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Fig. 1. We propose a practical method that enables us to capture spatially-varying BRDFs from unstructured flash photographs. It yields high-quality SVBRDFs,

as well as detailed geometry of 3D objects, without relying on any expensive supporting hardware nor controlled illumination, using instead any hand-held

conventional digital camera with a built-in flash. No input geometry is needed in our algorithm. Image (a) shows our acquisition setup, while (b) – (e) show

example results of our reconstructions.

Capturing spatially-varying bidirectional reflectance distribution functions

(SVBRDFs) of 3D objects with just a single, hand-held camera (such as an

off-the-shelf smartphone or a DSLR camera) is a difficult, open problem.

Previous works are either limited to planar geometry, or rely on previously

scanned 3D geometry, thus limiting their practicality. There are several

technical challenges that need to be overcome: First, the built-in flash of

a camera is almost colocated with the lens, and at a fixed position; this

severely hampers sampling procedures in the light-view space. Moreover,

the near-field flash lights the object partially and unevenly. In terms of

geometry, existing multiview stereo techniques assume diffuse reflectance

only, which leads to overly smoothed 3D reconstructions, as we show in

this paper. We present a simple yet powerful framework that removes the

need for expensive, dedicated hardware, enabling practical acquisition of

SVBRDF information from real-world, 3D objects with a single, off-the-shelf

camera with a built-in flash. In addition, by removing the diffuse reflection

assumption and leveraging instead such SVBRDF information, our method

outputs high-quality 3D geometry reconstructions, including more accurate

high-frequency details than state-of-the-art multiview stereo techniques.

We formulate the joint reconstruction of SVBRDFs, shading normals, and

3D geometry as a multi-stage, iterative inverse-rendering reconstruction

pipeline. Our method is also directly applicable to any existing multiview

3D reconstruction technique. We present results of captured objects with

complex geometry and reflectance; we also validate our method numerically

against other existing approaches that rely on dedicated hardware, additional

sources of information, or both.
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1 INTRODUCTION

Acquiring and reproducing the appearance of real-world objects is

one of themain goals of computer graphics. Many different advances

have been presented recently, from methods relying on specialized

hardware (e.g., [Ghosh et al. 2008; Holroyd et al. 2010; Nam et al.

2016; Schwartz et al. 2013; Tunwattanapong et al. 2013]), to mobile

setups (e.g., [Aittala et al. 2015; Hui et al. 2017; Riviere et al. 2015,

2017]). However, there is an inevitable tradeoff between the capa-

bilities of these methods and their cost. For instance, while mobile

methods are cheap but limited to near-planar geometries, prices for

professional acquisition systems, such as Otoy LightStage, X-Rite

TAC7 and Lumio3D, start at $200,000.

Despite the obvious practical advantages of simpler acquisition

setups, capturing the SVBRDFs of a full, nonplanar 3D object with

an off-the-shelf camera, such as a smartphone camera, has not yet

been demonstrated, due to its technical challenges. First, capturing

SVBRDF information requires carefully controlled, dense sampling

of the light-view space; this is usually achieved with professional

supporting structures, such as light domes, or four-dimensional

gantries. Since the built-in flash of a conventional camera is almost

colocated with the lens, this leads to a severely limited sampling of
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the light-view space; moreover, the near-field flash light illuminates

the object unevenly. Second, since the vast majority of conventional

cameras lack a depth sensor, recovering geometry must rely on

passive multiview stereo techniques that assume diffuse reflectance

only; however, in the presence of spatially-varying bidirectional

reflectance, this leads to inaccurate reconstructions. Third, due to the

unstructured nature of hand-held acquisition, pixel correspondences

between 3D points in the object and 2D pixels in multiple images

are not guaranteed. These correspondences are guaranteed in a

photometric stereo setup, where a fixed camera and varying light

sources are used, or when the cameras and lights are locked in

a physical structure, providing structured input. In a hand-held

approach, both the intrinsic/extrinsic parameters as well as the 3D

geometry of the object should be given, which is information that

we do not have. The resulting misalignments are the main hindrance

of high-quality reconstruction of 3D geometry and SVBRDF with

an unstructured capture setup.

