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RESUMEN 

El objetivo del trabajo consiste en la realización de un análisis frente a cargas de una estructura 

mixta en hormigón armado. Dicha estructura se diseña con la finalidad de ser empleada como 

feria de muestras. Por ello, está dotada de una gran superficie diáfana, un diseño innovador y 

un lucernario que proporciona originalidad y luminosidad al conjunto. 

Los materiales empleados en el diseño de la estructura son Hormigón C30/37 armado con 

barras de Acero B-500-S, Acero S 275 en las vigas presentes en la estructura y vidrio reforzado 

químicamente para los ventanales y el lucernario. 

 

El estudio se realiza mediante el programa de análisis estructural por elementos finitos RFEM. 

Tras analizar el modelo, se estudian los resultados obtenidos y se comprueba la validez de la 

estructura frente a distintas hipótesis de carga. Tras ello, se procede al dimensionado de la 

armadura de la losa suspendida y del cuerpo de la estructura. 

Una vez comprobada la validez de los resultados y dimensionadas ambas armaduras se 

procede al diseño de la cimentación de la estructura. Se propone una zapata corrida bajo muro 

y se comprueba la validez de las dimensiones propuestas. Por último, se calcula la armadura 

necesaria en dicha zapata para concluir una correcta cimentación. 

 

Todo el proyecto se realiza conforme a los correspondientes apartados del Código Técnico de 

la Edificación y al correspondiente apartado de la Instrucción de Hormigón Estructural (EHE 08) 

para el diseño de las armaduras. 

Finalmente, en el Anexo l. Resultados estudios ELS y ELU se recogen todos los resultados 

obtenidos bajo las distintas hipótesis de carga. En el Anexo II. Uniones metálicas, se describe 

brevemente la cimentación perdida de la losa suspendida y se recogen las uniones metálicas 

presentes en el conjunto. 
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1. Introducción 
 

La estructura objeto de estudio está destinada al uso como feria de muestras. En las ferias 

de muestras principalmente se realizan actividades de exposición y demostraciones de distintos 

sectores. Para que la estructura cumpla perfectamente con su función, se han tratado de 

recoger las principales características y se han integrado en el diseño de la misma. 

 

En muchas ocasiones las ferias de muestras disponen stands, por lo que se presta especial 

atención al espacio disponible y a sus posibles distribuciones. Se requiere una gran superficie 

útil, y que el espacio disponible sea amplio y diáfano para no limitar las posibilidades de la 

estructura. 

Entre las características principales de dichos espacios, se encuentra la necesidad de facilitar el 

acceso al recinto, dado que prevé la entrada de gran cantidad de personas. 

Un aspecto característico es el aprovechamiento de la luz natural mediante grandes ventanales 

o lucernarios que disminuyan el consumo eléctrico, y proporcionen mayor sensación de 

amplitud. 

En las diversas tipologías de ferias de muestras se trata de dotar a las estructuras de mayor 

exclusividad mediante diseños innovadores y originales, que provoquen un mayor atractivo 

estético. En ese aspecto destacan los diseños de la Feria de Valencia o el Palacio de Ferias y 

Congresos de Málaga (FYCMA). 

 

Se concluye un diseño de la estructura que presenta un gran espacio diáfano para 

permitir la disposición de stands o maquinaria. Además, dicho espacio presenta gran altura, lo 

que evita limitaciones. Presenta varias entradas, disminuyendo así la formación de 

aglomeraciones en sus instalaciones de acceso. Por último, se han añadido seis ventanales de 

grandes dimensiones y un lucernario que permiten la entrada de luz natural al recinto.  

Se ha tratado de conseguir un diseño original y novedoso para aumentar el atractivo 

estético de la estructura, tal y como puede verse en la Ilustración 1. 

 

 

 

 

 

 

 

 

 
Ilustración 1. Modelo en RFEM de la estructura a analizar. 



3 
 

2. Descripción de la estructura 
 

Se han descrito de forma general las características de la estructura. A continuación se 

describe la geometría y las características constructivas más destacadas: 

 

2.1. Dimensiones geométricas 
 

Las dimensiones geométricas de la estructura se adaptan a la funcionalidad de la misma. 

Se dispone de una gran superficie útil y de varios accesos para evitar aglomeraciones. Se facilita 

la entrada de luz natural mediante seis grandes ventanales, y un lucernario central. Dicho 

lucernario dota de gran luminosidad a la losa en suspensión.  

Las dimensiones geométricas de la estructura son: 

 

 El cuerpo de la estructura está formado por un segmento esférico.  

Sus dimensiones son las descritas en la Tabla 1: 

 

 

 

 

 

El cuerpo de la estructura presenta seis ventanales dispuestos de forma simétrica como 

puede apreciarse en la Ilustración 2. Sus dimensiones son 7,5 metros de ancho y 9 metros de 

altura. 

 

 

 

 

 

 

 

 

 

 

Radio superior 10 m 

Radio inferior 30 m 

Radio esfera cuerpo 37,5 m 

Altura segmento cuerpo 13,64  m 

Superficie útil Π · 302 = 2.827,43 m2 

Ilustración 2. Esquema de la distribución de los ventanales realizado en AutoCAD. 

Tabla 1. Dimensiones geométricas del cuerpo. 
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Se han dispuesto seis entradas con simetría axial para facilitar el acceso al recinto 

[Ilustración 3]. Estas se sitúan intercaladas con los ventanales anteriormente descritos 

[Ilustración 4].  

Las entradas presentan geometría semicilíndrica con un radio de 5 m y una longitud de 13 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 El lucernario presenta una geometría de casquete esférico truncado por la parte inferior 

[Ilustración 5-6]. Sus dimensiones geométricas quedan recogidas en la Tabla 2. 

 

 

 

 

 

 

 

 

 

 

Radio inferior 10 m 

Radio esfera lucernario 12,5 m 

Altura casquete lucernario 5  m 

Z X

Y

En dirección Z

Ilustración 3. Vista en planta del modelo utilizado en RFEM. 

Tabla 2. Dimensiones geométricas del lucernario. 

Z

X Y

En dirección X

Ilustración 5. Vista en dirección X del modelo utilizado en RFEM. 

Z

X

Y

Isométrico

Ilustración 4. Detalle de entradas y ventanas. 
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 La losa central se encuentra suspendida mediante vigas al cuerpo principal de la 

estructura. Sus dimensiones principales son [Tabla 3]:  

 

 

 

Se concluye una superficie útil de 2.827,43 m2 en la planta baja y una superficie de 

301,59 m2 en la losa suspendida. Esto permite gran variedad de distribuciones en la planta calle, 

dado que al disponer de un espacio diáfano se dota a la estructura de gran flexibilidad.  

En la losa suspendida se dispone de menor superficie útil, por lo que se plantea un uso 

enfocado a zona de descanso o cafetería para los visitantes. El área de descanso, o cafetería, 

presenta además mayor atractivo estético debido a la entrada de luz natural por el lucernario, y 

las vistas de la planta baja. El diámetro interior de la losa permite la posterior instalación de un 

ascensor que facilite el acceso al público a dicha zona.  

La losa se encuentra suspendida a una altura de 8,64 metros respecto al suelo mediante 

vigas de acero. Se han colocado 12 vigas, con una longitud de 5 metros, que sustentan la losa 

desde el cuerpo. Además, se han dispuesto 6 vigas que actúan de sujeción de la losa desde el 

lucernario que presentan una longitud de 9,825 metros [Ilustración 7]. 

 

 

 

 

 

 

 

 

Radio exterior 10 m 

Radio interior 2 m 

Longitud de las vigas que sustentan la losa 5 m 

Tabla 3. Dimensiones geométricas de la losa. 

Perspectiva

Ilustración 7. Corte de la losa suspendida del modelo. 

Isométrico

Ilustración 6. Vista en detalle del lucernario del modelo. 
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La localidad elegida para situar la estructura es Zaragoza. Para la determinación de las 

cargas consideradas en el análisis se ha tenido en cuenta la altitud de Zaragoza, de 208 msnm 

[1]. 

En cuanto a las soluciones estructurales dadas, se ha propuesto una cimentación 

perdida en la losa suspendida. Dicha cimentación perdida se combina mediante uniones 

metálicas con vigas embebidas en la losa que garantizarán la estabilidad del conjunto [Ilustración 

8]. 

Las vigas embebidas cuentan con barras de acero corrugado perpendiculares que ayudarán a 

mantener la unidad del conjunto. Dichas vigas van atornilladas mediante uniones descritas con 

mayor profundidad en el Anexo ll. Uniones metálicas. 

 

 

 

 

 

 

 

 

 

El resto de uniones metálicas presentes en la estructura se describen en el Anexo ll. 

Uniones metálicas. Todas ellas son de carácter metálico, y consisten en uniones atornilladas 

mediante la soldadura de placas que permitan unir sólidamente las vigas que sustentan la 

estructura [Ilustración 9-10]. 

Ilustración 8. Detalles de la cimentación perdida propuesta en la losa suspendida realizados en AutoCAD. 

Ilustración 9. Detalles de las uniones metálicas presentes en la estructura. 
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Ilustración 10. Detalles de las uniones metálicas presentes en la estructura. 
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2.2. Materiales 
 

La estructura está compuesta por hormigón y acero. Además, se ha utilizado vidrio en 

las zonas de ventanales y lucernario, para dotar la estancia de luz natural. 

 

Para el cuerpo de la estructura, y la losa suspendida, se ha empleado Hormigón C30/37, 

capaz de resistir los esfuerzos que le serán transmitidos cuando la estructura se encuentre en 

uso. 

Las vigas empleadas en los ventanales, el lucernario, y en la sujeción de la losa 

suspendida, son de Acero S 275. Dicho acero se ajusta a las solicitaciones de la estructura y 

actuará de elemento de sujeción una vez colocado gracias a las uniones descritas en el Anexo II. 

Uniones metálicas. 

En el lucernario, y los ventanales, se ha utilizado Vidrio reforzado químicamente. 
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3. Modelo de cálculo 
 

Para el estudio de la estructura descrita se ha utilizado el programa RFEM de análisis 

estructural por elementos finitos. 

 

3.1. Geometría 
 

La geometría del modelo empleado para el análisis estructural es la descrita en el 

Apartado 2.1. El modelo empleado para el análisis es el siguiente [Ilustración 11-13]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z

X
Y

Isométrico

Ilustración 11. Vista isométrica del modelo empleado en la simulación realizada en RFEM. 

Ilustración 12. Vista en planta del modelo empleado en la simulación realizada en RFEM. 

Ilustración 13. Vista desde X del modelo empleado en la simulación realizada en RFEM. 

Z X

Y

En dirección Z

Z

X Y

En dirección X
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3.2. Materiales 
 

Como ya se ha descrito en el apartado 2.2, los materiales presentes en la estructura son 

hormigón, acero y vidrio. 

El hormigón elegido para modelar el cuerpo de la estructura y la losa suspendida, es 

Hormigón C30/37 cuyas principales características son [Ilustración 14]: 

 

 

 

 

 

 

 

Las vigas empleadas en los ventanales, el lucernario, y en la sujeción de la losa 

suspendida son de Acero S 275 caracterizado por [Ilustración 15]:  

 

 

 

 

 

 

 

En el lucernario, y los ventanales, se ha utilizado vidrio reforzado químicamente. Sus 

propiedades principales son [Ilustración 16]:  

 

 

 

 

 

 

 

 

 

Ilustración 14. Características principales del hormigón 
C30/37 extraídas del programa RFEM. 

Ilustración 15. Características principales del 
acero S 275 extraídas del programa RFEM. 

Ilustración 16. Características principales del vidrio 
reforzado químicamente extraídas del programa RFEM. 
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3.3. Espesores y secciones 
 

Cada parte descrita en la geometría de la estructura está sometida a distintas 

solicitaciones, por lo que, los espesores de la estructura y las secciones de las vigas se adaptan 

a cada una de las funciones que desempeña cada elemento dentro de la estructura [Tabla 4]. 

