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1. Resumen 
 

 Uno de los grandes retos de la medicina moderna es liberar los medicamentos 

exclusivamente en los lugares donde deben actuar y en cantidades precisas. En este 

sentido, este proyecto de investigación utiliza tornillos ortopédicos macroporosos como 

depósitos liberadores de antibióticos para la prevención de infecciones post-quirúrgicas. 

Tanto en traumatología como en cirugía ortopédica las infecciones, en especial 

las estafilocócicas, representan un grave problema en el periodo postquirúrgico, 

obligando en muchos casos a la retirada de la prótesis infectada y a la posterior 

reimplantación de una nueva. Todo ello implica riesgos para la salud del paciente y un 

elevado coste económico. 

En este trabajo se estudia la utilidad de tornillos ortopédicos macroporosos con 

hueco central relleno de antibiótico que cumplen una función dual. Además de realizar 

una función primaria de estabilización del trauma óseo, producen una liberación local 

de antibiótico en concentración adecuada útil para la prevención de las complicaciones 

infecciosas post quirúrgicas ortopédicas y traumatológicas. Esta segunda función facilita 

la realización de la primera ya que se favorece una adecuada reparación y regeneración 

ósea en condiciones estériles. 

Este trabajo está dividido en dos partes: in vitro e in vivo. En los experimentos in 

vitro se evaluó la cinética de liberación del antibiótico por el tornillo en un fluido 

biológico simulado. En el experimento in vivo se implantaron tornillos de acero 

macroporoso cargados de antibiótico en su interior en la tibia de cinco ovinos adultos. 

Los implantes ortopédicos fueron infectados experimentalmente con concentraciones 

iguales de Staphylococcus aureus tanto para los animales que se implantaron tornillos 

con antibiótico como para el control. Se hizo el seguimiento clínico y microbiológico 

durante el tiempo experimental y posteriormente se procedió a la evaluación post 

mortem de los animales (necropsia, exámenes histopatológico y microbiológico). En el 

experimento in vitro se logró demostrar el control de la farmacocinética del antibiótico a 

través de la estructura y diseño de este dispositivo ortopédico, alcanzándose una 

liberación sostenida por un periodo de siete días. En el experimento in vivo se comprobó 

la eficacia del tornillo como método profiláctico para infecciones post quirúrgicas 

ortopédicas locales en el modelo ovino, ya que los animales tratados exhibieron una 

adecuada cicatrización sin evidencias macroscópicas, microscópicas ni microbiológicas 

de infección, mientras que el animal control sufrió una infección masiva, lo que fue 
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comprobado mediante seguimiento clínico, por los análisis post mortem y 

microbiológicos. 

 

2. Introducción 

 

 A pesar de los avances en la cirugía ortopédica y de la traumatología, tras la 

colocación de una prótesis suelen presentarse algunas complicaciones. El mayor 

problema después de la implantación son las infecciones bacterianas, siendo los agentes 

patógenos más frecuentemente aislados el Staphylococcus aureus y el Staphylococcus 

epidermidis (Crockarell, 1998).  

 Además, el Staphylococcus aureus es capaz de producir slime, componente que 

constituye la matriz de los biofilms bacterianos que se adhieren a la superficie de los 

implantes y protegen a las bacterias frente a los antibióticos y a los macrófagos 

(Costerton et al 1987; Gristina 1994), dando lugar a una infección difícil de erradicar en 

el hueso, las articulaciones y los tejidos circundantes (Gristina 1994; Gracia et al. 1998). 

Además, en la clínica se observa reiteradamente la aparición de resistencias bacterianas 

a los antibióticos ya existentes en el mercado y a los de nueva generación, fenómeno 

especialmente frecuente y grave en el medio hospitalario. 

Actualmente, tras un implante, el antibiótico es aplicado por vía sistémica y por 

vía tópica. Sin embargo, por vía sistémica son necesarias cantidades muy elevadas que 

encarecen la terapia y que pueden producir efectos secundarios y, por vía tópica, no 

penetra el suficiente antibiótico para conseguir la concentración mínima inhibitoria y no 

se propicia la actividad farmacocinética adecuada. La liberación local de este antibiótico 

en la zona de la intervención podría minimizar estos efectos por la reducción de las 

concentraciones sanguíneas de este medicamento (Harwood, 2006; Senneville, 2006). 

 Hoy en día, en la práctica quirúrgica ortopédica y traumatológica, se dispone de 

tratamientos antibióticos locales como son las prótesis cementadas, donde el cemento 

óseo se prepara durante la intervención quirúrgica mezclándole antibiótico 

(generalmente gentamicina o tobramicina), directamente; difundiendo éste a través de 

los defectos o grietas que produce el cemento después de seco (Maia Viola et al. 2009). 