In this work, we present a compact, practical capture method

using multiple unstructured flash photographs as input (see Fig-

ure 1(a)). It requires just a single conventional camera (including

smartphone cameras) with a built-in flash. Key to our method is a

novel joint reconstruction of SVBRDFs, shading normals, and 3D

geometry. Such joint reconstruction is performed on a multi-stage,

iterative and alternating optimization inverse-rendering pipeline,

which progressively improves 3D-to-2D correspondences, leading

to high-quality reconstruction of both SVBRDFs and 3D geometry.

Our work significantly advances the state of art of appearance

acquisition setups. It allows the practical acquisition of SVBRDF

information of 3D objects using a single camera, not limited to planar

surfaces, and not requiring a commercial 3D scanner to accurately

capture input geometry. In addition, our method yields significantly

better 3D geometry reconstructions than state-of-the-art multiview

stereo techniques, since we take SVBRDF information into account

in the reconstruction instead of assuming diffuse surfaces; as our

results show, we acquire well-defined, high-frequency details that

get lost to over-smoothing in existing methods. Last, we validate our

method including side-by-side photographs of real objects, novel

renderings under different illuminations, objective error against

measured BRDFs, and objective comparisons against state-of-the-

art methods that use more sophisticated hardware.

2 RELATED WORK

Most acquisition methods using a conventional camera focus either

on geometry or reflectance capture exclusively, while simultaneous

acquisition of both usually requires specialized hardware (such as

a mechanized gantry, a light stage, or a commercial 3D scanner).

Previous works can be classified as follows: (a) Reflectance capture

from known 3D geometry; (b) Reflectance capture limited to 2D

planar geometry; (c) 3D reconstruction assuming diffuse reflection

only; and (d) Simultaneous acquisition of reflectance and 3D geom-

etry; Our work falls in this last category, removing the need for any

specialized hardware. For a more in-depth discussion on acquisition,

we refer the reader to recent review works on the topic [Guarnera

et al. 2016; Weinmann and Klein 2015; Weyrich et al. 2009].

Reflectance from known 3D geometry. Lensch et al. [2001; 2003]

introduced a pioneering method to capture SVBRDFs of known 3D

objects, comprising clustered basis reflectances. Per-texel reflectance

is progressively refined with linear blending. Zhou et al. [2016]

proposed an SVBRDF acquisition method that jointly optimizes

reflectance bases and blending weights on known 3D geometry. This

method aims at finding the smallest number of basis reflectances,

then blending them smoothly. Different from our method, these

techniques require a commercial 3D scanner to accurately capture

the input 3D geometry.

Reflectance capture of 2D planar geometry. Conventional cameras

such as a smartphone camera have also been used to capture re-

flectance information of planar surfaces. Using an LCD screen and

a camera, Aittala et al. [2013] propose an efficient SVBRDF capture

method restricting the range of angular reflectance samples, as well

as a two-shot, flash/no-flash reflectance acquisition method for the

particular case of stationary materials [Aittala et al. 2015], for which

larger areas can be synthesized from small reconstructions. Riviere

et al. [2015] and Hui et al. [2017] capture the appearance of near-

flat objects using a smartphone camera from varying viewpoints.

The light source provides active illumination, from which normals

and reflectance are estimated. Ren et al. [2011] propose a portable

system consisting of a smartphone camera, a hand-held linear light

source, and a custom-built BRDF chart. They take a short video of a

target object along with the BRDF chart while moving the hand-held

light tube, and recover SVBRDFs from a linear combination of the

reference BRDFs. Last, Thanikachalam et al. [2017] present an ac-

quisition setup similar to Won et al.’s [2012], focusing on capturing

reflectance of planar art paintings.

Other acquisition systems that capture high-quality SVBRDFs

on planar surfaces rely on more sophisticated hardware. Nam et

al. [2016] offer simultaneous acquisition of reflectance and nor-

mals at microscopic scale, placing the sample in a small dome with

computer-controlled LED illumination. Other systems include four-

axis spherical gantries to sample many different light-camera com-

binations [Lawrence et al. 2006], linear light source reflectometry

[Chen et al. 2014; Gardner et al. 2003;Wang et al. 2008], or condenser

lenses [Dong et al. 2010]. While these acquisition methods are also

limited to near-flat objects, we estimate SVBRDFs and geometry for

full 3D objects.