 

 

 

 

Las vigas de acero están conformadas en caliente. Su sección es cuadrada, con una arista 

de 200 mm; y hueca, con un espesor de 8 mm (Sección QRO 200x8). Sus características 

principales están recogidas en la Ilustración 17. 

 

 

 

 

 

 

 

 

 

La viga situada en la unión entre el cuerpo y el lucernario estará sometida a solicitaciones 

más exigentes que el resto de vigas presentes en la estructura; por ello, dicha viga presenta una 

sección mayor. Dicha viga también será de acero y conformada en caliente. La sección escogida 

es cuadrada, con 300 mm de arista; y hueca, con 16 mm de espesor (Sección QRO 300X16). Las 

características principales de la sección son las indicadas en la Ilustración 18. 

 

 

 

 

 

 

 

 

ESPESORES (mm) 

Estructura (Cuerpo y entradas) 180 

Losa forjado 300 

Vidrio (ventanales y lucernario) 20 

Tabla 4. Tabla de los espesores presentes en la estructura. 

Ilustración 17. Características principales de las vigas de sección 200x8. 

Ilustración 18. Características principales de las vigas de sección 300x16. 
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3.4. Condiciones de apoyo 
 

Las condiciones de apoyo impuestas son empotramientos en las zonas que 

estarán en contacto con el suelo. Este tipo de condición de apoyo impide el 

desplazamiento y giro en las tres direcciones. 

Se pueden observar dichas condiciones de contorno en la Ilustración 19.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ilustración 19. Vista isométrica del modelo utilizado en la simulación en RFEM. 
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3.5. Características de la malla 
 

Para el cálculo del modelo se ha aplicado una malla con elementos finitos en barra y en 

superficie (1D y 2D) [Ilustración 20]. La malla del modelo cuenta con 22.770 nudos, lo que le 

aporta mayor precisión en los resultados. 

 

 

 

 

 

 

 

 

La malla está compuesta por un total de 23.443 elementos finitos, de los cuales, 1.106 

son elementos finitos unidimensionales y 22.337 bidimensionales.  

Los elementos bidimensionales son cuadriláteros adaptados a la geometría del modelo, a 

excepción de algunos elementos triangulares en zonas de intersección o geometría más 

compleja.  

Se pueden apreciar elementos triangulares en las zonas de intersección del cuerpo con las 

entradas [Ilustración 21] y en determinadas zonas del lucernario [Ilustración 22]. 

 

 

 

 

 

 

Ilustración 20. Vista isométrica del modelo con la malla de EF. 

Isométrico

Máx.u-Z: 12.0, Mín. u-Z: -2.5 mm

Ilustración 21. Zona de intersección cuerpo-entrada con EF 
triangulares. 

Ilustración 22. Zona del lucernario con EF 
triangulares. 

Isométrico

Máx.u-Z: 9.5, Mín. u-Z: -2.5 mm
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3.6. Casos de carga 
 

Los casos de carga considerados para el análisis de la estructura son los siguientes: 

 

 CC1 - Peso propio. El peso propio se introduce como un campo vectorial en el eje Z negativo 

de magnitud 9,8 m/s2.  

Dicha carga afecta a toda la estructura en función del peso específico de cada material. 

 

 

 CC2 - Sobrecarga de uso. La losa suspendida estará sometida a una sobrecarga de uso.  

Se impone una sobrecarga sobre el área real de la losa como una carga uniforme de 5 kN/m2. 

 

Dicho valor corresponde a la categoría de uso C (referida a zonas de acceso al público), y la 

subcategoría de uso C5 (adecuada para zonas de aglomeración) [2]. 

 

 

 CC3 - Nieve. Conocida la altitud de Zaragoza (208 msnm se toma un valor para la carga de 

nieve de 0,5 kN/m2 [3]. La carga de nieve actúa sobre el área proyectada de la cubierta. 

 

 

 CC4 - Viento. La carga de viento actúa sobre el área proyectada de la estructura y se va  

modelar como una carga uniforme. Se calcula mediante la obtención de los siguientes 

factores: 
𝑞𝑒 =  𝑞𝑏 · 𝑐𝑒 · 𝑐𝑝 

 

 

 Presión dinámica del viento (qb): 

 
𝑞𝑏 =  0,5 · 𝛿 · 𝑣𝑏

2 

 

Tal y como se indica en el Código Técnico de la Edificación [4]: “La densidad del 

aire depende, entre otros factores, de la altitud, de la temperatura ambiental y de la 

fracción de agua en suspensión. En general puede adoptarse el valor de 1,25 kg/m3”. 

𝛿 = 1,25 [
𝑘𝑔

𝑚3
] 

 

En Zaragoza la velocidad básica del viento corresponde a la ZONA B [5]:  

𝑣𝑏 = 27 [
𝑚

𝑠
] 

𝑞𝑏 =  0,5 · 𝛿 · 𝑣𝑏
2 

 

𝑞𝑏 =  0,5 · 1,25 · 272 = 0,456 [
𝑘𝑁

𝑚2
] 
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 Coeficiente de exposición (ce):  

 

Considerando que la altura máxima de la estructura es de 18,64 m (superior a 18 

m), y un grado de aspereza del entorno III (Zona rural accidentada o llana con algunos 

obstáculos aislados como árboles o construcciones pequeñas), el coeficiente de 

exposición toma el siguiente valor [6]: 

𝑐𝑒 =  2,9 

 

 Coeficiente eólico o de presión (cp): 

 

Cp depende de la geometría de cada parte de la estructura y de la orientación 

respecto a la dirección de incidencia del viento [7].  

Para el cálculo del coeficiente eólico se divide la estructura en diferentes zonas 

sometidas a distintas cargas: 

 

 Carga 
Magnitud 
según CTE 

Magnitud 
asignada 

Tipo de 
carga 

Área 
afectada 

Descripción 

CC1 Peso propio - -9,8 m/s2 

Campo 
vectorial 

(eje Z 
negativo) 

- Por efecto de la gravedad. 

CC2 
Sobrecarga 

de uso 
5 kN/m2 5 kN/m2 Uniforme Área real 

Categoría de uso C (zonas de 
acceso al público) 

Subcategoría de uso C5 (Zonas 
de aglomeración) 

CC3 Nieve 0,5 kN/m2 0,5 kN/m2 Uniforme 
Área 

proyectada 

Zaragoza altitud 208 msnm. 
Zona climática de invierno: 

ZONA 2. 

CC4 Viento 
1,3224·Ce 

kN/m2 
1,3224·Ce 

kN/m2 
Uniforme 

Área 
proyectada 

qb=0,456  ce=2,9  cp(según 
zona) 

qe=qb·ce·cp=1,3224·ce[kN/m2] 

 

Cálculo de la carga de viento para cada zona considerada: 

 

Tabla 5. Resumen de las cargas consideradas en el modelo conforme al CTE. 

Ilustración 23. Vista isométrica destacando la dirección de la carga de viento considerada. 
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Cargas consideradas para modelar la carga de viento: 

 

 CARGAS SUPERFICIALES: 

 

a) Cuerpo + 4 entradas con orientación respecto al viento (Valor promedio). 

Casquete esférico. 

b) Lucernario (Zona A, B y C). Casquete esférico. 

c) Ventanas (Zona A, B y C). Casquete esférico. 

 

 CARGAS LINEALES: 

 

d) 2 entradas en dirección paralela al viento.  

 

Las zonas a), b) y c) presentan forma esférica, por lo que se calcula la carga de viento de 

forma similar para las tres zonas [8]. Para el cálculo de la carga de viento se obtienen los distintos 

coeficientes para cada parte de la estructura y las diversas zonas de incidencia del viento (A, B, 

C). 

 

 CARGAS SUPERFICIALES: 

 

En primer lugar, se calculan los coeficientes asociados a cada zona (A, B y C), tras 

ello, se explica cómo se ha modelado la carga de viento en cada parte de la estructura. 

Los coeficientes asociados a cada parte del modelo, y zona de incidencia del viento, son: 

a) Cuerpo + 4 entradas con orientación respecto al viento:   

Dado que la carga de viento frente al resto de cargas consideradas en el modelo es 

prácticamente despreciable, en la zona a) (cuerpo + 4 entradas con orientación no 

paralela a la dirección del viento) se simplifica dicha carga estableciendo un valor 

promedio. 

 

 

 

a) Cuerpo + 4 entradas con orientación 
respecto al viento  

c) Ventanas 
b) Lucernario 

Tipo de 
geometría 

Esférica (Carga superficial uniforme) Esférica (Carga superficial uniforme) 

A A = 0,38 qv [kN/m2] = 0,503 A = 0,12 qv [kN/m2] = 0,159 

B B = -0,65 qv [kN/m2] = -0,860 B = -0,32 qv [kN/m2] = -0,423 

C C = 0 qv [kN/m2] = 0 C = 0 qv [kN/m2] = 0 

Tabla 6. Valores de los coeficientes zonas A, B y C en la estructura conforme al CTE. 
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En la Ilustración 24 puede observarse la zona a la que se ha aplicado dicho valor 

promedio. 

 

 

 

 

 

 

b) Lucernario:   

 

ZONA A. Carga superficial uniforme en la Zona A del 

lucernario [Ilustración 25].  

Qv = 0,159 kN/m2 

 

 

 

ZONA B. Carga superficial uniforme en la Zona B del 

lucernario. Incluye el círculo central de radio 0,5 m 

[Ilustración 26]. 

Qv = 0,423 kN/m2 

 

 

ZONA C. La carga superficial de la Zona C del lucernario 

presenta una carga igual a 0 kN/m2 [Ilustración 27].  

Qv = 0 kN/m2 

 

 

 
 

a) Cuerpo + 4 entradas con orientación 
respecto al viento 

VALOR PROMEDIO 
CONSIDERADO 

0,7886 kN/m2 

Factor zona A 20% 0,2 

Factor zona B 80% 0,8 

Factor zona C 0 

Tabla 7. Valor promedio considerado para la zona a) del modelo. 

Ilustración 24. Zona afectada por el valor promedio. 

Ilustración 25. Zona A de la 
carga de viento del lucernario. 

Ilustración 26. Zona B de la 
carga de viento del lucernario. 

Ilustración 27. Zona C de la 
carga de viento del lucernario. 
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c) Ventanas:   

 

ZONA A. Carga superficial uniforme en la Zona A de las 

ventanas [Ilustración 28].  

Qv = 0,503 kN/m2 

 

 

 

ZONA B. Carga superficial uniforme en la Zona B de las 

ventanas [Ilustración 29]. 

Qv = 0,860 kN/m2 

  

 

 

ZONA C. La carga superficial uniforme en la Zona C de 

las ventanas es de 0 kN/m2 [Ilustración 30]. 

Qv = 0 kN/m2 

 

 

 

 CARGAS LINEALES: 

 

d) 2 Entradas en dirección paralela al viento:   

  

  

 

  

 

 

   

  

  

 Se calcula la carga que ejercería el viento en dicha dirección sobre una superficie 

perpendicular a este que recubriese la entrada.  

Ilustración 28. Zona A de la 
carga de viento de las ventanas. 

Ilustración 29. Zona B de la 
carga de viento de las ventanas. 

Ilustración 30. Zona C de la carga 
de viento de las ventanas. 

Ilustración 31. Cargas lineales consideradas en 
las entradas en orientación paralela al viento. 
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Tras ello, se reparte dicha carga sobre el arco de circunferencia [Ilustración 31], para 

comprobar, que independientemente del tipo de cerramiento que se coloque, la 

estructura no fallará [Tabla 8]. 

