000085402 001__ 85402
000085402 005__ 20200716101502.0
000085402 0247_ $$2doi$$a10.1016/j.physd.2018.10.003
000085402 0248_ $$2sideral$$a109240
000085402 037__ $$aART-2019-109240
000085402 041__ $$aeng
000085402 100__ $$aClemente Salvador, Miguel Ángel
000085402 245__ $$aTime to failure of dynamic local load-sharing fiber bundle models in 1 to 3 dimensions
000085402 260__ $$c2019
000085402 5060_ $$aAccess copy available to the general public$$fUnrestricted
000085402 5203_ $$aExtensive Monte Carlo simulations are carried out in one, two and three dimensions for dynamic local load-sharing fiber bundle models following a power-law breaking rule with exponent . This exponent controls the degree of disorder of the bundle. The results are obtained using two methods of introducing disorder in the simulations. In the standard, or classical, Monte Carlo method the disorder is quenched; in the second, or radioactive method the disorder is annealed. Both methods give identical mean time-to-failure values for systems of the same size. However, the radioactive method proves to be more efficient due to the smaller standard deviation of the probability distribution function of the time-to-failure. We take advantage of this efficiency to compute the asymptotic mean time-to-failure of large systems as a function of the degree of disorder, as parameterized by . Based on these extensive simulations, conclusions are drawn regarding the upper critical dimension of time-dependent local load-sharing fiber bundle models.
000085402 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000085402 590__ $$a1.807$$b2019
000085402 591__ $$aMATHEMATICS, APPLIED$$b55 / 260 = 0.212$$c2019$$dQ1$$eT1
000085402 591__ $$aPHYSICS, MATHEMATICAL$$b20 / 55 = 0.364$$c2019$$dQ2$$eT2
000085402 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b43 / 85 = 0.506$$c2019$$dQ3$$eT2
000085402 591__ $$aPHYSICS, FLUIDS & PLASMAS$$b19 / 34 = 0.559$$c2019$$dQ3$$eT2
000085402 592__ $$a0.929$$b2019
000085402 593__ $$aCondensed Matter Physics$$c2019$$dQ1
000085402 593__ $$aMathematical Physics$$c2019$$dQ1
000085402 593__ $$aStatistical and Nonlinear Physics$$c2019$$dQ2
000085402 593__ $$aApplied Mathematics$$c2019$$dQ2
000085402 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000085402 700__ $$0(orcid)0000-0001-7275-9321$$aGómez Jiménez, Javier$$uUniversidad de Zaragoza
000085402 700__ $$0(orcid)0000-0002-4303-9525$$aFernández-Pacheco Pérez, Amalio$$uUniversidad de Zaragoza
000085402 7102_ $$12004$$2398$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física de la Tierra
000085402 7102_ $$12000$$2685$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Petrología y Geoquímica
000085402 773__ $$g390 (2019), 1-8$$pPhysica, D$$tPHYSICA D-NONLINEAR PHENOMENA$$x0167-2789
000085402 8564_ $$s470472$$uhttps://zaguan.unizar.es/record/85402/files/texto_completo.pdf$$yPostprint
000085402 8564_ $$s74186$$uhttps://zaguan.unizar.es/record/85402/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000085402 909CO $$ooai:zaguan.unizar.es:85402$$particulos$$pdriver
000085402 951__ $$a2020-07-16-09:13:33
000085402 980__ $$aARTICLE