Esta difusión no es controlada y se produce de manera muy rápida. Asimismo, la 

farmacocinética y la farmacodinámica no son conocidas y son difíciles de reproducir, ya 

que los defectos del cemento no son repetitivos. 
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Se han desarrollado diversos sistemas experimentales con la intención de su 

posterior aplicación en la prevención de infecciones post quirúrgicas. Un ejemplo de 

dispositivo suministrador de fármacos experimental son las almohadillas de espuma 

recubiertas con un polímero de poliuretano con compuestos antimicrobianos 

(cerageninas). Se hizo un estudio con veinte ovejas (diez tratadas y diez controles) 

donde no se demostró la eficacia de este tipo de sistemas, ya que los animales tratados 

con antibiótico mostraron signos claros de infección después de transcurrido el tiempo 

experimental (Perry, 2010). Sin embargo, en otro experimento, utilizándose implantes 

de gatifloxacina en fémur de conejos para la prevención de osteomielitis, se demostró 

una buena eficacia del sistema para la prevención de la infección, aunque existían 

desventajas significativas debido a la necesidad de la retirada del implante después de 

terminado el tratamiento (El-Kamel, 2007).  

En el presente proyecto de investigación se utilizarán dispositivos fijos de 

liberación de fármacos, los cuales tienen como función evitar la infección bacteriana 

mediante la liberación de concentraciones locales de antibiótico al menos por encima de 

la concentración mínima inhibitoria (minimum inhibitory concentration, MIC) pero por 

debajo del umbral toxicológico que pudiera causar efectos secundarios indeseados 

(Pérez, 2011). Dicho dispositivo consiste en un cilindro hueco con pared macroporosa 

de acero 316L. El tornillo es similar a los dispositivos de fijación comerciales y pese a 

tener una hoquedad interna, su resistencia mecánica no está comprometida (Pérez, 

2011). El interior del tornillo se rellenará con un antibiótico de elección, el Linezolid® 

liofilizado. El Linezolid® es un antibiótico sintético de acción sistémica y fue el primer 

antibiótico comercializado de las oxazolidinonas. Este antibiótico presenta acción contra 

cocos gram positivos y es utilizado en el tratamiento contra diversas cepas de bacterias 

resistentes y de hecho suele reservarse para el tratamiento de infecciones bacterianas 

graves donde los otros antibióticos han fracasado por haber generado resistencias 

(Szczypa et al, 2001). Es una sustancia que ha demostrado también excelentes 

resultados contra una gran variedad de Staphylococcus aureus resistentes (Cercenado et 

al, 2001). Además en experimentos in vitro realizados por nuestro grupo de 

investigación (Pérez, 2011), se obtuvieron resultados positivos y se observó gran 

sensibilidad de esta bacteria a dicho antibiótico.  

En este trabajo se utilizarán métodos in vitro e in vivo para comprobar la eficacia 

del tornillo de acero macroporoso 316L como liberador de antibióticos. 
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La determinación del perfil de liberación del antibiótico in vitro es muy 

importante en un sistema de administración de moléculas terapéuticamente activas. 

Entender el proceso de liberación de un fármaco ayuda establecer el mecanismo de la 

misma y optimizar su cinética. Para la obtención de este perfil se hacen necesarias 

técnicas ampliamente utilizadas en estudios previos como es el caso de la 

Espectroscopia ultravioleta-visible (UV-Vis). (Kima, 2004; Shaobin, 2009). El 

espectrofotómetro se utiliza extensivamente en laboratorios de química y bioquímica 

para determinar bajas concentraciones de ciertas sustancias, como las trazas de metales 

en aleaciones o la concentración de un medicamento que puede haber llegado a ciertas 

partes del cuerpo. También es una técnica analítica empleada en trabajos que abarcan el 

suministro de moléculas terapéuticamente activas, determinando su liberación desde 

hidrogeles, biopolímeros y sílices mesoporosas (Arruebo, 2011; Shaobin, 2009). La 

técnica de Espectroscopia ultravioleta-visible (UV-Vis) involucra la absorción de 

radiación ultravioleta-visible por una molécula, causando la promoción de un electrón 

de un estado basal a un estado excitado. El espectrofotómetro es un instrumento que 

permite comparar la radiación absorbida o transmitida por una solución que contiene 

una cantidad desconocida de soluto, y una que contiene una cantidad conocida de la 

misma sustancia. A través de la aplicación de Ley de Beer-Lambert, se puede relacionar 

los valores de absorbancia con la concentración en un rango amplio de concentraciones. 

La ley de Beer-Lambert relaciona la intensidad de luz entrante en un medio con la 

intensidad saliente después de que en dicho medio se produzca absorción (Skoog et al, 

2001). 

Sin embargo para estudiar la eficacia del implante como depósito de antibiótico 

se hacen necesarias las pruebas in vivo ya que las condiciones de inflamación local, 

dinámica de líquidos, biocompatibilidad y seguridad del material solo se pueden 

estudiar y pueden ser evaluadas en el modelo in vivo (Pearce et al, 2007). 

Para este trabajo, se eligió el ovino como modelo experimental por estar bien 

establecido en estudios anteriores en el área de implantes ortopédicos (Claes et al, 1997; 

Augat et al, 2001; Pearce et al, 2007). Además el ovino posee características físicas 

idóneas que son fácilmente extrapolables para el hombre, como el tamaño del fémur (la 

cavidad intramedular mide 13mm de diámetro) y el peso corporal ambos valores 

próximos al de un humano adulto (Langlais et al, 2006). Dado que todo proceso 

experimental implica el sacrificio de los animales de la prueba, se decidió adoptar un 

sistema objetivo acerca del momento para realizar la eutanasia basado en el sistema de 
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grados para infecciones en implantes ortopédicos establecido por Checketts (2000), 

Tabla 1. 