𝑞𝑒 =  0,503 [
𝑘𝑁

𝑚2
] 

 

𝑄𝑒 =  𝑞𝑒 · 𝐴𝑡 = 0,503 ·  𝜋 ·  𝑟2 = 0,503 ·  𝜋 ·  52 = 39,5055 [𝑘𝑁] 

 

𝑞𝑉 =
𝑄𝑒

𝑆𝑡

=
39,5055

𝑟 · 𝜃
=

39,5055

5 · 𝜋
= 2,515 [

𝑘𝑁

𝑚
] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d) 2 entradas paralelas a la dirección del viento 

Cilíndrica (carga lineal en la circunferencia) 

Área = π · r2 = π · 52 = 25 · π = 78,53975 m2 

Longitud de semicircunferencia s = r · θ = 5 · π = 15,70795 m 

Carga lineal sobre cada semicircunferencia                                                                      
qv (Zona A Cuerpo) = 0,503 kN/m2 · 78,53975 m2 / 15,70795 m                                   

qv = 2,515 kN/m 

Tabla 8. Cálculo de las cargas lineales en las entradas paralelas a la 
dirección del viento. 
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3.7. Hipótesis de carga (ELS Y ELU) 
 

De acuerdo con el Código Técnico de la Edificación [9] se realiza el análisis de los estados 

límite: 

 ESTUDIO DEL ESTADO LÍMITE DE SERVICIO (ELS). Se realiza un análisis de los 

desplazamientos, y deformaciones obtenidos, en la simulación frente a los valores 

máximos admisibles según el Código Técnico de la Edificación. 

 

 ESTUDIO DEL ESTADO LÍMITE ÚLTIMO (ELU). Se analizan las tensiones presentes en la 

simulación, y se comprueba su validez frente a los valores de tensión máxima admisible 

por el material que las debe soportar. 

 

ESTADO LÍMITE DE SERVICIO (ELS) 

En primer lugar, se lleva a cabo el estudio del estado límite de servicio (ELS) correspondiente 

a los estados últimos de la estructura antes de producirse desplazamientos o deformaciones que 

puedan poner en riesgo la estabilidad de la estructura. 

En este caso se establece un coeficiente parcial de seguridad igual a 1 para cada una de las 

cargas en cada una de las combinaciones de carga estudiadas. 

El coeficiente de simultaneidad es igual 1 para cada combinación de cargas [Tabla 9]. 

 

 

La flecha relativa máxima admisible es de 1/300, con lo cual, la flecha máxima conocida la 

altura máxima de la estructura (18,64 m), es de 62,133 mm [10]. 

El desplome relativo máximo es de 1/500, es decir, el desplome máximo admisible conocida 

la altura máxima de la estructura (18,64 m), es de 37,28 mm [11]. 

Tal y como puede verse en el Anexo I. Resultados estudios ELS y ELU. < 1.1 Estado Límite de 

Servicio (ELS), bajo todas las hipótesis estudiadas se obtienen desplazamientos admisibles. 

 

 

 

 

 

  ELS 1 ELS 2 ELS 3 ELS 4 ELS 5 ELS 6 

Peso propio 1 1 1 1 1 1 

Sobrecarga de uso - 1 1 - 1 1 

Nieve - - 1 - - 1 

Viento - - - 1 1 1 

Tabla 9. Resumen de los coeficientes considerados para el estudio del estado límite de servicio. 
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ESTADO LÍMITE ÚLTIMO (ELU) 

El estudio del Estado Límite Último (ELU) consiste en el análisis de las combinaciones de 

carga que pueden suponer un riesgo de colapso total o parcial de la estructura.  

Se realiza un análisis ELU de cada combinación de cargas por cada combinación estudiada 

en el análisis ELS. El número de combinaciones analizadas mediante el estudio ELU es mayor, 

dado que, al introducir los coeficientes en determinadas combinaciones de cargas se presentan 

diversas posibilidades. 

Los coeficientes considerados son los siguientes [Tabla 10-11] [12]: 

 

A continuación se resumen las hipótesis consideradas para la elección de los 

coeficientes anteriores: 

 

 

La tensión máxima admisible la limita el material, por lo que, en ningún caso deberán 

superarse los 27,5 kN/cm2 (tensión máxima admisible del acero 275). Tras comprobar los 

resultados, Anexo I. Resultados estudios ELS y ELU. < 1.2 Estado Límite Último (ELU), se concluye 

que ninguna de las combinaciones de cargas provoca una tensión equivalente máxima de Von 

Mises mayor de 27,5 kN/cm2. 

  ELU 1 ELU 2 ELU 3 ELU 4 ELU 5 ELU 6 ELU 7 ELU 8 

Peso propio 1,35 1,35 1,35 1,35 1,35 0,8 1,35 1,35 

Sobrecarga de uso - 1,35 1,35 - 1,35 0,8 1,35 1,35 

Nieve - - 1,5 - - - 1,5 0,5·1,5 = 0,75 

Viento - - - 1,5 1,5 1,5 0,6·1,5 = 0,9 1,5 

  DESCRIPCIÓN DE LOS COEFICIENTES CONSIDERADOS: 

ELU 1 Peso propio como acción permanente desfavorable. 

ELU 2 Peso propio y sobrecarga de uso como acciones permanentes desfavorables. 

ELU 3 
Peso propio y sobrecarga de uso como acciones permanentes desfavorables. Carga de 
nieve como acción variable desfavorable. 

ELU 4 
Peso propio como acción permanente desfavorable. Carga de viento como acción 
variable desfavorable. 

ELU 5 
Peso propio y sobrecarga de uso como acciones permanentes desfavorables. Carga de 
viento como acción variable desfavorable. 

ELU 6 
Peso propio y sobrecarga de uso como acciones permanentes favorables. Carga de viento 
como acción variable desfavorable. 

ELU 7 
Peso propio y sobrecarga de uso como acciones permanentes desfavorables. Carga de 
viento y carga de nieve simultaneas. Coeficiente de simultaneidad considerado en la 
carga de viento (0,6). 

ELU 8 
Peso propio y sobrecarga de uso como acciones permanentes desfavorables. Carga de 
viento y carga de nieve simultaneas. Coeficiente de simultaneidad considerado en la 
carga de nieve, altitud < 1000 m (0,5). 

Tabla 10. Resumen de los coeficientes considerados para el estudio del estado límite último. 

Tabla 11. Hipótesis consideradas para la elección de los coeficientes empleados en el estudio ELU. 
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4. Resultados 
 

En el apartado anterior se han analizado brevemente los resultados para comprobar la 

validez del modelo estudiado. A continuación, se estudiarán los resultados más 

desfavorables de ambos estudios, incluyendo gráficos que permitan apreciar las zonas de la 

estructura sometidas a mayores solicitaciones.  

El informe completo de resultados de las diversas combinaciones de cargas estudiadas se 

encuentra en el Anexo I. Resultados estudios ELS y ELU. 

 

4.1. Resultados numéricos 
 

 

 ESTUDIO ELS 

 

Los resultados más desfavorables del estudio de Estado Límite de Servicio (ELS) se 

obtienen con la hipótesis ELS 6, que consiste en la aplicación simultanea de todas las cargas: 

Peso Propio (CC1) + Sobrecarga de uso (CC2) + Nieve (CC3) + Viento (CC4). 

 

 

 

 

 

 

 

 

 

 

 

 

En las Ilustraciones 32 y 33 se pueden apreciar las zonas donde aparecen el 

desplome y la flecha máximos.  

 

La flecha máxima aparece en la losa debido a la Sobrecarga de uso (CC2), que no afecta 

al cuerpo de la estructura. El desplome máximo apenas se ve modificado por acción del 

Viento (CC4), dado que, bajo la hipótesis ELS 3 (Peso Propio CC1 + Sobrecarga de uso 

CC2 + Nieve CC3) el valor del desplome máximo presenta el mismo valor.  

Los resultados obtenidos bajo la hipótesis ELS 6 son admisibles en base al CTE [Tabla 

12]. 

 

 

 

 

 

 

RESULTADOS HIPÓTESIS ELS 6 

Desplome máximo (mm) 4,0 (Uy) 

Flecha máxima (mm) 19,3 (Uz) 

Z

X

Y

Deformaciones

globales

uZ [mm]

19.3

17.3

15.3

13.3

11.3

 9.3

 7.3

 5.4

 3.4

 1.4

-0.6

-2.6

Max : 19.3

Min : -2.6

IsométricoCO 6: ELS 6

Deformaciones globales u-Z

Coeficiente de deformaciones: 450.00
Máx. u-Z: 19.3, Mín. u-Z: -2.6 [mm]

Ilustración 32. Situación del desplome máximo. Ilustración 33. Situación de la flecha máxima. 

Z X

Y

Deformaciones

globales

uY [mm]

 4.0

 3.3

 2.6

 1.9

 1.1

 0.4

-0.3

-1.1

-1.8

-2.5

-3.3

-4.0

Max :  4.0

Min : -4.0

En dirección ZCO 6: ELS 6

Deformaciones globales u-Y

Coeficiente de deformaciones: 450.00
Máx. u-Y: 4.0, Mín. u-Y: -4.0 [mm]

Tabla 12. Resultados en desplazamientos bajo hipótesis ELS 6. 
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 ESTUDIO ELU 

 

Los resultados más desfavorables en tensiones obtenidos mediante el estudio de Estado 

Límite Último (ELU) son los obtenidos bajo las hipótesis: 

 ELU 3 (1,35·CC1 + 1,35·CC2 + 1,5·CC3) 

 ELU 5 (1,35·CC1 + 1,35·CC2 + 1,5·CC4) 

 ELU 7 (1,35·CC1 + 1,35·CC2 + 1,5·CC3 + 0,9·CC4) 

 ELU 8 (1,35·CC1 + 1,35·CC2 + 0,75·CC3 + 1,5·CC4) 

Se analizan las hipótesis ELU 7 y ELU 8 por ser las combinaciones en las que intervienen 

todas las cargas. Bajo ambas hipótesis la distribución de la tensión equivalente máxima de 

Von Mises es similar [Ilustración 34]: 

 

 

 

 

 

 

 

 

Se puede apreciar que la aparición de las mayores tensiones aparece en las uniones 

entre vigas (descritas en profundidad en el Anexo II. Uniones metálicas.). Se debe a que dichas 

zonas actúan de concentradores de tensiones. 

La máxima tensión equivalente de Von Mises obtenida es [Tabla 13]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTADOS HIPÓTESIS ELU 7 Y ELU 8 

Tensión equivalente máxima de Von Mises 
(kN/cm2) 

22,43 

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

22.43

20.40

18.37

16.33

14.30

12.27

10.24

 8.21

 6.18

 4.15

 2.12

 0.08

Max : 22.43

Min :  0.08

En dirección ZCO 14: ELU 8

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 22.43, Mín. Sigma-eqv,max,Mises: 0.08 [kN/cm 2 ]

Ilustración 34. Situación de σVM. 

Tabla 13. Resultados en tensiones bajo hipótesis ELS 7/ELS 8. 
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4.2. Diseño del armado 
 

Se procede al diseño del armado de la losa suspendida y del cuerpo de la estructura. 

Para el diseño de los armados se van a considerar los esfuerzos internos principales 

máximos. 

En la losa suspendida se consideran esfuerzos máximos los mayores valores que no son 

debidos a concentración de tensiones en las uniones de la losa con las vigas que la 

sustentan. 

 

Los materiales empleados en ambos armados son: Hormigón C30/37 y Acero B-500-S. 

 El hormigón C30/37 presenta una resistencia característica a compresión 

(fck) de 30 MPa. Para el diseño de los armados se ha considerado un 

coeficiente de seguridad en el hormigón (γC) de 1,5. Se concluyen las 

siguientes características [Tabla 14]: 

 

𝑓𝑐𝑑 =
𝑓𝑐𝑘

𝛾𝐶
=  

30 𝑀𝑃𝑎

1,5
= 20 𝑀𝑃𝑎 

 

 

 

 El Acero B-500-S es comúnmente utilizado para aplicaciones de este tipo. 