3D Reconstruction with diffuse assumption. Shading normals are

often used to enhance geometric details, assuming diffuse-only

reflectance for the whole object. Higo et al. [2009] and Park et

al. [2016] first get a base geometry using structure-from-motion

(SfM) and multiview stereo (MVS), then update the geometry using

estimated surface normals assuming diffuse reflectance. Hernandez

et al. [2008] use shape-from-silhouette instead for the first step. Zoll-

hofer et al. [2015] run Kinect Fusion [Newcombe et al. 2011] to get

a signed distance function of a surface. They further refine it using

surface shading cues. Won et al. [2012] use two mobile devices, as

a camera and light source respectively. They take multiple images

from a fixed viewpoint under varying light directions, and recon-

struct the surface from photometric stereo, similar to [Nam and Kim

2014]. Other recent methods have further demonstrated the use of

smartphone cameras, to capture the 3D shape of objects [Kolev et al.
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2014; Ondruska et al. 2015], or even large scenes [Kahler et al. 2015;

Schöps et al. 2015], again based on both SfM and MVS techniques.

All these methods assume that the surface reflectance of the object

being reconstructed is diffuse only; as such, they cannot recover

SVBRDF information.

Simultaneous acquisition of reflectance and 3D geometry. Previous

works that capture reflectance and 3D geometry simultaneously

have relied on specialized hardware setups, whose prices may be as

high as several hundred thousand dollars.

Many light stage designs exist, relying on discrete spherical illu-

mination with polarized light sources (e.g., [Ghosh et al. 2010, 2011,

2008; Graham et al. 2013; Nagano et al. 2015]). Tunwattanapong

et al. [2013] built a similar structure with an LED arm that orbits

rapidly to create a continuous spherical illumination with harmonics

patterns. Holroyd et al. [2010] built a spherical gantry equipped with

a projector-camera pair on two mechanical arms, using phase-shift

patterns for 3D geometry. Other similar dome structures of multiple

cameras have been presented [Schwartz et al. 2013], using struc-

tured light patterns for 3D geometry and representing reflectance

as bidirectional texture functions (BTF).

There are more approachable methods that require less expensive

hardware, such as a light probe, a multi-light structure, or an RGB-D

camera. Zhou et al. [2013] built a multi-light device consisting of

72 LED lights on a circle board, which allows them to combine SfM

and photometric stereo to get 3D geometry. They further estimate

SVBRDF based on the 3D geometry, but do not use this information

to refine the geometry or surface normals. Oxholm et al. [2014]

utilize an environment map for estimating spherical illumination

by capturing a light probe, then solve an inverse rendering problem.

Xia et al. [2016] capture a video sequence of more than a thousand

frames using a mechanical rotary stage. The method requires per-

vertex dense samplingwith at least two clear changes of illumination

per vertex. Last, Wu et al. [2016; 2015] rely on depth information

using Kinect Fusion [Newcombe et al. 2011] as well as spherical

illumination or IR illumination from the depth camera. Recently,

Baek et al. [2018] proposed an SVBRDF acquisition method that

can capture polarimetric appearance of both diffuse and specular

reflection with high-resolution normals, relying on input geometry

from structured lighting.

These systems either rely on specialized hardware (which may be

bulky, expensive to build, or hard to get), or alternativelymake use of

additional sources of information like multiple lights, spherical illu-

mination, or depth. In addition, they usually require time-consuming

calibration processes, while acquisition times are often in the order

of several hours; our method is free from all these restrictions.

3 OVERVIEW

We provide an overview of our method in Figure 2. Our input con-

sists of a set ofK unstructured flash photographs I = {Ik } takenwith
two different exposures to extend the dynamic range. We convert

Ik into linear radiance Lk by accounting for exposure variation (see

Section 4). We then formalize our problem as obtaining SVBRDF in-

formation F (described as a set of basis BRDFs Fb and corresponding

weight maps W), shading normals N, and 3D geometry X. First, in

our initialization step, we obtain a set of camera extrinsic parameters

and a rough base geometry using a conventional 3D reconstruction

technique that includes SfM, MVS and mesh reconstruction (refer

to Section 6 for the impact of the initial process). From this initial

geometry, our method then simultaneously reconstructs SVBRDF

information while improving the recovered 3D geometry, using

an iterative process. It starts with an inverse rendering stage (Sec-

tion 5), whose goal is to obtain a first approximation for W, Fb ,

and N. We first reconstruct SVBRDF information (Fb and spatial

weights W, Section 5.1). We then estimate shading normals N re-

lying on SVBRDF information (Section 5.2). After obtaining W, Fb ,

and N, we update details of the 3D geometry X with variant input

of shading normals N by means of Poisson surface reconstruction,

which allows us to additionally force photometric consistency in

the reconstruction (Section 6). We repeat this iterative optimization

of inverse rendering and geometric reconstruction until the error

converges.

