a que existen varias areas del mapa con geometrias similares. Este problema podria so-
lucionarse mediante el ajuste adecuado del algoritmo de localizacion Montecarlo(AMCL)
utilizado.

Como consecuencia de haber realizado pruebas con tres robots en paralelo, pueden
existir colisiones entre los mismos, ya que no se utiliza ningin algoritmo que las evite.

También se observa que el tamano real de los robots es mayor que una celda, por lo
)
que trayectorias viables para un “robot tedrico” con el tamano de una celda pueden no
ser viables para un robot real.

Capitulo 5

Conclusiones

El objetivo principal de este proyecto ha sido estudiar e implementar diferentes algo-
ritmos de planificacion de trayectorias para robots méviles en entornos con obstaculos.
Por un lado, el trabajo ha tenido una parte de estudio tedrico en la que se han analizado
los algoritmos maés utilizados en la literatura (A*, RRT, RRT*). Por otro lado, en base a
un analisis empirico, se ha planteado la validacién del algoritmo RRT* en una plataforma
roboética real.

La implementacién en Matlab de los algoritmos A*, RRT y RRT* ha permitido estu-
diar su comportamiento en diferentes entornos.

El algoritmo A* ha demostrado ser muy eficiente en los mapas pequeno y mediano,
pero su tiempo de computacion es mayor que el de los algoritmos de muestreo, lo que
imposibilita su utilizacién en mapas de grandes dimensiones.

El algoritmo RRT ha presentado unos tiempos de computacién muy bajos en compa-
racién con el algoritmo A*. Sin embargo, devuelve una trayectoria que, por lo general,
estd muy lejos de la 6ptima.

El algoritmo RRT* ha obtenido unos resultados mejores que los del algoritmo RRT,
debido a la optimizacién de la trayectoria que realiza en cada iteracion. Adicionalmente,
el tiempo de computacion elegido por el usuario determina la optimalidad de la solucion
obtenida. Por tanto, eligiendo un tiempo de computacion adecuado podemos obtener una
trayectoria éptima con un tiempo de computaciéon menor que el del algoritmo A*. Se ha
observado que en términos de tiempo de ejecucion es mejor elegir un area de recableado
fija adecuada, lo que devuelve buenos resultados y tiene un tiempo de ejecucién menor que
el de la versién del algoritmo RRT* con un drea de recableado variable. Este resultado,
sin embargo, puede deberse a una mala implementacién de la funcién de recableado del
arbol.

21

Los resultados obtenidos a partir de la implementacién en ROS han demostrado la
viabilidad de utilizar el planificador en robots reales, debido a que la comunicacién entre
la simulacién y los robots reales es transparente. Las trayectorias obtenidas permiten a los
robots alcanzar su destino sin colisionar con obstéculos y recorriendo la minima distancia
posible para el tiempo asignado.

5.1. Lineas de trabajo futuras

Hay varios puntos fuera del alcance de este trabajo, cuyo estudio seria interesante para
mejorar los resultados obtenidos.

Como posible linea de trabajo futura se plantea una mejor implementacién del algo-
ritmo RRT™*, en concreto de la funcién de recableado del drbol.

También se podrian estudiar otros algoritmos de muestreo como el PRM, y realizar
una comparacion con los algoritmos RRT y RRT*.

Otra posible linea de trabajo podria ser mejorar la integracién del planificador con los
robots, e implementar un algoritmo que evite colisiones entre ellos.

Bibliografia

1]
2]

[9]

John Canny. The complezity of robot motion planning. MIT press, 1988.

Rodney A Brooks and Tomas Lozano-Perez. A subdivision algorithm in configuration
space for findpath with rotation. IEEFE Transactions on Systems, Man, and Cyberne-
tics, (2):224-233, 1985.

Steven M LaValle. Rapidly-exploring random trees: A new tool for path planning.
1998.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The international journal of robotics research, 30(7):846-894, 2011.

Davinia Vera Soriano. Planificacion y control con restricciones de formaciones de
robots. 2011 Recuperado el 10 de febrero de 2017, de https://zaguan.unizar.es/
record/647971n=es|

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and
Cybernetics, 4(2):100-107, 1968.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269-271, 1959.

Jack E Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
journal, 4(1):25-30, 1965.

Ros website. http://wiki.ros.org/.

23

https://zaguan.unizar.es/record/6479?ln=es
https://zaguan.unizar.es/record/6479?ln=es
http://wiki.ros.org/

	Índice de figuras
	Introducción
	Motivación y Contexto
	Objetivos
	Alcance
	Estructura de la memoria

	Algoritmos de planificación de trayectorias
	Algoritmo A*
	Algoritmo RRT
	Algoritmo RRT*

	Resultados y discusión
	Diseño del experimento
	Discusión

	Implementación en robot real
	Introducción a ROS
	Implementación en ROS del algoritmo RRT*
	Resultados

	Conclusiones
	Líneas de trabajo futuras

	Bibliografía