Presenta un límite elástico característico (fyk) de 500 MPa. El coeficiente de 

seguridad considerado en el acero (γS) en el diseño del armado es 1,15. 

Las características del acero son [Tabla 15]: 

 

𝑓𝑦𝑑 =
𝑓𝑦𝑘

𝛾𝑆
=  

500 𝑀𝑃𝑎

1,15
=  434,8 𝑀𝑃𝑎 

 

 

 

 

 

Se procede al cálculo del armado en base a los resultados obtenidos mediante la 

simulación. Se diseñan de forma individual cada uno de los armados dado que están 

sometidos a esfuerzos distintos, y el hormigón presenta diferente espesor en la losa y 

en el cuerpo: 

 En la losa suspendida el hormigón presenta un canto de 300 mm (dtotal). 

Considerando un recubrimiento de la armadura de 30 mm de espesor (d1) 

se concluye una distancia de 270 mm (d). 

Se realiza el dimensionado para una anchura de 1 m [Tabla 16]. 

 

fck 30 MPa 

γc 1,5 

fcd 20 MPa 

fyk 500 MPa 

γs 1,15 

fyd 434,783 MPa 

Tabla 14. Características a compresión del Hormigón C30/37. 

Tabla 15. Características del Acero B-500-S. 
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DISEÑO DE LA ARMADURA 

Para el dimensionado de la armadura [13] se tiene en cuenta que para 

los hormigones con fck ≤ 50 N/mm2 (fck = 30 N/mm2) la profundidad límite es: 

𝑥𝑓 = 0,625 · 𝑑 = 0,625 · 270 = 168,75 𝑚𝑚 

Conocida la profundidad límite se calcula el momento frontera: 

 

𝑈𝑜 =  𝑓𝑐𝑑 · 𝑏 · 𝑑 =
20 𝑀𝑃𝑎 · 1000 𝑚𝑚 · 270 𝑚𝑚 

1000
= 5400 𝑘𝑁 

 

𝑀𝑓 = 0,8 · 𝑈𝑜 · 𝑥𝑓 · (1 − 0,4 ·  
𝑥𝑓

𝑑
) = 0,8 ·  5400 𝑘𝑁 ·

168,75 𝑚𝑚

1000
· (1 − 0,4 ·  

168,75 𝑚𝑚

270 𝑚𝑚
) 

 

𝑀𝑓 = 546,75 𝑘𝑁 ·
𝑚

𝑚
 

 

Para el dimensionado de la armadura se compara dicho momento frontera con 

el obtenido en la simulación de la estructura: 

𝑀𝑑 = 47,5 𝑘𝑁 ·
𝑚

𝑚
 ≤  𝑀𝑓 = 546,75 𝑘𝑁 ·

𝑚

𝑚
 

El momento frontera es mayor que el máximo momento obtenido para la losa 

en la simulación, con lo cual: 

𝑈𝑠2 = 0 𝑘𝑁 

𝑈𝑠1 = 𝑈𝑜 · (1 −  √1 −  
2 ·  𝑀𝑑

𝑈𝑜 · 𝑑
 ) = 5400 𝑘𝑁 · (1 − √1 − 

2 ·  47,5 𝑘𝑁 ·
𝑚
𝑚

5400 𝑘𝑁 ·
270 𝑚𝑚

1000

 ) 

𝑈𝑠1 = 178,889 𝑘𝑁 

 

Por simplicidad se dimensionan iguales Us1 y Us2. 

𝑈𝑠1 = 𝑈𝑠2 = 178,889 𝑘𝑁 

 

Además, en la simulación se ha considerado la carga de viento en 

dirección x, pero dicha carga en una situación real podría actuar 

indiferentemente en dirección x o y, por lo que se diseña la armadura 

dtotal 300 mm 
d1 30 mm (recubrimiento) 
d 270 mm 
b 1000 mm 

Tabla 16. Dimensiones de la losa. 



26 
 

considerando también la posibilidad de que aparezca la carga de viento en 

dirección y. 

Conocidas las características de la armadura se procede al cálculo del número 

de redondos y diámetro de estos [Tabla 17]: 

𝑈𝑠𝜙(𝑘𝑁)  =
Á𝑟𝑒𝑎 (𝑚𝑚) · 𝑓𝑦𝑑 (𝑀𝑃𝑎)

1000
 

 

𝑁º 𝑏𝑎𝑟𝑟𝑎𝑠 =  
𝑈𝑠1 (𝑘𝑁)

𝑈𝑠𝜙 (𝑘𝑁)
 

 

 

 

 

 

Se escogen redondos de 12 mm de diámetro. Se deberán colocar 4 

redondos por metro, con lo cual presentarían una separación de 250 mm. La 

separación entre redondos en este tipo de cimentaciones se recomienda que 

sea ≤ 200 mm y ≥ 100 mm, por ello se colocarán 5 redondos por metro para 

tener una separación entre redondos de 200 mm, una disposición correcta.  

Se concluye una disposición en armadura superior e inferior de malla con 

cuadrícula de 200 mm x 200 mm en ambas direcciones (x e y). 

 En la cúpula o cuerpo de la estructura el hormigón presenta un canto de 

180 mm (dtotal). Con un recubrimiento similar al empleado en la losa 

suspendida, de 30 mm de espesor (d1) se concluye una distancia de 150 mm 

(d). 

Se realiza el dimensionado para una anchura de 1 m [Tabla 18]. 

dtotal 180 mm 
d1 30 mm (recubrimiento) 
d 150 mm 
b 1000 mm 

 

 

DISEÑO DE LA ARMADURA 

El dimensionado de la armadura se realiza de igual modo que para la 

losa suspendida [13]. Para los hormigones con fck ≤ 50 N/mm2 (fck = 30 N/mm2) 

la profundidad límite es: 

𝑥𝑓 = 0,625 · 𝑑 = 0,625 · 150 = 93,75 𝑚𝑚 

 

Diámetro 
(mm)  

Área (mm2) fyd (Mpa) Usφ(As*fyd) Nº barras 
Nº entero 

barras 

12 113,097 434,783 49,173 3,638 4 
16 201,062 434,783 87,418 2,046 3 
20 314,159 434,783 136,591 1,310 2 
24 452,389 434,783 196,691 0,909 1 
26 530,929 434,783 230,839 0,775 1 

Tabla 17. Dimensionado de la armadura de la losa. 

Tabla 18. Dimensiones del cuerpo. 
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Conocida la profundidad límite se calcula el momento frontera: 

 

𝑈𝑜 =  𝑓𝑐𝑑 · 𝑏 · 𝑑 =
20 𝑀𝑃𝑎 · 1000 𝑚𝑚 · 150 𝑚𝑚 

1000
= 3000 𝑘𝑁 

 

𝑀𝑓 = 0,8 · 𝑈𝑜 · 𝑥𝑓 · (1 − 0,4 ·  
𝑥𝑓

𝑑
) = 0,8 ·  3000 𝑘𝑁 ·

93,75 𝑚𝑚

1000
· (1 − 0,4 ·  

93,75 𝑚𝑚

150 𝑚𝑚
) 

 

𝑀𝑓 = 168,75 𝑘𝑁 ·
𝑚

𝑚
 

 

Para el dimensionado de la armadura se compara el momento frontera con el 

obtenido en la simulación de la estructura: 

𝑀𝑑 = 14,78 𝑘𝑁 ·
𝑚

𝑚
 ≤  𝑀𝑓 = 168,75 𝑘𝑁 ·

𝑚

𝑚
 

 

El momento frontera es mayor que el máximo momento obtenido para la losa 

en la simulación, por ello: 

𝑈𝑠2 = 0 𝑘𝑁 

𝑈𝑠1 = 𝑈𝑜 · (1 −  √1 −  
2 ·  𝑀𝑑

𝑈𝑜 · 𝑑
 ) = 3000 𝑘𝑁 · (1 − √1 − 

2 ·  14,78 𝑘𝑁 ·
𝑚
𝑚

3000 𝑘𝑁 ·
150 𝑚𝑚

1000

 ) 

𝑈𝑠1 = 100,207 𝑘𝑁 

 

Por simplicidad se dimensionan iguales Us1 y Us2. 

𝑈𝑠1 = 𝑈𝑠2 = 100,207 𝑘𝑁 

 

De forma similar a la losa se diseña la armadura considerando la posibilidad de 

que la carga de viento actúe en dirección x o y. 

Conocidas las características de la armadura se procede al cálculo del número 

de redondos y diámetro de los mismos [Tabla 19]: 

𝑈𝑠𝜙(𝑘𝑁)  =
Á𝑟𝑒𝑎 (𝑚𝑚) · 𝑓𝑦𝑑 (𝑀𝑃𝑎)

1000
 

 

𝑁º 𝑏𝑎𝑟𝑟𝑎𝑠 =  
𝑈𝑠1 (𝑘𝑁)

𝑈𝑠𝜙 (𝑘𝑁)
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En este caso se obtienen unos resultados que; de forma similar al diseño de la 

armadura de la losa, obligan a aumentar el número de redondos para respetar 

la distancia máxima entre ellos. 

Se colocarán 5 redondos de 12 mm por metro, con una separación entre ellos 

de 200 mm. Dicha disposición se realizará de igual manera en ambas armaduras 

(superior e inferior) y en ambas direcciones (x e y). La disposición final es una 

malla de 200 mm x 200 mm (disposición obtenida en el diseño de la armadura 

de la losa). 

La disposición de los redondos por cada metro de anchura se muestra en la 

Ilustración 35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diámetro 
(mm)  

Área (mm2) fyd (Mpa) Usφ(As*fyd) Nº barras Nº entero 

12 113,097336 434,783 49,1727546 2,03785419 3 

16 201,06193 434,783 87,4182304 1,14629298 2 

20 314,159265 434,783 136,590985 0,73362751 1 

24 452,389342 434,783 196,691018 0,50946355 1 

26 530,929158 434,783 230,838765 0,43409912 1 

Tabla 19. Dimensionado de la armadura del cuerpo. 

Ilustración 35. Boceto de la armadura realizado en AutoCAD. 
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4.3. Cimentación 
 

 

La cimentación propuesta es de tipo superficial y consiste en una zapata corrida 

bajo muro con la geometría expuesta en la Ilustración 36. Este tipo de cimentación se 

emplea sobre todo en muros. El hecho de ser una cimentación continua a toda la 

estructura provoca mayor homogeneidad en los asientos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Se realizará la comprobación del diseño para un metro lineal de anchura. Se 

comprobará la validez de la geometría de la zapata corrida frente a los estados límite 

últimos de hundimiento y vuelco. Para el cálculo geométrico de la estructura se usan los 

esfuerzos sin mayorar (Estudio ELS). Se toman los valores de las reacciones en los apoyos 

en línea del modelo bajo la hipótesis ELS 6 por ser la más desfavorable. 

 

 

 

 En primer lugar se verterá una capa de aproximadamente 10 cm de hormigón 

HA 10 (hormigón de limpieza), sobre el cual se verterán los 100 cm del hormigón 

escogido para la cimentación HA 25. 

En cuanto a la geometría se ha considerado una anchura de 1 metro lineal para el 

análisis, por 1 m de profundidad y 2,4 m de anchura, geometría reflejada en la Ilustración 

37.  

 

 

 

 

 

 

 

 

 

 

REACCIONES EN APOYOS BAJO HIPÓTESIS ELS 6 

Px (kN/m) 172,53 Py (kN/m) 183,13 Pz (kN/m) 254,44 

Mx (kN·m/m) -17,22 My (kN·m/m) 15,9 Mz (kN·m/m) 5,38 

Ilustración 36. Disposición de la cimentación superficial. 

Tabla 20. Reacciones en apoyos ELS 6 (RFEM). 

Ilustración 37. Boceto en Inventor de la cimentación propuesta. 
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El hormigón empleado para la cimentación HA 25 presenta un peso específico 

(δc) de 25 kN/m3 y una tensión máxima admisible (qadm) de 0,4 MPa. 