We only need to estimate the position of the flash with respect

to the camera, and the camera optical parameters. This is a process

that needs to be performed only once; we use an image of multiple

chrome balls and checkerboard images as described in Lensch’s

work [2003].

Fig. 2. Overview of our algorithm. We iterate estimations of reflectance F

(defined as basis functions Fb with corresponding weight mapsW), shading

normals N, and 3D geometry X. Section 5 describes the estimation of F and

N, while Section 6 describes the estimation of X.

4 IMAGE FORMATION MODEL

We use an off-the-shelf conventional camera with a built-in flash to

capture a set of unstructured flash photographs as input. Since the

dynamic range of a conventional camera is insufficient to capture

detailed specular reflections under the flash illumination, we rely

on multiple exposures either varying the exposure time Δt (for cell
phones with a fixed flash intensity), or varying the flash intensity

Δд (often described as the EV number in DSLR cameras). Our image

formation model for pixel position u can be formulated as [Debevec

and Malik 1997]:

I (u) = L(o; x)ΔtΔд, (1)

where I (u) is the captured image, and L(o; x) is the outgoing radiance
from point x on the 3D geometry in the view direction o. The

captured radiance at point x can be formulated as the reflection

equation:

L(o; x) = f (i, o; x,n)L(−i; x)(n · i), (2)

where f (i, o; x,n) is the reflectance function at point x, n is the

normal vector, and L(−i; x) represents incident light at x from light

vector i.

Finding correspondences. In our hand-held setup, the informa-

tion about multiple exposures is stored per point x in 3D, rather

than per pixel u in 2D. We thus need to obtain the geometric re-

lationship between x and u. We first obtain the camera’s intrinsic
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Fig. 3. (a) The Rusinkiewicz parameterization of the light and camera. (b) Ge-

ometry of our setup with a smartphone. Due to the position of the flash

light and the camera, we are limited to a single sample in θd .

parameters using Zhang’s method [2000]; this yields the initial re-

lationship between a camera pixel u ∈R2 and its corresponding

captured surface point x ∈R3 as the perspective projection matrix

π ∈R3×3. Since photographs are captured without any supporting

structure, we obtain the rotation/translation transformation ma-

trix [R |t] ∈ R3×4 defining the extrinsic relationship between the

camera and the surface point for each photograph using SfM. In

addition, we incrementally update the intrinsic parameters such as

focal length for each picture using SfM for more accurate geometric

correspondences by compensating the focus breathing effect due

to auto-focusing. The resulting intrinsic and extrinsic parameters

define the geometric relationship between pixel u and point x in

Equation (1), as [u, 1]ᵀ = π [R |t] [x, 1]ᵀ.

Initial geometry. From the captured images and camera poses,

we first obtain a dense 3D point cloud using MVS [Schönberger

et al. 2016]. However, this initial point cloud usually suffers from

severe high-frequency noise due to specular reflections created by

the flash illumination, which violates the underlying diffuse texture

assumption of the MVS method. To mitigate this noise, we first

create a low-resolution (27 voxel grid) mesh using the screened

Poisson surface reconstruction [Kazhdan and Hoppe 2013]. We then

subdivide this low-resolution mesh to obtain a finer mesh (210),

which is used as the initial geometry of our method. Despite the

high resolution of this initial geometry, fine geometric details are

missing since they have been removed together with noise during

the Poisson reconstruction step. Our iterative geometry update

algorithm (see Section 6) recovers these details.

5 SPATIALLY-VARYING REFLECTANCE AND NORMALS

We first aim to obtain SVBRDF and normal information (W, Fb ,

and N in Figure 2) from our input photographs. Given a set of P
surface (vertex) points X = {xp }, captured from different light/view

directions ik and ok in K photographs, we can express the captured

radiance as L = {L(ok ; xp )}. We then formulate the inverse render-

ing problem that satisfies the image formation model in Equation (2)

as finding the set of two unknowns { f (ip,k , op,k ; xp ,np ),np } that
minimizes the following objective function:

O =
P∑

p=1

K∑
k=1

vp,k
(
L(op,k; xp) − f (ip,k, op,k; xp,np)L(−ip,k; xp)(np · ip,k)

)2
,

(3)

where vp,k is the visibility function of vertex xp in image k . This
inverse rendering problem factorizing reflectance and shading is