 

Tabla 1: Sistema de grados de infecciones en tornillos ortopédicos (Checketts, 2000) 

Grados Apariencia 

1 Piel enrojecida; discreta secreción local 
2 Piel enrojecida; moderada a acentuada secreción en el lugar del implante; dolor y 

sensibilidad en tejidos blandos 
3 El mismo que el grado 2 pero no mejora con el tratamiento con antibióticos 
4 Infección severa incluyendo diversos tornillos; perdida de tornillos 
5 El mismo que el grado 4 pero además afectando huesos 
6 La infección continua mismo con la retirada de los tornillos 

 

Las aplicaciones prácticas del presente proyecto abarcan tanto al campo de la 

medicina humana como al de la veterinaria. En el campo de la medicina humana sus 

aplicaciones podrían ser de gran utilidad y tener una repercusión amplia en muchos 

campos, desde la mejora de la calidad de vida y la temprana recuperación de los 

pacientes hasta el ahorro en la utilización de recursos médicos. Por otro lado, en el 

campo  de la cirugía ortopédica y traumatología veterinaria, y en especial en el campo 

de los pequeños animales y los équidos, se utilizan cada vez con mas asiduidad técnicas 

ortopédicas que aumentan la calidad de vida y la recuperación de los animales (Virgin et 

al, 2011; Jankovits et al, 2011). Dada la particular idiosincrasia de las actuaciones 

veterinarias, no siempre se logra alcanzar la asepsia total y además, la limpieza diaria 

post quirúrgica de la herida no suele ser desempeñada en un ambiente hospitalario. Por 

ello, la validación de un implante óseo liberador de antibiótico in situ como el propuesto 

por este proyecto sería de gran utilidad en la prevención de infecciones. 

  

3. Objetivos  

 

El objetivo de este proyecto de investigación es estudiar el efecto de la 

liberación directa del antibiótico allí donde la terapia es más necesaria, a través de un 

dispositivo implantable que mientras facilita la fijación y reparación de fractura o lesión 

libera al mismo tiempo el fármaco localmente evitando la aparición de infecciones 

secundarias. 
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En este trabajo se utilizarán tornillos ortopédicos, fabricados a partir de acero 

macroporoso, como depósito de antibiótico con el objetivo de controlar la 

farmacocinética del fármaco, intentando lograr concentraciones superiores a la MIC e, 

idealmente, con cinéticas de orden cero, es decir, lineales, alcanzando liberaciones 

sostenibles durante el tiempo, previniendo infecciones post quirúrgicas y permitiendo la 

regeneración ósea aséptica y la consolidación de la fractura. 

 

4. Material y métodos 

 

 El proyecto está dividido en dos partes: experimentos in vitro e in vivo. La parte 

in vitro fue realizada en los laboratorios del Instituto Universitario de Nanociencia de 

Aragón (INA) y la parte in vivo fue ejecutada en las instalaciones y laboratorios del 

Departamento de Patología Animal de la Universidad de Zaragoza (Unizar). 

 

4.1 Experimentos in vitro: Estudio de la liberación de antibiótico por el 

tornillo de acero macroporoso tipo 360L. 

 

En la parte in vitro se estudia y se describe la cinética de liberación del 

antibiótico desde el interior de los tornillos. Esta evaluación se ha realizado mediante 

cuantificación por espectroscopia ultravioleta-visible (UV-Vis) y se determinó la 

liberación en fluido biológico simulado (simulated biological fluid, SBF). 

Se utilizaron tornillos de acero macroporoso inoxidable 316L, que fueron 

adquiridos de MottCorporation® (Farmington, USA), y cuyas dimensiones son: 25,4 

mm de longitud, diámetro exterior de 6,35 mm y 1,6 mm de espesor (Figura 1). Al 

mismo tiempo el tamaño nominal de filtración del acero de la pared era de 200 nm con 

porosidad volumétrica del 17%. En el interior de dichos tornillos fueron introducidos 

95,8 mg de Linezolid® liofilizado. Se valoró la evolución de la liberación del antibiótico 

mediante la inmersión del tornillo así preparado en 100 ml de SBF, en un frasco, 

mantenido a 37 ºC y en constante agitación, simulando el movimiento de la sangre. Las 

variaciones de concentración fueron medidas mediante espectroscopia (UV-Vis) en 

intervalos de tiempo pre determinados, a través de la aplicación de la Ley de Beer-

Lambert utilizando un calibrado inicial previo. Las medidas de absorbancia se 

realizaron a corto intervalo de tiempo al principio de la liberación, por tratarse de un 

proceso inicialmente relativamente rápido, para posteriormente reducir su frecuencia en 
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las etapas más avanzadas de la liberación. Se llevaron a cabo diversas mediciones al día 

por un periodo total de seis días. 

 

 

 

 

 

 

 

Figura 1: Tornillo de acero macroporoso inoxidable 316L. Un extremo está cerrado 

manteniendo el otro extremo abierto y una hoquedad interior. 

 

El diseño del dispositivo en cuestión produce un proceso de liberación que se 

caracteriza por la difusión del fármaco desde el espacio interior y posterior permeación 

del fármaco a través de la pared porosa del dispositivo.  