 

Para llevar a cabo las comprobaciones mencionadas se tomarán las fuerzas y 

momentos del estudio ELS 6 [Ilustración 38] en la zapata corrida bajo muro y se 

trasladarán a la base de la zapata, tal y como puede verse en la Ilustración 39. 

  

 

 

 

 

 

 

 

 

 

 

 

Las resultantes de llevar las fuerzas, y los momentos, a la base de la zapata son: 

 
𝑅 = 𝑁 + 𝑄 

 

𝑄 (𝑝𝑒𝑠𝑜) = 𝑏[𝑚] · 𝑑[𝑚] · 1[𝑚] ·  𝛿𝑐 [
𝑘𝑁

𝑚3
] = 1 · 2,4 · 1 · 25 = 60 𝑘𝑁  

 

𝑅 = 254,44 + 60 = 314,44 𝑘𝑁 

 

𝑀′ = 𝑀[𝑘𝑁 · 𝑚] + 𝑉[𝑘𝑁] · ℎ[𝑚] = 17,22 + 183,13 · 1 = 200,35 𝑘𝑁 · 𝑚 

 

 

 

 

 

 

 

 

 

 

Tras obtener las resultantes en la base de la zapata se realizan las 

comprobaciones a vuelco y hundimiento. Para ello se deberá comprobar si la 

distribución de la carga a la que está sometida es triangular o trapecial: 

 

𝑒 =
𝑀′

𝑅
=

200,35

314,44
= 0,637 𝑚  

 
𝐵

6
=

2,4

6
= 0,4 𝑚 

 

Ilustración 38. Esquema del análisis de la zapata. 

Ilustración 39. Resultantes del análisis en la base 
de la zapata. 
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Como la excentricidad de la zapata es mayor que un sexto de la anchura de la 

misma, se trata de una distribución triangular. 

Para comprobar la validez del modelo frente a los esfuerzos a los que estará sometida 

se consideran los coeficientes de seguridad parciales [14]: 

 

Comprobación de validez de la cimentación 

 

l.  HUNDIMIENTO 
 

Al tratarse de una distribución triangular la comprobación a hundimiento es la 

siguiente: 

𝑞𝒃 =  
4

3
·  

𝑅

1 · (𝐵 − 2 · 𝑒)
 ≤  𝑞𝒂𝒅𝒎 

 

𝑞𝒃 =  
4

3
·  

314,44

1 · (2,4 − 2 · 0,637)
= 372,339 𝑘𝑃𝑎 ≤  𝑞𝒂𝒅𝒎 =  400 𝑘𝑃𝑎 

 

 

Se concluye que el dimensionado de la zapata es correcto frente a 

hundimiento dado que la presión máxima admisible es mayor que la presión a la que 

estará sometida la zapata. 
 

𝑞𝑏

𝑞𝑎𝑑𝑚

=
372,339 𝑘𝑃𝑎

400 𝑘𝑃𝑎
= 0,93 

 

ll.  VUELCO 
 

La comprobación a vuelco para el metro de zapata considerado es la siguiente 

[Ilustración 40]: 
𝑀𝑒𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑎𝑑𝑜𝑟  ≥ 1,5 ·  𝑀𝑑𝑒𝑠𝑒𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑎𝑑𝑜𝑟  

𝑀𝑒𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑎𝑑𝑜𝑟 = 𝑅 ·
𝐵

2
= 314,44 ·

2,4

2
= 377,328 𝑘𝑁 · 𝑚 

𝑀𝑑𝑒𝑠𝑒𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑎𝑑𝑜𝑟 =  𝑀′ = 200,35 𝑘𝑁 · 𝑚 

 

 

 

 

 

 

 

 

 

Ilustración 40. Comprobación a vuelco de la zapata. 
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Se concluye que el dimensionado de la zapata es válido a vuelco, dado que se 

verifica que el momento estabilizador es mayor que el desestabilizador con un 

coeficiente de seguridad mayor de 1,5. 

𝑀𝑒𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑎𝑑𝑜𝑟 = 377,328 𝑘𝑁 · 𝑚 ≥ 1,5 ·  𝑀𝑑𝑒𝑠𝑒𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑎𝑑𝑜𝑟 = 300,525 𝑘𝑁 · 𝑚 

 

𝑀𝑒𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑎𝑑𝑜𝑟

𝑀𝑑𝑒𝑠𝑒𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑎𝑑𝑜𝑟

=
377,328 𝑘𝑁 · 𝑚

300,525 𝑘𝑁 · 𝑚
= 1,883 

 

Armadura de la cimentación 

 

 Para el dimensionado de la armadura de la cimentación se tienen en cuenta las 

dimensiones de la zapata corrida bajo muro [Tabla 21]. Se considera un recubrimiento 

de 50 mm. 

dtotal 1000 mm 
d1 50 mm (recubrimiento) 
d 950 mm 
b 1000 mm 

 

Para la cimentación se han empleado los siguientes materiales: 

 El hormigón HA-25 es el más común en este tipo de aplicaciones. Tiene una 

resistencia característica a compresión (fck) de 25 MPa. Se ha considerado 

un coeficiente de seguridad (γC) de 1,5. Se concluyen las siguientes 

características [Tabla 22]: 

 

𝑓𝑐𝑑 =
𝑓𝑐𝑘

𝛾𝐶

=  
25 𝑀𝑃𝑎

1,5
= 16,67 𝑀𝑃𝑎 

 

 

 

 El Acero B-500 presenta un límite elástico característico (fyk) de 500 MPa. 

Para el diseño del armado se considera un coeficiente de seguridad (γS) de 

1,15. Las características del acero son [Tabla 23]: 

 

𝑓𝑦𝑑 =
𝑓𝑦𝑘

𝛾𝑆

=  
500 𝑀𝑃𝑎

1,15
=  434,8 𝑀𝑃𝑎 

 

 

 

 

 

fck 25 MPa 

γc 1,5 

fcd 16,67 MPa 

fyk 500 MPa 

γs 1,15 

fyd 434,783 MPa 

Tabla 21. Dimensiones de la zapata. 

Tabla 22. Características del Hormigón HA-25. 

Tabla 23. Características del Acero B-500-S. 



33 
 

Se realiza el dimensionado de la armadura [13] considerando que en los 

hormigones con fck ≤ 50 N/mm2 (fck = 25 N/mm2) la profundidad límite es: 

𝑥𝑓 = 0,625 · 𝑑 = 0,625 · 950 = 593,75 𝑚𝑚 

 

Conocida la profundidad límite se calcula el momento frontera: 

 

𝑈𝑜 =  𝑓𝑐𝑑 · 𝑏 · 𝑑 =
16,67 𝑀𝑃𝑎 · 1000 𝑚𝑚 · 950 𝑚𝑚 

1000
= 15833,33 𝑘𝑁 

 

𝑀𝑓 = 0,8 · 𝑈𝑜 · 𝑥𝑓 · (1 − 0,4 ·  
𝑥𝑓

𝑑
) 

 

𝑀𝑓 = 0,8 ·  15833,33 𝑘𝑁 ·
593,75 𝑚𝑚

1000
· (1 − 0,4 ·  

593,75 𝑚𝑚

950 𝑚𝑚
) 

 

𝑀𝑓 = 5640,625 𝑘𝑁 ·
𝑚

𝑚
 

 

Se procede al análisis del momento de cálculo para compararlos y dimensionar 

la armadura: 

El cuerpo de la estructura presenta un espesor de 180 mm, con lo cual, el vuelo 

de la zapata es: 

𝑉𝑢𝑒𝑙𝑜 𝑧𝑎𝑝𝑎𝑡𝑎 =
𝐵 − 𝑒𝑠𝑝𝑒𝑠𝑜𝑟 𝑐𝑢𝑒𝑟𝑝𝑜

2
=  

2,4 − 0,18

2
= 1,11 𝑚 

 

La tensión máxima soportada por el terreno es la calculada para la 

comprobación de la zapata a hundimiento: 

𝑞𝒃 =  
4

3
·  

314,44

1 · (2,4 − 2 · 0,637)
= 372,445 𝑘𝑃𝑎 

 

 Se calcula el momento ejercido en sentido contrario por acción del peso del 

vuelo de la zapata: 

𝑄 (𝑝𝑒𝑠𝑜) = 𝑏[𝑚] · 𝑉𝑢𝑒𝑙𝑜 𝑧𝑎𝑝𝑎𝑡𝑎[𝑚] · 1[𝑚] ·  𝛿𝑐 [
𝑘𝑁

𝑚3
] = 1 · 1,11 · 1 · 25 = 27,75 𝑘𝑁  

 

El momento frontera obtenido para el diseño de la armadura de la cimentación 

es el siguiente:  

𝑀𝑑 = 1,5 · 𝑞𝑏[𝑘𝑃𝑎] · 𝑉𝑢𝑒𝑙𝑜[𝑚] ·
𝑉𝑢𝑒𝑙𝑜 [𝑚]

2
− 0,9 · 𝑃𝑒𝑠𝑜 𝑣𝑢𝑒𝑙𝑜[𝑘𝑁] ·

𝑉𝑢𝑒𝑙𝑜 [𝑚]

2
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𝑀𝑑 = 1,5 · 372,445 · 1,11 ·
1,11

2
− 0,9 · 27,75 ·

1,11

2
 

𝑀𝑑 =  330,306 𝑘𝑁 ·
𝑚

𝑚
 

𝑀𝑑 = 330,306 𝑘𝑁 ·
𝑚

𝑚
 ≤  𝑀𝑓 = 5640,625 𝑘𝑁 ·

𝑚

𝑚
 

Se concluye que el momento frontera es mayor que el momento 

presente en la cimentación de la estructura, con lo cual el diseño de la 

armadura: 

𝑈𝑠2 = 0 𝑘𝑁 

𝑈𝑠1 = 𝑈𝑜 · (1 − √1 −  
2 ·  𝑀𝑑

𝑈𝑜 · 𝑑
 ) = 15833,33 𝑘𝑁 · (1 − √1 − 

2 · 330,306 𝑘𝑁 ·
𝑚
𝑚

15833,33 𝑘𝑁 ·
950 𝑚𝑚

1000

 ) 

𝑈𝑠1 = 351,59 𝑘𝑁 

 

Us1 y Us2 se dimensionan similares por simplicidad. 

𝑈𝑠1 = 𝑈𝑠2 = 351,59 𝑘𝑁 

 

La armadura se diseña considerando la posibilidad de que la carga de viento 

actúe en dirección x o y, de igual manera que con la armadura de la losa 

suspendida y el cuerpo dimensionadas anteriormente. 

Se procede al cálculo del número de redondos y diámetro de los mismos 

[Tabla 24]: 

𝑈𝑠𝜙(𝑘𝑁)  =
Á𝑟𝑒𝑎 (𝑚𝑚) · 𝑓𝑦𝑑 (𝑀𝑃𝑎)

1000
 

𝑁º 𝑏𝑎𝑟𝑟𝑎𝑠 =  
𝑈𝑠1 (𝑘𝑁)

𝑈𝑠𝜙 (𝑘𝑁)
 

Diámetro 
(mm)  

Área 
(mm2) 

fyd (Mpa) Usφ(As*fyd) Nº barras Nº entero 

12 113,097336 434,783 49,1727546 7,150234334 8 
16 201,06193 434,783 87,4182304 4,022006813 5 
20 314,159265 434,783 136,590985 2,57408436 3 
24 452,389342 434,783 196,691018 1,787558583 2 
26 530,929158 434,783 230,838765 1,52312684 2 

 

 

El diseño de la armadura concluido consiste en una malla de 5 

redondos de 16 mm de diámetro por metro lineal de zapata corrida. Dichos 

redondos presentarán una separación entre ellos de 200 mm. La disposición de 

malla (en dirección x e y) se realizará de forma similar en la armadura superior 

e inferior. 