Table 1. List of variables used in the paper

xp 3D position of p-th vertex, p = 1, . . . , P
np geometric normal of xp
ñp shading normal of xp
ip,k light direction of xp at k-th camera

op,k view direction of xp at k-th camera

L(op,k ; xp ) outgoing radiance from xp towards op,k
L(−ip,k ; xp ) incoming radiance at xp from -ip,k
f (i, o; x,n) BRDF at x

fb (i, o) b-th basis BRDF, b = 1, . . . ,B
ωp,b blending weight of fb at xp
vp,k visibility of xp at Ik
Fb set of basis BRDFs, {fb }

W set of blending weights, {ωp,b }

N set of shading normals, {ñp }

X set of 3D points, {xp }

a severely ill-posed, underdetermined problem. We develop an

iterative alternating optimization approach, which updates the four

unknown elements W, Fb , N, and X until the rendering results

satisfy the input images. To avoid overfitting, we test the optimized

parameters with unused datasets by separating input photographs

into different training and test datasets. We first reconstruct the full

space of SVBRDFs, and use this information to obtain normals, as

explained in the rest of this section.

5.1 Reconstructing the SVBRDF (F)

To obtain the SVBRDF F, we first estimate a set Fb = { fb } of basis
BRDFs, then blend them with spatially-varying weight maps W.

Similar to other approaches [Alldrin et al. 2008; Chen et al. 2014;

Lawrence et al. 2006; Nam et al. 2016; Wu and Zhou 2015; Zhou

et al. 2016], our reconstructed SVBRDF F in Equation (3) can be

formulated as:

F =
{
f
(
i, o; xp

)}
=

{
B∑
b=1

ωp,b fb (i, o)

}
, (4)

with W = {ωp,b } the set of per-point blending weights.

Flash photography setup. BRDF acquisition requires dense sam-

pling in θh , θd , and ϕd [Rusinkiewicz 1998] (see Figure 3(a)), which

is usually achieved using additional supporting hardware. The spec-

ular reflectance changes rapidly as a function of θh = cos−1 (h · n),

where h is the halfway vector, while Fresnel effects strongly depend

on θd = cos−1 (h · i). On the other hand, reflectance remains almost

constant along ϕd , which is the azimuth angle of light i around h. In

our setup, the captured datasets include dense sampling along the

θh and ϕd dimensions. However, since the light and the camera are

fixed and very close together in our setup (Figure 3(b)), this leads

to a single sample for θd at about ∼5◦. Coincidentally, note that

the angle θd = 5◦ is the optimal angle for the one-shot capture, as

recently shown by Nielsen et al. [2015].

Reflectance model. We use the Cook-Torrance (CT) model [1982]

with a non-parametric normal distribution function (NDF) term

for better presentations of specular reflection (following a recent

evaluation on BRDF models [Bagher et al. 2016]; we do not rely on
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analytic functions such as Beckmann [Cook and Torrance 1982] or

GGX [Walter et al. 2007] given our dense sampling along the θh and

ϕd angles as explained above). Our basis reflectance model fb can

be expressed as follows:

fb (i, o) =
ρd
π
+ ρs

D(h)G(n, i, o)F (h, i)

4(n · i)(n · o)
, (5)

where ρd and ρs are the diffuse and specular albedos, D is the uni-

variate NDF term for specularity, G is the geometric term, and F
is the Fresnel term. Our NDF is represented as a non-parametric

tabulated function D (θh ) ∈ R
M . We setM=90, so that each element

stores the BRDF value at corresponding θh with the square root

mapping of angles, following Matusik’s work [2003]. We use the

V-groove cavity model for the shadowing/masking term G. Since
there is no observation of the Fresnel effect in our setup, we set the

term F as a constant [Nam et al. 2016]; in practice, this helps reduce

complexity during the optimization. We found that this approxima-

tion performs better than using a constant index of refraction (IOR)

value for the Fresnel term [Aittala et al. 2013; Dong et al. 2010; Xia

et al. 2016], as Figure 8 will show.

Reconstructing SVBRDFs. We can represent the basis BRDF in

Equation (5) as a coefficient vector f b = [ρd , ρsFD(θh )]
ᵀ ∈ RM+1.