El SBF fue preparado siguiendo el procedimiento descrito por Horcada (2004) 

según el cual se necesitan las siguientes cantidades de cada compuesto para cada litro de 

solución, (Sigma-Aldrich, Alemania): 

- 7,996 g de cloruro de sodio 

- 0,350 g de hidrogeno carbonato de sodio 

- 0,224 de cloruro de sodio 

- 0,350 g de hidrógeno carbonato de sodio 

- 0,224 g de cloruro de potasio 

- 0,228 g de fosfato de potasio tri-hidratado 

-0,305 g de cloruro de magnesio hexa-hidratado 

- 0,278 g de cloruro de calcio 

- 0,071 g de sulfato de sodio 

- 6,057 g de tris hidroximetilaminoetano 
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4.2. Experimento in vivo: Estudio de la eficacia del tornillo ortopédico como 

liberador de antibiótico frente a la infección experimental 

 

Este proyecto fue sometido a la evaluación de la Comisión ética asesora para la 

experimentación animal de la Unizar y obtuvo un informe favorable para su realización 

(código de referencia PI14/12).  

Para el experimento in vivo se utilizaron cinco ovinos de la raza Rasa 

Aragonesa, cuatro hembras y un macho castrado, obtenidos de una explotación cercana 

a Zaragoza. Los animales fueron alojados en los boxes de la sección de équidos del  

Hospital Clínico Veterinario de la Facultad de Veterinaria. 

Se realizó un único experimento donde se colocaron implantes metálicos en el 

tercio medial de la cara interna de la tibia de los 5 animales (Figura 2). Las variables 

objeto de estudio fueron: i) implantes percutáneos fabricados con acero poroso con y sin 

el antibiótico Linezolid, ii) infección experimental percutánea por Staphylococcus 

aureus, cepa ATCC 6538. 

 

 
Figura 2: Esquema del implante metálico en el tercio medial de la cara interna de la 

tibia derecha en una oveja 

 

Se formaron dos grupos de experimentación. El grupo A (n=4, animales 

identificados como A1, A2, A3 y A4), grupo en el que los animales recibieron un 

implante con antibiótico en su interior y fueron infectados experimentalmente (ver 
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metodología más adelante). Este grupo se creó para evaluar la eficacia del implante en 

su papel como depósito de antibiótico y como elemento preventivo frente a la infección 

y la formación del biofilm bacteriano en el implante ya que la cepa empleada es 

formadora de biofilm. Se eligió una cepa formadora de biofilm para enfrentarse a uno 

de los escenarios clínicos de infección más complejos. 

El grupo B (n=1, animal identificado como B1) fue el grupo control. El animal 

recibió un implante sin antibiótico en su interior y fue infectado experimentalmente (ver 

metodología más adelante). 

 

4.2.1 Procedimiento quirúrgico e infección experimental local 

 

Los tornillos ortopédicos fueron esterilizados y rellenados posteriormente con 

120 mg de Linezolid® liofilizado comercial en campana de flujo laminar (Figura 3).  

 

 

 

 

 

 

 

 

 

 

Figura 3: Tornillo en el momento de ser cargado con Linezolid® en condiciones estériles 

 

Las intervenciones quirúrgicas se llevaron a cabo en el quirófano del Hospital 

Clínico Veterinario de la Universidad de Zaragoza. Los procedimientos se efectuaron 

bajo anestesia general: en primer lugar se realizó inducción anestésica con combinación 

de xilacina (0,3mg/kg IM) y ketamina (15mg/kg IM) seguido de mantenimiento 

anestésico con isoflurano mediante intubación endotraqueal. 

Los implantes se colocaron en la cara interna, tercio medial de la tibia derecha. 

Tras la incisión de la piel y subcutáneo y la elevación de periostio se efectuó un orificio 

de 6 mm de diámetro y 1 cm de profundidad en la cortical con equipos motorizados de 

traumatología. En ambos grupos se permitió que el implante sobresaliera hacia el 
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exterior, por lo que no se suturaron todos los planos y no se pudo suturar la piel 

completamente. 

Acto seguido, utilizando hisopos estériles, se tomaron muestras del tejido 

adyacente al tornillo con el objetivo de determinar la microbiota inicial (microbiota 

cero) de la región. Esta actuación se hizo inmediatamente antes de la infección 

experimental. 

Una vez concluido el procedimiento quirúrgico, los implantes ortopédicos 

fueron infectados experimentalmente usando una dosis de 5,5.108 UFC/ml de 

Staphylococcus aureus cepa ATCC6538, en un volumen de 100 µl/tornillo. Esta dosis 

se depositó directamente en la herida que rodeaba el implante metálico, tal como se 

observa en la Figura 2. 

 

 

 

 

 

 

 

 

 

 

 
Figura 4: Dosis infectante (flecha) depositada alrededor del implante transcutáneo. 

Obsérvese como el volumen de la dosis cubre completamente la periferia del tornillo 

 

Se realizó un examen radiológico para evaluación de la localización de los 

implantes y se obtuvo muestra de sangre en EDTA para hemograma completo de los 

animales. 

La zona quirúrgica fue convenientemente protegida con un vendaje de tipo 

medio Robert-Jones de la extremidad. Salvo en el acto intencionado de infectar los 

implantes de ambos los grupos, el resto de los actos quirúrgicos se llevaron a cabo 

respetando estrictas medidas de asepsia. 
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4.2.2. Seguimiento de los animales. 