 

 

Tabla 24. . Dimensionado de la armadura de la cimentación. 
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5. Conclusiones 
 

Finalmente, se concluye un dimensionado correcto de la estructura, dado que 

sus desplazamientos y tensiones son admisibles. La estructura presenta un diseño 

novedoso gracias a características como la simetría axial, la cantidad de entradas al 

recinto, o el lucernario con forma esférica, que dota de gran luminosidad la estancia. 

La losa suspendida brinda una gran cantidad de posibilidades a la hora de 

distribuir las diversas zonas de la feria de muestras a instalar en el recinto. Se ha 

orientado con un uso como cafetería, dada su singularidad y luminosidad, pero el 

espacio presenta una flexibilidad que permitiría su posterior adaptación para instalar un 

área de descanso u otros usos. 

El área disponible en todo el recinto permite variedad de usos, y la posibilidad 

de realizar ferias orientadas a diversos ámbitos, dado que se dispone de gran altura 

(maquinaria, stands…). 

La cantidad de vigas presentes en el lucernario aportan una estética singular 

aunque, tal y como se menciona en el Anexo II. Uniones metálicas, dificultan la 

secuencia de montaje de la estructura. 

Se concluye una estructura mixta en hormigón armado con un diseño 

novedoso y singular, un lucernario de grandes dimensiones y una losa suspendida con 

gran variedad de posibilidades en cuanto a su uso.  
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7. Anexo I. Resultados estudios ELS y ELU 
 

Se procede al análisis en profundidad de los resultados obtenidos (desplazamientos y 

tensiones) para cada una de las hipótesis de carga supuestas en cada uno de los análisis 

estructurales realizados: 

 

7.1. Estado Límite de Servicio (ELS) 
 

 ESTADO LÍMITE DE SERVICIO 1. ELS 1. 

El Estado Límite de Servicio 1 tiene como carga la asociada al Peso Propio (CC1). Los 

resultados obtenidos bajo dicha hipótesis son [Ilustración A.I.1-A.I.3] [Tabla A.I.1]: 

 

Desplazamientos máximos: 

 

 

 

 

 

 

 

 

 

 

 

 

 

DESPLAZAMIENTOS MÁXIMOS 

Ux (mm) 2,0 Uy (mm) 2,3 Uz (mm) 12,0 

Z X

Y

Deformaciones

globales

uZ [mm]

12.0

10.6

 9.3

 8.0

 6.7

 5.4

 4.1

 2.7

 1.4

 0.1

-1.2

-2.5

Max : 12.0

Min : -2.5

En dirección ZCO 1: ELS 1

Deformaciones globales u-Z

Coeficiente de deformaciones: 760.00
Máx. u-Z: 12.0, Mín. u-Z: -2.5 [mm]

Z X

Y

Deformaciones

globales

uX [mm]

 2.0

 1.6

 1.3

 0.9

 0.5

 0.2

-0.2

-0.5

-0.9

-1.3

-1.6

-2.0

Max :  2.0

Min : -2.0

En dirección ZCO 1: ELS 1

Deformaciones globales u-X

Coeficiente de deformaciones: 760.00
Máx. u-X: 2.0, Mín. u-X: -2.0 [mm]

Z X

Y

Deformaciones

globales

uY [mm]

 2.3

 1.9

 1.5

 1.1

 0.6

 0.2

-0.2

-0.6

-1.0

-1.4

-1.8

-2.2

Max :  2.3

Min : -2.2

En dirección ZCO 1: ELS 1

Deformaciones globales u-Y

Coeficiente de deformaciones: 760.00
Máx. u-Y: 2.3, Mín. u-Y: -2.2 [mm]

Ilustración A.I.1. Desplazamientos en x. Ilustración A.I.2. Desplazamientos en y. 

Ilustración A.I.3. Desplazamientos en z. 

Tabla A.I.1. Resumen de los desplazamientos máximos bajo hipótesis ELS 1. 
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 ESTADO LÍMITE DE SERVICIO 2. ELS 2. 

Las combinaciones de carga del Estado Límite de Servicio 2 son: Peso propio (CC1) + 

Sobrecarga de uso (CC2). Los resultados del análisis bajo la hipótesis ELS 2 son  [Ilustración 

A.I.4-A.I.6] [Tabla A.I.2]: 

Desplazamientos máximos: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ESTADO LÍMITE DE SERVICIO 3. ELS 3. 

En el Estado Límite de Servicio 3 se estudian los resultados bajo las hipótesis de Peso 

propio (CC1) + Sobrecarga de uso (CC2) + Nieve (CC3). Cuando se somete la estructura a 

dichas cargas los resultados obtenidos son [Ilustración A.I.7-A.I.9] [Tabla A.I.3]: 

Desplazamientos máximos: 

 

 

DESPLAZAMIENTOS MÁXIMOS 

Ux (mm) 3,3 Uy (mm) 3,8 Uz (mm) 19,2 

Ilustración A.I.4. Desplazamientos en x. Ilustración A.I.5. Desplazamientos en y. 

Ilustración A.I.6. Desplazamientos en z. 

Tabla A.I.2. Resumen de los desplazamientos máximos bajo hipótesis ELS 2. 

Z X

Y

Deformaciones

globales

uX [mm]

 3.3

 2.7

 2.1

 1.5

 0.9

 0.3

-0.3

-0.9

-1.5

-2.1

-2.7

-3.3

Max :  3.3

Min : -3.3

En dirección ZCO 2: ELS 2

Deformaciones globales u-X

Coeficiente de deformaciones: 470.00
Máx. u-X: 3.3, Mín. u-X: -3.3 [mm]

Z X

Y

Deformaciones

globales

uY [mm]

 3.8

 3.1

 2.4

 1.7

 1.0

 0.4

-0.3

-1.0

-1.7

-2.3

-3.0

-3.7

Max :  3.8

Min : -3.7

En dirección ZCO 2: ELS 2

Deformaciones globales u-Y

Coeficiente de deformaciones: 470.00
Máx. u-Y: 3.8, Mín. u-Y: -3.7 [mm]

Z X

Y

Deformaciones

globales

uZ [mm]

19.2

17.1

14.9

12.8

10.7

 8.5

 6.4

 4.3

 2.1

 0.0

-2.1

-4.3

Max : 19.2

Min : -4.3

En dirección ZCO 2: ELS 2

Deformaciones globales u-Z

Coeficiente de deformaciones: 470.00
Máx. u-Z: 19.2, Mín. u-Z: -4.3 [mm]

Ilustración A.I.7. Desplazamientos en x. Ilustración A.I.8. Desplazamientos en y. 

Z X

Y

Deformaciones

globales

uX [mm]

 3.3

 2.7

 2.1

 1.5

 0.9

 0.3

-0.3

-0.9

-1.5

-2.1

-2.7

-3.3

Max :  3.3

Min : -3.3

En dirección ZCO 3: ELS 3

Deformaciones globales u-X

Coeficiente de deformaciones: 460.00
Máx. u-X: 3.3, Mín. u-X: -3.3 [mm]

Z X

Y

Deformaciones

globales

uY [mm]

 3.9

 3.2

 2.5

 1.8

 1.1

 0.4

-0.3

-1.0

-1.7

-2.4

-3.1

-3.8

Max :  3.9

Min : -3.8

En dirección ZCO 3: ELS 3

Deformaciones globales u-Y

Coeficiente de deformaciones: 460.00
Máx. u-Y: 3.9, Mín. u-Y: -3.8 [mm]
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 ESTADO LÍMITE DE SERVICIO 4. ELS 4. 

En cuarto lugar se analizan los resultados bajo las hipótesis de carga de Peso Propio 

(CC1) + Viento (CC4). Bajo la hipótesis ELS 4 los resultados obtenidos son [Ilustración 

A.I.10-A.I.12] [Tabla A.I.4]: 

Desplazamientos máximos: 

 

 

 

 

 

 

 

 

 

DESPLAZAMIENTOS MÁXIMOS 

Ux (mm) 3,3 Uy (mm) 3,9 Uz (mm) 19,3 

Ilustración A.I.9. Desplazamientos en z. 

Tabla A.I.3. Resumen de los desplazamientos máximos bajo hipótesis ELS 3. 

Z X

Y

Deformaciones

globales

uZ [mm]

19.3

17.1

15.0

12.8

10.6

 8.5

 6.3

 4.2

 2.0

-0.1

-2.3

-4.4

Max : 19.3

Min : -4.4

En dirección ZCO 3: ELS 3

Deformaciones globales u-Z

Coeficiente de deformaciones: 460.00
Máx. u-Z: 19.3, Mín. u-Z: -4.4 [mm]

Ilustración A.I.10. Desplazamientos en x. Ilustración A.I.11. Desplazamientos en y. 

Ilustración A.I.12. Desplazamientos en z. 

Z X

Y

Deformaciones

globales

uX [mm]

 2.4

 2.1

 1.7

 1.3

 0.9

 0.5

 0.1

-0.3

-0.7

-1.1

-1.5

-1.9

Max :  2.4

Min : -1.9

En dirección ZCO 4: ELS 4

Deformaciones globales u-X

Coeficiente de deformaciones: 720.00
Máx. u-X: 2.4, Mín. u-X: -1.9 [mm]

Z X

Y

Deformaciones

globales

uY [mm]

 2.4

 2.0

 1.6

 1.1

 0.7

 0.2

-0.2

-0.6

-1.1

-1.5

-1.9

-2.4

Max :  2.4

Min : -2.4

En dirección ZCO 4: ELS 4

Deformaciones globales u-Y

Coeficiente de deformaciones: 720.00
Máx. u-Y: 2.4, Mín. u-Y: -2.4 [mm]

Z X

Y

Deformaciones

globales

uZ [mm]

11.9

10.6

 9.2

 7.8

 6.4

 5.0

 3.6

 2.2

 0.8

-0.5

-1.9

-3.3

Max : 11.9

Min : -3.3

En dirección ZCO 4: ELS 4

Deformaciones globales u-Z

Coeficiente de deformaciones: 720.00
Máx. u-Z: 11.9, Mín. u-Z: -3.3 [mm]
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 ESTADO LÍMITE DE SERVICIO 5. ELS 5. 

El Estado Límite de Servicio 5 estudia los resultados obtenidos bajo las cargas: Peso 

propio (CC1) + Sobrecarga de uso (CC2) + Viento (CC4). Los resultados obtenidos para la 

estructura bajo dicha hipótesis son [Ilustración A.I.13-A.I.15] [Tabla A.I.5]: 

 

Desplazamientos máximos: 

 

 

 

 

 

 

 

  

 

 

 

 

 

 ESTADO LÍMITE DE SERVICIO 6. ELS 6.  

 

Por último, se analizan los resultados de aplicar simultáneamente todas las cargas 

consideradas: Peso Propio (CC1) + Sobrecarga de uso (CC2) + Nieve (CC3) + Viento (CC4). 

DESPLAZAMIENTOS MÁXIMOS 

Ux (mm) 2,4 Uy (mm) 2,4 Uz (mm) 11,9 

DESPLAZAMIENTOS MÁXIMOS 

Ux (mm) 3,7 Uy (mm) 3,9 Uz (mm) 19,2 

Tabla A.I.4. Resumen de los desplazamientos máximos bajo hipótesis ELS 4. 

Ilustración A.I.13. Desplazamientos en x. Ilustración A.I.14. Desplazamientos en y. 

Ilustración A.I.15. Desplazamientos en z. 

Tabla A.I.5. Resumen de los desplazamientos máximos bajo hipótesis ELS 5. 

Z X

Y

Deformaciones

globales

uX [mm]

 3.7

 3.0

 2.4

 1.8

 1.2

 0.6

 0.0

-0.6

-1.3

-1.9

-2.5

-3.1

Max :  3.7

Min : -3.1

En dirección ZCO 5: ELS 5

Deformaciones globales u-X

Coeficiente de deformaciones: 450.00
Máx. u-X: 3.7, Mín. u-X: -3.1 [mm]

Z X

Y

Deformaciones

globales

uY [mm]

 3.9

 3.2

 2.5

 1.8

 1.1

 0.4

-0.3

-1.0

-1.7

-2.4

-3.2

-3.9

Max :  3.9

Min : -3.9

En dirección ZCO 5: ELS 5

Deformaciones globales u-Y

Coeficiente de deformaciones: 450.00
Máx. u-Y: 3.9, Mín. u-Y: -3.9 [mm]

Z X

Y

Deformaciones

globales

uZ [mm]

19.2

17.0

14.8

12.6

10.4

 8.2

 6.0

 3.8

 1.6

-0.6

-2.8

-5.0

Max : 19.2

Min : -5.0

En dirección ZCO 5: ELS 5

Deformaciones globales u-Z

Coeficiente de deformaciones: 450.00
Máx. u-Z: 19.2, Mín. u-Z: -5.0 [mm]
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Bajo la hipótesis ELS 6 se obtienen los siguientes desplazamientos [Ilustración A.I.16-A.I.18] 

[Tabla A.I.6]: 

Desplazamientos máximos: 

 

 

 

  

 

 

 

 

 

 

 

 

Los resultados recogidos para las combinaciones de cargas estudiadas en situación de Estado 

Límite de Servicio son los siguientes [Tabla A.I.7]: 

Se puede comprobar que los resultados obtenidos en la simulación son admisibles, dado que 

los desplazamientos de la simulación son menores a los desplazamientos máximos admisibles 

descritos en el Código Técnico de la Edificación. 

DESPLAZAMIENTOS MÁXIMOS 

Ux (mm) 3,8 Uy (mm) 4,0 Uz (mm) 19,3 

   Flecha máxima (mm) Desplome máximo (mm) 

  

Combinaciones 
de carga 

Simulación  
uz (mm) 

CTE 
(mm) 

¿Es 
admisible? 

Simulación 
ux/uy (mm) 

CTE 
(mm) 

¿Es 
admisible? 

CO1 ELS 1 CC1 12 62,133   2,3 (uy) 37,28   

CO2 ELS 2 CC1 + CC2 19,2 62,133   3,8 (uy) 37,28   

CO3 ELS 3 CC1 + CC2 + CC3 19,3 62,133   3,9 (uy) 37,28   

CO4 ELS 4 CC1 + CC4 11,9 62,133   2,4 37,28   

CO5 ELS 5 CC1 + CC2 + CC4 19,2 62,133   3,9 (uy) 37,28   

CO6 ELS 6 
CC1 + CC2 + CC3 

+ CC4 
19,3 62,133   4 (uy) 37,28   

Ilustración A.I.16. Desplazamientos en x. Ilustración A.I.17. Desplazamientos en y. 

Ilustración A.I.18. Desplazamientos en z. 

Tabla A.I.6. Resumen de los desplazamientos máximos bajo hipótesis ELS 6. 

Z X

Y

Deformaciones

globales

uX [mm]

 3.8

 3.2

 2.5

 1.9

 1.3

 0.7

 0.0

-0.6

-1.2

-1.9

-2.5

-3.1

Max :  3.8

Min : -3.1

En dirección ZCO 6: ELS 6

Deformaciones globales u-X

Coeficiente de deformaciones: 450.00
Máx. u-X: 3.8, Mín. u-X: -3.1 [mm]

Z X

Y

Deformaciones

globales

uY [mm]

 4.0

 3.3

 2.6

 1.9

 1.1

 0.4

-0.3

-1.1

-1.8

-2.5

-3.3

-4.0

Max :  4.0

Min : -4.0

En dirección ZCO 6: ELS 6

Deformaciones globales u-Y

Coeficiente de deformaciones: 450.00
Máx. u-Y: 4.0, Mín. u-Y: -4.0 [mm]

Z X

Y

Deformaciones

globales

uZ [mm]

19.3

17.0

14.8

12.6

10.4

 8.1

 5.9

 3.7

 1.5

-0.7

-3.0

-5.2

Max : 19.3

Min : -5.2

En dirección ZCO 6: ELS 6

Deformaciones globales u-Z

Coeficiente de deformaciones: 450.00
Máx. u-Z: 19.3, Mín. u-Z: -5.2 [mm]

Tabla A.I.7. Flecha máxima y desplome máximo en las distintas combinaciones de carga. 
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7.2. Estado Límite Último (ELU) 
 

 ESTADO LÍMITE ÚLTIMO 1. ELU 1. 

El Estado Límite Último 1 presenta la hipótesis de Peso Propio (CC1) con un coeficiente 

de 1.35. Los resultados obtenidos son  [Ilustración A.I.19-A.I.20] [Tabla A.I.8]: 

 

Tensión equivalente máxima de Von Mises: 

 

 

 

 

 

 

 

 

 

 

 

 ESTADO LÍMITE ÚLTIMO 2. ELU 2. 

En el Estado Límite Último 2 se aplica la carga de Peso Propio (CC1) con un coeficiente 

de 1,35 y la Sobrecarga de uso (CC2) con un coeficiente de 1,35. Bajo dicha hipótesis la 

distribución de tensiones es [Ilustración A.I.21-A.I.22] [Tabla A.I.9]: 

 

Tensión equivalente máxima de Von Mises: 

 

 

 

 

 

 

 

TENSIÓN MÁXIMA 

σVM (kN/cm2) 13,63 

Ilustración A.I.19. Distribución σVM en la losa. 
Ilustración A.I.20. Distribución σVM en el cuerpo. 

Tabla A.I.8. Tensión máxima bajo hipótesis ELU 1. 

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.08

0.99

0.90

0.82

0.73

0.64

0.56

0.47

0.38

0.29

0.21

0.12

Max : 1.08

Min : 0.12

En dirección ZCO 7: ELU 1

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.08, Mín. Sigma-eqv,max,Mises: 0.12 [kN/cm 2 ]

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.01

0.92

0.83

0.74

0.64

0.55

0.46

0.37

0.28

0.18

0.09

0.00

Max : 1.01

Min : 0.00

En dirección ZCO 7: ELU 1

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.01, Mín. Sigma-eqv,max,Mises: 0.00 [kN/cm 2 ]

Ilustración A.I.21. Distribución σVM en la losa. Ilustración A.I.22. Distribución σVM en el cuerpo. 

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.78

1.64

1.49

1.35

1.21

1.06

0.92

0.77

0.63

0.49

0.34

0.20

Max : 1.78

Min : 0.20

En dirección ZCO 8: ELU 2

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.78, Mín. Sigma-eqv,max,Mises: 0.20 [kN/cm 2 ]

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.60

1.45

1.31

1.16

1.02

0.87

0.73

0.58

0.44

0.29

0.15

0.00

Max : 1.60

Min : 0.00

En dirección ZCO 8: ELU 2

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.60, Mín. Sigma-eqv,max,Mises: 0.00 [kN/cm 2 ]
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 ESTADO LÍMITE ÚLTIMO 3. ELU 3. 

En esta hipótesis se considera el Peso Propio (CC1) con un coeficiente de 1,35, la 

Sobrecarga de uso (CC2) con un coeficiente de 1,35 y la carga de Nieve (CC3) con un 

coeficiente de 1,5. Los resultados obtenidos son [Ilustración A.I.23-A.I.24] [Tabla A.I.10]: 

 

Tensión equivalente máxima de Von Mises: 

 

 

 

 

 

 

 

 

 

 

 ESTADO LÍMITE ÚLTIMO 4. ELU 4. 

El Estado Límite Último 4 contempla la aplicación del Peso Propio (CC1) con un 

coeficiente de 1,35 y la carga de Viento (CC4) con un coeficiente de 1,5. Bajo esta hipótesis 

se concluye [Ilustración A.I.25-A.I.26] [Tabla A.I.11]: 

 

Tensión equivalente máxima de Von Mises: 

 

 

 

 

 

 

TENSIÓN MÁXIMA 

σVM (kN/cm2) 22,42 

TENSIÓN MÁXIMA 

σVM (kN/cm2) 22,43 

Tabla A.I.9. Tensión máxima bajo hipótesis ELU 2. 

Ilustración A.I.23. Distribución σVM en la losa. Ilustración A.I.24.  Distribución σVM en el cuerpo. 

Tabla A.I.10. Tensión máxima bajo hipótesis ELU 3. 

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.78

1.64

1.49

1.35

1.21

1.06

0.92

0.78

0.63

0.49

0.34

0.20

Max : 1.78

Min : 0.20

En dirección ZCO 9: ELU 3

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.78, Mín. Sigma-eqv,max,Mises: 0.20 [kN/cm 2 ]

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.60

1.46

1.31

1.17

1.02

0.87

0.73

0.58

0.44

0.29

0.15

0.00

Max : 1.60

Min : 0.00

En dirección ZCO 9: ELU 3

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.60, Mín. Sigma-eqv,max,Mises: 0.00 [kN/cm 2 ]

Ilustración A.I.25. Distribución σVM en la losa. 
Ilustración A.I.261. Distribución σVM en el cuerpo. 

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.08

0.99

0.90

0.82

0.73

0.64

0.56

0.47

0.38

0.29

0.21

0.12

Max : 1.08

Min : 0.12

En dirección ZCO 10: ELU 4

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.08, Mín. Sigma-eqv,max,Mises: 0.12 [kN/cm 2 ]

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.01

0.92

0.83

0.74

0.64

0.55

0.46

0.37

0.28

0.18

0.09

0.00

Max : 1.01

Min : 0.00

En dirección ZCO 10: ELU 4

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.01, Mín. Sigma-eqv,max,Mises: 0.00 [kN/cm 2 ]
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 ESTADO LÍMITE ÚLTIMO 5. ELU 5. 

En esta hipótesis se han aplicado el Peso Propio (CC1) con un coeficiente de 1,35, la 

Sobrecarga de uso (CC2) con un coeficiente de 1,35 y la carga de Viento (CC4) con un 

coeficiente de 1,5. Los resultados obtenidos son [Ilustración A.I.27-A.I.28] [Tabla A.I.12]: 

 

Tensión equivalente máxima de Von Mises: 

  

 

 

 

 

 

 

 

 

 

 ESTADO LÍMITE ÚLTIMO 6. ELU 6. 

Las cargas aplicadas en la hipótesis del Estado Límite Último 6 son: el Peso Propio (CC1) 

con un coeficiente de 0,8, la Sobrecarga de uso (CC2) con un coeficiente de 0,8 y la carga de 

Viento (CC4) con un coeficiente de 1,5. La distribución de tensiones resulta [Ilustración 

A.I.29-A.I.30] [Tabla A.I.13]: 

Tensión equivalente máxima de Von Mises: 

  

 

 

 

 

 

 

TENSIÓN MÁXIMA 

σVM (kN/cm2) 13,63 

TENSIÓN MÁXIMA 

σVM (kN/cm2) 22,43 

Tabla A.I.11. Tensión máxima bajo hipótesis ELU 4. 

Ilustración A.I.27. Distribución σVM en la losa. IlustraciónA.I.28. Distribución σVM en el cuerpo. 

Tabla A.I.12. Tensión máxima bajo hipótesis ELU 5. 

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.60

1.46

1.31

1.17

1.02

0.87

0.73

0.58

0.44

0.29

0.15

0.00

Max : 1.60

Min : 0.00

En dirección ZCO 11: ELU 5

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.60, Mín. Sigma-eqv,max,Mises: 0.00 [kN/cm 2 ]

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.78

1.64

1.49

1.35

1.21

1.06

0.92

0.77

0.63

0.49

0.34

0.20

Max : 1.78

Min : 0.20

En dirección ZCO 11: ELU 5

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.78, Mín. Sigma-eqv,max,Mises: 0.20 [kN/cm 2 ]

Ilustración A.I.29. Distribución σVM en la losa. Ilustración A.I.30. Distribución σVM en el cuerpo. 