 

Los animales se sometieron a chequeos diarios para observar la evolución de la 

herida y detectar y controlar cualquier alteración inflamatoria local o sistémica. Se 

administró antibiótico sistémico inyectable (Penicilina 1000UI/kg SID) durante 5 días 

mimetizando las condiciones usuales a las que se someten todos los pacientes 

ortopédicos tras cirugía.  

Se estableció que el animal sería eutanasiado si presentara estadio grado II de 

infección local (ver Tabla 1), es decir, si presentara piel enrojecida, moderada a 

acentuada secreción en el lugar del implante, junto con dolor y sensibilidad en tejidos 

blandos (Checketts 2000). El animal también se sacrificaría si presentara síntomas de 

grado I (piel enrojecida y discreta secreción local) combinados con uno de los siguientes 

síntomas: anorexia, hipodipsia, letargia, cojeras, dolor y sensibilidad en el lugar del 

implante. 

Se llevó a cabo el seguimiento de los animales con examen físico general, con 

especial atención a la temperatura corpórea del animal, evolución de la herida 

quirúrgica, evolución radiológica del implante y análisis sanguíneos. 

Dos animales (A1 y A2) se sacrificaron mediante sobredosis barbitúrica en el 

séptimo día post infección (dpi) y los tres restantes (animales A3 y A4 y el animal 

control B1) fueron sacrificados en el noveno dpi. Se llevó a cabo un detallado examen 

macroscópico de la herida quirúrgica y se tomaron muestras tisulares para estudios 

histopatológicos con especial atención a los tejidos adyacentes al tornillo (piel, tejido 

subcutáneo, periostio y hueso).  

Para estudios microbiológicos, se realizó toma de muestras del tejido adyacente 

al tornillo por medio de hisopos. Se hicieron cultivos directos de los hisopos en placas 

de agar sangre y Macconkey 3 tanto en atmósferas aeróbica como anaeróbica. Se realizó 

así mismo enriquecimiento de las muestras en medio TSB (Tryptone soya broth) a 37ºC 

durante 24 horas tras lo que se resembró en placas de agar sangre. El cultivo se llevó a 

cabo en un laboratorio externo especializado en microbiología. 

 

5. Resultados 

 

5.1. Experimento in vitro: Estudio de liberación del antibiótico por el 

tornillo de acero macroporoso 
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 Se construyó una curva de calibración del Linezolid® a partir de soluciones de 

concentración conocida del fármaco en el SBF y se obtuvo la absorbancia 

correspondiente a las distintas concentraciones (Figura 5). 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 5: Curva de calibración del antibiótico Linezolid® 

 

A partir de la ecuación de la recta obtenida fue posible relacionar los valores de 

absorbancia con la concentración del antibiótico en el SBF y la cantidad en mg liberada 

por el tornillo. En la Tabla 2, se detalla la concentración de antibiótico liberado durante 

la primera semana de estudio. 

 

Tabla 2: Cinética de liberación de la cantidad de Linezolid® liberada por día 

Tiempo de liberación del 
fármaco (días) 

Cantidad liberada (mg) 

1 18,10331 
2 34,85124 
3 54,47521 
4 71,20248 
5 83,95455 
6 85,57438 

 

Se relacionó la concentración del antibiótico liberado en mg/ml con el porcentaje 

de fármaco liberado por el dispositivo respecto de la cantidad cargada inicial. Se 

construyó una curva de este porcentaje frente al tiempo de liberación (Figura 6). 
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Figura 6: Cinética de liberación del Linezolid® por el tornillo de acero macroporoso en medio 

SBF 

 

5.2 Experimento in vivo: Estudio de la eficacia del tornillo ortopédico como 

liberador de antibiótico frente a la infección experimental 

 

 Los análisis sanguíneos y los exámenes radiológicos realizados posteriormente a 

la cirugía e infección experimental local no presentaron alteraciones dignas de mención. 

Se comprobó que en los cinco animales, los tornillos estaban localizados en la región 

adecuada, es decir, ocupaban el periostio, hueso compacto y cavidad medular pero que 

respetaban los límites de la cara contralateral del hueso (Figura 7). 

 

 

 

 

 

 

 
Figura 7: Radiografía lateral de la tibia derecha del animal A4.Se observa la correcta inserción 

del tonillo de características marcadamente radiopacas (flecha) 

 

5.2.1. Seguimiento de los animales 

 

Ninguno de los animales del grupo A (con antibiótico) presentó fiebre o 

alteraciones en los parámetros del examen físico (frecuencia cardiaca, respiratoria y 
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coloración de mucosas) durante todo el tiempo que duró el experimento (siete o nueve 

días). 

El animal del grupo B (sin antibiótico) presentó fiebre ligera de T = 39,8ºC en el 

cuarto, quinto y sexto días experimentales. No presento otros parámetros alterados. 

Tanto los animales del grupo A como el animal del grupo B no presentaron 

alteraciones en la analítica sanguínea durante el tiempo experimental. 