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.06

0.98

0.89

0.81

0.72

0.63

0.55

0.46

0.38

0.29

0.20

0.12

Max : 1.06

Min : 0.12

En dirección ZCO 12: ELU 6

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.06, Mín. Sigma-eqv,max,Mises: 0.12 [kN/cm 2 ]

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

0.95

0.86

0.77

0.69

0.60

0.52

0.43

0.34

0.26

0.17

0.09

0.00

Max : 0.95

Min : 0.00

En dirección ZCO 12: ELU 6

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 0.95, Mín. Sigma-eqv,max,Mises: 0.00 [kN/cm 2 ]
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 ESTADO LÍMITE ÚLTIMO 7. ELU 7. 

En el Estado Límite Último 7 se han aplicado el Peso Propio (CC1) con un coeficiente de 

1,35, la Sobrecarga de uso (CC2) con un coeficiente de 1,35, la carga de Nieve (CC3) con un 

coeficiente de 1,5 y la carga de Viento (CC4) con un coeficiente de 0,9. Los resultados 

obtenidos bajo dicha hipótesis son [Ilustración A.I.31-A.I.32] [Tabla A.I.14]: 

 

Tensión equivalente máxima de Von Mises: 

   

 

 

 

 

 

 

 

 

 

 ESTADO LÍMITE ÚLTIMO 8. ELU 8. 

Finalmente, la hipótesis del Estado Límite Último 8 aplica la carga de Peso Propio (CC1) 

con un coeficiente de 1,35, la Sobrecarga de uso (CC2) con un coeficiente de 1,35, la carga 

de Nieve (CC3) con un coeficiente de 0,75 y la carga de Viento (CC4) con un coeficiente de 

1,5. Los resultados obtenidos bajo dicha hipótesis son [Ilustración A.I.33-A.I.34] [Tabla 

A.I.15]: 

 

Tensión equivalente máxima de Von Mises: 

   

 

 

 

 

 

TENSIÓN MÁXIMA 

σVM (kN/cm2) 13,21 

TENSIÓN MÁXIMA 

σVM (kN/cm2) 22,43 

Tabla A.I.13. Tensión máxima bajo hipótesis ELU 6. 

Ilustración A.I.31. Distribución σVM en la losa. Ilustración A.I.32. Distribución σVM en el cuerpo. 

Tabla A.I.14. Tensión máxima bajo hipótesis ELU 7. 

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.78

1.64

1.50

1.35

1.21

1.06

0.92

0.77

0.63

0.49

0.34

0.20

Max : 1.78

Min : 0.20

En dirección ZCO 13: ELU 7

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.78, Mín. Sigma-eqv,max,Mises: 0.20 [kN/cm 2 ]

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.60

1.46

1.31

1.17

1.02

0.87

0.73

0.58

0.44

0.29

0.15

0.00

Max : 1.60

Min : 0.00

En dirección ZCO 13: ELU 7

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.60, Mín. Sigma-eqv,max,Mises: 0.00 [kN/cm 2 ]

Ilustración A.I.33. Distribución σVM en la losa. 
Ilustración A.I.34. Distribución σVM en el cuerpo. 

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.78

1.64

1.49

1.35

1.21

1.06

0.92

0.77

0.63

0.49

0.34

0.20

Max : 1.78

Min : 0.20

En dirección ZCO 14: ELU 8

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.78, Mín. Sigma-eqv,max,Mises: 0.20 [kN/cm 2 ]

Z X

Y

Tensiones normales


-eqv ,max ,Mises [kN/cm
2

]

1.60

1.46

1.31

1.17

1.02

0.87

0.73

0.58

0.44

0.29

0.15

0.00

Max : 1.60

Min : 0.00

En dirección ZCO 14: ELU 8

Superficies Tensiones Sigma-eqv,max,Mises

Superficies Máx. Sigma-eqv,max,Mises: 1.60, Mín. Sigma-eqv,max,Mises: 0.00 [kN/cm 2 ]
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Se ha añadido la tasa de trabajo para que sea sencillo evaluar a qué porcentaje del máximo 

trabaja la estructura en cada combinación de cargas. Los resultados recogidos bajo las diversas 

hipótesis estudiadas son los siguientes  [Tabla A.I.16]: 

 

 

 

  

 

Se puede comprobar que el estudio del Estado Límite Último concluye con unos 

resultados admisibles, dado que ninguna de las combinaciones de cargas estudiadas implica una 

tensión equivalente máxima de Von Mises mayor a la tensión máxima admisible del acero 275 

(27,5 kN/cm2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

TENSIÓN MÁXIMA 

σVM (kN/cm2) 22,43 

   σ eqv,Max, Mises (kN/cm2)  

  
Combinaciones de carga 

Simulación 
(kN/cm2) 

Material 
(kN/cm2) 

Tasa de 
trabajo (<1) 

¿Es 
admisible? 

CO7 ELU 1 CC1 13,63 27,5 0,4956   

CO8 ELU 2 CC1 + CC2 22,42 27,5 0,8153   

CO9 ELU 3 CC1 + CC2 + CC3 22,43 27,5 0,8156   

CO10 ELU 4 CC1 + CC4 13,63 27,5 0,4956   

CO11 ELU 5 
CC1 + CC2 + CC4 

22,43 27,5 0,8156   

CO12 ELU 6 13,21 27,5 0,4804   

CO13 ELU 7 
CC1 + CC2 + CC3 + CC4 

22,43 27,5 0,8156   

CO14 ELU 8 22,43 27,5 0,8156   

Tabla A.I.15. Tensión máxima bajo hipótesis ELU 8. 

Tabla A.I.16. σ  equivalente máxima de Von Mises en las distintas combinaciones de carga. 
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8. Anexo II. Uniones metálicas 
 

En este Anexo se describen la cimentación perdida de la losa suspendida y las uniones 

metálicas presentes en la estructura mencionadas en el Apartado 2.1. dimensiones geométricas. 

Tal y como se menciona en el Apartado 2.1. Dimensiones geométricas la solución 

estructural propuesta para la losa suspendida es una cimentación perdida mediante vigas 

embebidas en la propia losa. La estructura de dicha cimentación perdida es la reflejada en las 

Ilustraciones A.II.1-A.II.3. Las vigas embebidas en el hormigón de la losa se unen a los pilares 

mediante uniones metálicas. Las uniones se llevan a cabo gracias a los muñones presentes en 

los pilares que se introducen en las vigas, tras ello, se lleva a cabo la unión completa mediante 

tornillos. 

Las vigas  que actúan de sujección entre pilares presentan barras de acero corrugado, 

de aproximadamente 300 mm de longitud, en disposición perpendicular a las vigas, para 

garantizar la unidad del conjunto. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Ilustración A.II.1. Esquema en AutoCAD de la cimentación perdida. 

Ilustración A.II.2. Esquema de la cimentación perdida 
realizado en AutoCAD. 
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En la Ilustración A.II.3 se aprecia el tipo de unión entre las vigas de la cimentación y el 

anillo de radio 2 m. En este caso la unión atornillada se ejecuta en el anillo. 

 

 

 

 

 

 

 

 

A continuación se describen las diversas uniones metálicas presentes en el conjunto [Ilustración 

A.II.4]: 

 

  

  

  

  

  

  

  

  

 

 

La primera unión señalada [Ilustración A.II.5] consiste en la introducción de las vigas en 

los muñones que sobresalen del anillo del lucernario, para posteriormente, atornillar dichas 

uniones con placas adosadas al anillo para su completo anclaje. 

 

 

 

 

 

 

 

Ilustración A.II.3. Detalle de la cimentación perdida realizado en AutoCAD. 

Ilustración A.II.4. Gráfico con las uniones metálicas presentes en el modelo. 

Ilustración A.II.5. Detalle de la unión 1 realizado en Inventor. 
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En segundo lugar se describe la unión del anillo de 0,5 m de diámetro con el resto de 

vigas arqueadas del lucernario. Tal y como puede apreciarse en la Ilustración A.II.6 el anillo 

presenta muñones en los que se insertan las vigas arqueadas del lucernario, y tras ello, se 

atornillan de forma similar a la unión 1. 

 

 

 

 

 

  

La tercera unión descrita es la presente entre el anillo de 20 m del lucernario con el hormigón 

armado del cuerpo de la estructura. En las Ilustraciones A.II.7-A.II.8 se pueden apreciar las 

armaduras calculadas para el cuerpo en el Apartado 4.2. Diseño del armado. La unión del anillo 

con el homigón armado se realiza mediante barras de acero corrugado, de forma similar a las 

vigas presentes en la cimentación perdida de la losa suspendida. Para realizar la unión del anillo 

con las vigas que sustentan la losa se han colocado placas para permitir el posterior atornillado 

de las uniones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ilustración A.II.6. Detalle de la unión 2 realizado en Inventor. 

Ilustración A.II.7. Detalle de la unión 3 en AutoCAD. 

Ilustración A.II.8. Detalle de la unión 3 en AutoCAD. 
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En la unión 4 se hace referencia a los elementos de la unión 1 detallando la unión de las 

vigas arqueadas con el anillo de 2 m de radio. En la Ilustración A.II.9 se puede observar como la 

unión se realiza mediante muñones y un posterior atornillado mediante placas. 

 

 

 

 

 

 La unión 5 [Ilustración A.II.10], situada junto a la unión 3, se lleva a cabo entre el anillo 

de 20 m de diámetro y las vigas arqueadas del lucernario. La unión se realiza mediante muñones 

presentes en el anillo que se introducen en las vigas arqueadas y se garantiza la unidad del 

conjunto gracias a la presencia de placas que permiten el posterior atornillado. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Ilustración A.II.9. Detalle de la unión 4 en Inventor. 

Ilustración A.II.10. Detalle de la unión 5 en Inventor. 

Z

X

Y

IsométricoCO 6: ELS 6

Ilustración A.II.11. Gráfico en detalle de las ventanas de la estructura. 
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 Por último, se detallan las uniones presentes en las ventanas del conjunto. La unión 

entre las ventanas y el cuerpo de la estructura [Ilustración A.II.12] se realiza mediante barras de 

acero corrugado que se introducen en el hormigón armado para garantizar la unidad de los 

elementos. 

 

 

 

 

 

 

 

 

 

 

 

 

 La unión 7 hace referencia a las vigas que se entrecruzan en las ventanas. Tal y como 

puede verse en la Ilustración A.II.13, las uniones se realizan mediante la presencia de muñones 

y atornillado posterior de las vigas gracias a placas adosadas a las mismas. 

 

 

 

 

 

 

 

 

 

 

 Destaca la gran presencia de diversas uniones metálicas, sobre todo, en la zona del 

lucernario. Por ello, para llevar a cabo dicha estructura se debe prestar especial atención al 

proceso de montaje. La secuencia de montaje debe permitir la correcta unión de las vigas y 

anillos presentes en el conjunto. En caso de no seguir la secuencia correcta de montaje resultaría 

imposible llevar a cabo dicho proyecto. 

Ilustración A.II.12. Detalle de la unión 6 en Inventor. 

Ilustración A.II.13. Detalle de la unión 7 en Inventor. 
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 La secuencia de montaje debería comenzar con la unión de las vigas arqueadas al anillo 

de 0,5 m de diámetro, de forma conjunta con los distintos arcos que conjuntamente 

constituyen el anillo de 2 m de diámetro. Tras ello se realizaría la unión entre las vigas 

arqueadas y el anillo de 20 m de diámetro. En último lugar se deberían añadir las vigas que 

sustentan la losa suspendida a los anillos de 4 y 20 m de diámetro.  

El montaje de las ventanas resulta más sencillo. Se deberán unir todas las vigas que se 

entrecruzan y tras ello insertar el conjunto de la ventana con las barras corrugadas de acero en 

el hormigón armado para su perfecta unión. 

 