Por lo que respecta a la evolución de la herida quirúrgica, todos los animales del 

grupo A presentaron cicatrización por primera intención normal, observándose perfecta 

hemostasia, ausencia de infección macroscópica de la herida y acercamiento máximo de 

los bordes quirúrgicos al tornillo. En los primeros días experimentales, en todos los 

animales, se pudo detectar discreto a moderado exudado seroso y discreto aumento de la 

temperatura local, sin embargo en el quinto día experimental ya se había formado 

adecuadamente la costra alrededor del tornillo y cerca de los puntos quirúrgicos (Figura 

8). En todo el seguimiento no hubo alteración del olor de las heridas ni se observaron 

alteraciones radiológicas para los animales de este grupo A (sin antibiótico)  

El animal del grupo B exhibió, por el contrario, aumento de temperatura local en 

la región de la herida quirúrgica durante toda la duración del experimento. Este aumento 

fue evaluado a través de palpación de la herida. El tejido alrededor del tornillo y cercano 

a los puntos quirúrgicos presentaba fenómenos vasculares intensos, que se traducían en 

un color rojizo, y mostraba exudado de sero-purulento a purulento especialmente 

después del cuarto día experimental. El tejido adyacente al tornillo no se adhirió a la 

superficie del acero (Figura 9). La herida quirúrgica tenía mal olor a partir del cuarto día 

experimental. No se observaron alteraciones radiológicas durante el tiempo 

experimental. 
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Figura 8: Herida quirúrgica del animal A3, 5dpi. Obsérvese la cicatrización por primera 

intención y la ausencia de alteraciones inflamatorias 

 

 

 

 

 

 

 

 

 

 

 

Figura 9: Herida quirúrgica del animal B1, 5dpi. Se observa exudado sero-purulento, pequeños 

focos hemorrágicos y la falta de adherencia del tejido adyacente al tornillo (flecha) 

 

5.2.2. Necropsia 

 

Se procedió la necropsia de los animales A1 y A2 en el 7 dpi y los A3, A4, B1 y 

C en el 9 dpi. 

Los animales sacrificados en el 7 dpi no tenían secreciones o señales de 

infección en la herida quirúrgica. Los tornillos estaban bien encajados y parcialmente 

adheridos al subcutáneo, periostio y hueso compacto (Figura 10). Ninguno exhibía 
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todavía el proceso completo de cicatrización en la piel alrededor del tornillo, y se 

observaba formación parcial de la costra serosa (Figura 11). 

 

 

 

 

 

 

 

 

 

 
 

Figura 10: Imagen macroscópica del tejido subcutáneo de la herida quirúrgica del animal A1. 

Se observa la correcta inserción del tornillo en el hueso, sin reacción ósea o de los tejidos 

adyacentes 

 

 

 

 

 

 

 

 

 
 

 

 

Figura 11: Imagen macroscópica superficial de la herida quirúrgica del animal A2, 7 dpi. No 

hay señales de infección y hay formación parcial de la costra serosa 

 

Los otros tres animales sacrificados en el noveno día presentaron distintas 

lesiones macroscópicas, de acuerdo con su grupo experimental.  
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Los animales A3 y A4 exhibieron adecuada cicatrización en todo el tejido 

alrededor del tornillo y cerca de los puntos quirúrgicos, con formación de costra sero-

celular parcialmente remodelada. Los tornillos estaban bien encajados y adheridos a 

todas las capas (piel, subcutáneo, periostio y hueso compacto). No había señales de 

infección tales como secreciones o mal olor de la herida (Figura 12).  

 El animal B1 tenía gran cantidad de secreción purulenta especialmente en la 

región alrededor del tornillo. El tejido circundante al tornillo estaba marcadamente 

friable y de color oscuro, imagen que era compatible con necrosis tisular. No había 

adherencia de este tejido al tornillo. El tejido conjuntivo, la musculatura subcutánea y el 

periostio exhibieron diversos focos hemorrágicos, multifocales a coalescentes, marcado 

reblandecimiento tisular compatible también con necrosis y oscurecimiento de la región 

cercana al tornillo (Figuras 13 y 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 12: Herida quirúrgica del animal A3, 9dpi. Se observa adecuada cicatrización del tejido 

alrededor del tornillo y cerca de los puntos quirúrgicos, con formación de costra sero-celular 

parcialmente remodelada 
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Figura 13: Imagen macroscópica de la herida quirúrgica del animal B1. Se observa gran 

cantidad de secreción purulenta especialmente en la región alrededor del tornillo. No hay 

adherencia entre la piel y el tornillo y hay desgarro de los puntos quirúrgicos y de focos de la 

piel cercana al tornillo 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 14: Imagen macroscópica de la herida quirúrgica del animal B1. El tejido conjuntivo, la 

musculatura subcutánea y el periostio exhiben severa hemorragia y  oscurecimiento de la región 

cercana al tornillo, lesión compatible con necrosis 

 

 Ningún animal presentó otras lesiones macroscópicas dignas de mención en la 

necropsia 
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5.2.3. Histopatología 

 El análisis microscópico de los todos animales del grupo A reveló lesiones 

histopatológicas muy similares, compatibles con un proceso cicatricial normal, que se 

describen de manera global a continuación: 

 El tejido conjuntivo subcutáneo superficial y profundo de la región contigua al 

tornillo implantado mostró marcada fibroplasia, estando las fibras de tejido colágeno y 

los vasos sanguíneos dispuestos paralelamente. El componente celular predominante 

fueron los fibroblastos, que mostraban núcleos ovalados hipercromáticos y un 

citoplasma fusiforme eosinofílico con bordes poco definidos. Se observaron pequeñas 

cantidades de linfocitos y plasmocitos distribuidos multifocalmente. La 

neovascularización, de tipo multifocal, fue muy evidente. Se observaron focos de 

calcificación en la región limítrofe al implante. La epidermis presentó discreta acantosis 

regular difusa y se observaron áreas donde se habían formado costras de pequeño 

tamaño. (Figura 15).  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 15: Región tisular anexa al tornillo implantado en los animales del grupo A. (A) Animal 
A2 – Fibroplasia  severa pero de características histológicas normales  (flecha) H&E 4x; (B) 
Animal A3 – Fibras  de tejido colágeno y vasos sanguíneos dispuestos paralelamente, 
característico de un proceso cicatricial normal H&E 10x; (C) Animal A1 – Foco de 
calcificación en la región cercana al implante H&E 20x; (D) Animal A3 – Gran cantidad de 
fibroblastos dispuestos en bandas y grupos ordenados, características de un proceso cicatricial 
normal H&E 20x 
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El examen histopatológico del animal del B1 reveló un proceso cicatricial 

profundamente alterado en sus características normales, acompañado de inflamación 

severa aguda. Se observó formación de tejido colágeno cicatricial poco organizado, 

estando las fibras dispuestas multidireccionalmente y entremezcladas con material 

eosinofílico amorfo y con gran cantidad de células inflamatorias, principalmente 

neutrófilos (tanto íntegros como degenerados) junto con macrófagos, y en menor 

cantidad, linfocitos y plasmocitos. Se observaron múltiples focos de hemorragias y 

necrosis. (Figura 15). La región contigua al implante exhibió gran cantidad de material 

eosinofilico amorfo y diversos grupos  de bacterias cocoides marcadamente basofilicas 

delimitadas por una pseudocápsula. Estas colonias bacterias fueron positivas a la 

coloración histoquímica de Gram (Figura 16). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 15: Región tisular anexa al tornillo implantado en el animal B1. (A) Tejido colágeno 
poco organizado entremezclado con material eosinofílico amorfo y gran cantidad de células 
inflamatorias H&E 10x; (B) Detalle del infiltrado inflamatorio. Se observa la predominancia 
neutrofílica H&E 40x; (C) Áreas de hemorragias y necrosis, imagen de un proceso cicatricial 
alterado H&E 10x; (D) Gran cantidad de material eosinofilico amorfo (necrótico) y diversos 
agrupados de bacterias cocoides observables como puntos de color azul intenso (flecha) H&E 
20x 
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Figura 16: (A) Agrupados  de bacterias cocoides basofílicas delimitadas por una pseudocapsula 
H&E 40x; (B) Estas colonias bacterianas son gram positivas (marcación en negro) Gram 40x 
 

5.2.4. Microbiología 
 
 Los resultados de los exámenes microbiológicos tanto de la microbiota cero 

como del día de sacrificio están detallados en la Tabla 3.  

 

Tabla 3: Resultados microbiológicos de muestras de la herida quirúrgica antes de la 
infección (microbiota cero) y en día del sacrificio 
 

Animal Microbiota Cero Día del Sacrificio 
7 dpi 9 dpi 

A1 Sin crecimiento Sin crecimiento - 
A2 Sin crecimiento Sin crecimiento - 
A3 Staphylococcus aureus* 

/Staphylococcus pyogenes* - Sin crecimiento 
A4 Sin crecimiento - Sin crecimiento 
B1 Sin crecimiento - Staphylococcus coagulasa 

negativa # / Alcaligenes ¥ 
* Se observan solo unas pocas colonias 
# Cultivo masivo 
¥ Se observa un número elevado de colonias 
 
 
6. Discusión  
 
 

Los resultados del experimento in vitro indicaron que el implante ortopédico 

libera casi 70% del antibiótico en los primeros cuatro días en el medio SBF. Sin 

embargo es importante resaltar que el dispositivo permite una liberación continuada 

durante una semana en el medio SBF. Extrapolándose de manera hipotética este 

resultado para la aplicación del tornillo in vivo, este periodo de tiempo es precisamente 

el periodo crítico donde se infectan los implantes metálicos en las cirugías ortopédicas 

(Edwards, 2008), siendo el periodo diana para la aplicación de métodos preventivos, ya 
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que después de instalada la infección, la erradicación de la misma es difícil 

principalmente cuando el agente implicado es productor de biofilm (Perry, 1992). 

 La liberación in vitro del Linezolid® fue mantenida por una semana, lo que 

representa un periodo adecuado de tratamiento local profiláctico (Trampuz, 2006). La 

administración local de este fármaco permite además la asociación con antibioterapias 

preventivas sistémicas pero que, en este caso, es posible administrarlas a dosis menores, 

con escasas posibilidades de efectos secundarios indeseados. 

 Por otra parte, la estructura de acero 316L macroporoso de la pared del tornillo 

permitió una liberación relativamente sostenida en el tiempo. Probablemente eso es 

debido a que el antibiótico liofilizado contenido en su interior tiene que en primer lugar 

ser mojado y disuelto por los fluidos corporales y posteriormente permear a través de la 

pared del dispositivo, impidiendo una liberación de gran cantidad del fármaco en un 

corto espacio de tiempo. Además este suministro de liberación local y específica 

garantiza que el fármaco sea liberado en el lugar requerido. 

 Además, el diseño de este tornillo, al ser una estructura cilíndrica hueca, permite 

su utilización con otros materiales en su interior, que podrían optimizar el control de la 

liberación del antibiótico. De esta forma se podrían combinar materiales mesoporosos o 

biodegradables conteniendo el antibiótico. Estos materiales están siendo estudiados por 

diversos grupos de investigación como liberadores de moléculas terapéuticamente 

activas (Arruebo et al, 2011; Shaobin et al, 2009; Sahoo et al, 2003). 

 Sin embargo los experimentos in vitro son insuficientes para comprobar la 

eficiencia del implante en diversos aspectos. Era necesario comprobar las bondades de 

la asociación de estos materiales en un modelo animal.  

 En el modelo ovino, el dispositivo ortopédico demostró su actividad como 

barrera a la infección experimental producida por el Staphylococcus aureus ATCC6538 

ya que los hallazgos macroscópicos y microscópicos de los animales del grupo A, que 

poseían el antibiótico en el interior del tornillo, fueron compatibles con una 

cicatrización normal de tejidos blandos, sin señal de infección bacteriana. Sin embargo 

el animal B1 presentó proceso inflamatorio moderado a severo evidente en la herida 

quirúrgica durante todo el periodo experimental. Las lesiones macroscópicas y 

microscópicas en este animal son características de infección bacteriana debido a la 

secreción purulenta, la necrosis y las hemorragias observadas en el estudio 

macroscópico y el infiltrado inflamatorio neutrofílico severo asociado a presencia de 

colonias bacterianas en el examen histopatológico. 



25 
 

 Cabe destacar que uno de los animales del grupo A, el A3, demostró tener una 

contaminación bacteriana trans quirúrgica natural, como indican los resultados de la 

microbiota cero (crecimiento de Staphylococcus aureus / Staphylococcus pyogenes), 

además de la infección experimental postquirúrgica. Es destacable que el dispositivo 

logró controlar ambos desafíos microbiológicos, tanto pre como postquirúrgicos. 

 En el animal control (B1), sacrificado a los 9 dpi, se observó un crecimiento 

masivo bacteriano en esa fecha. Sin embargo, el resultado microbiológico indicó el 

crecimiento de dos bacterias distintas a la utilizada en la infección experimental 

(Staphylococcus coagulasa negativa / Alcaligenes). Dado que la microbiota cero fue 

realizada justo después de la colocación del implante y en el momento anterior a la 

infección experimental, es posible afirmar que el animal control no sufrió una 

contaminación trans quirúrgica y que su primer desafío microbiológico fue la propia 

infección experimental. Se proponen algunas hipótesis para este suceso. La cepa 

experimental de S. aureus podría haber proliferado inicialmente, produciendo lesión 

tisular y originando un proceso inflamatorio en la región donde se implantó el tornillo. 

Este proceso inflamatorio permitió la invasión y proliferación de otras bacterias que se 

encontraban en el ambiente hospitalario. Estas bacterias se tornaron predominantes en el 

microambiente, por competencia, sustituyendo a la infección instaurada por la cepa 

experimental. Se han descrito diversas formas de competencia entre bacterias, por 

ejemplo mediante producción de sustancias, incluso con actividad antibiótica, que 

inhiben el crecimiento de las demás, como es el caso del Streptococcus pneumoniae, 

que produce agua oxigenada inhibiendo el crecimiento de otras bacterias (Haemophilus 

influenzae, Neisseria meningitidis, Moraxella catarrhalis, y Staphylococcus aureus) del 

tracto respiratorio superior en el hombre (Park, 2008). Otra posibilidad sería que la cepa 

experimental de Staphylococcus aureus hubiese tenido una multiplicación muy rápida 

inicialmente, agotando los substratos necesarios y cambiando su ambiente de 

proliferación ideal. De esta forma otras bacterias del ambiente hospitalario, con sustrato 

y microambiente ideales distintos proliferaron a continuación. Un ejemplo de como 

interfieren los substratos disponibles en la multiplicación bacteriana es la disponibilidad 

de hierro en el microambiente, que puede determinar el crecimiento de un tipo 

bacteriano en detrimento de  otro (Hibbing, 2010). 

De cualquier manera, los presentes experimentos logran demostrar la efectividad 

del dispositivo ortopédico como liberador de antibiótico, alcanzando controlar y al 

mismo tiempo que el antibiótico liberado localmente evitase la aparición de infecciones 
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en el modelo ovino. Se plantea llevar a cabo en un futuro próximo un mayor número de 

experimentos para corroborar dichas hipótesis llevando a cabo cultivos bacterianos a lo 

largod e todos los experimentos para cuantificar la proliferación bacteriana a lo largo 

del tiempo tras la infección y para determinar la presencia de otros microorganismos. 

 

7. Conclusiones 

 

1) La combinación de antibiótico idóneo y un material adecuado para su liberación 

(tornillo macroporoso) ha demostrado su efectividad en el control de la infección 

bacteriana por Staphylococcus aureus, tanto in vitro como in vivo. 

2) El acero macroporoso logra controlar la farmacocinética del antibiótico tanto in vitro 

como in vivo. 

3) El acero macroporoso evita la aparición de infecciones in vivo, al menos durante 9 

días post infección. 

4) Son necesarios más estudios que profundicen en este modelo para perfeccionarlo y 

poder aplicarlo a casos reales, tanto humanos como veterinarios. 
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