Note that the geometric factor G is excluded from the coefficient

vector. From Equation (2), we first convert captured radiance into

captured reflectance f ′
p,k

. Given this captured reflectance f ′
p,k

and a

measurement vectorΦp,k ∈ RM+1 specifying the sampled θh angles

and the geometric factor G/(4(n · i)(n · o)) per pixel observation,

we have f ′
p,k
= Φᵀ

p,k
f p . We can blend the basis BRDFs f b and

spatial weights ωp,b to approximate
∑B
b=1

ωp,b f b . We can then

reformulate Equation (3) as an objective function to reconstruct the

basis BRDFs and its corresponding weights as:

minimize
Fb ,W

P∑
p=1

K∑
k=1

vp,k

(
f ′
p,k

− Φ
ᵀ
p,k

B∑
b=1

ωp,b f b

)2
. (6)

For a more stable separation of diffuse and specular reflection, we

clamp D(θh>60) to zero, following existing distribution functions

such as Beckmann and GGX used in recent rendering works [Lee

et al. 2018]. In addition, we impose non-negative and monotonicity

constraints on D (θh ) (which should monotonically decrease as θh
increases). We do not impose a smoothness constraint in order

to reproduce strong specular peaks more accurately. To update

Fb , we minimize Equation (6) while keeping W fixed. It becomes

a quadratic programming problem on Fb with sparse input data.

We use a commercial sparse quadratic programming solver (NAG

e04nkc) [NAG 2015].

Reconstructing W. We first estimate the set of diffuse compo-

nents of the basis BRDF Fb by averaging color observations around

the median brightness per vertex, clustering materials using K-
mean in CIELAB space: this leads to an initial binary-labeled set of

weightsW. Finding the optimal number of basis BRDFs is still an

open challenge. Zhou et al. [2016] determine the number of basis

progressively in an ad-hoc manner, increasing it until the optimiza-

tion converges. We instead follow other prior works [Alldrin et al.

2008; Lawrence et al. 2006; Lensch et al. 2003; Nam et al. 2016; Ren

et al. 2011], and set this number empirically. In Figure 13, we explore

the impact of this basis number in our results.

In subsequent iterations, we update W using the estimated Fb
from the previous optimization. Updating W with fixed Fb in Equa-

tion (6) is equivalent to minimizing the following objective function

on each point xp :

minimize
ωp

1

2

��Qωp − r
��2 s.t. ωp,b > 0,

B∑
b=1

ωp,b = 1. (7)

The k-th row in Q∈RK×B is
[
f1(ip,k , op,k ), . . . , fB (ip,k , op,k )

]
, and

and the k-th element of r∈RK is L(op,k ; xp )/L(−ip,k ; xp )/(np · ip,k ),
where we apply the visibilities vp,k and additional weightswp,k =

cos(θi )sin(θh ) (where θi = cos
−1(np ·ip,k ) and θh = cos

−1(np ·hp,k ))

to each element of both Q and r. The cosine terms compensate for

the unstable observations at grazing angles, while the sine terms

prevent bias towards specular observations. Minimizing Equation (7)

is a standard quadratic programming problem, which we solve using

the convex quadratic programming solver (NAG e04ncc).

Color. We use color basis BRDFs and monochromatic blending

weights. When updating Fb , we optimize for each color channel

independently. When updatingW, we optimize blending weights

of each vertex using all color channels.

5.2 Reconstructing Normals (N)

Once we obtain a set of basis BRDFs Fb = { fb } and blending weights
W = {ωp,b } to yield SVBRDFs F, we need to estimate a set of per-

vertex shading normals N = {ñp }. Since estimating surface normals

with BRDFs is again a severely ill-posed problem, we apply an itera-

tive optimization. First, we feed initial surface normals np from the

current geometry (updated in the previous iteration) as input vari-

able for BRDF f at point xp in Equation (3). Since incoming/outgoing

radiance, incoming/outgoing directions, and the reflection of the

vertex are all known, we can factorize shading normals ñp using a

standard linear least squares regression with no constraints. Note

that geometric normals np at point xp are different from shading

normal ñp . As we iterate the optimizations, the difference between

np and ñp gradually converges (see Figure 15). Since observations

at grazing and mirror-reflection angles are less reliable, we intro-

duce an additional weight taking into account illumination angles,

as wp = cos(θi ) sin(θh ), where θi = cos−1(n · i). The sine term

prevents potential bias towards misaligned surface normals and

specular reflectances from previous estimations.

6 GEOMETRY UPDATE WITH PHOTOMETRIC

CONSISTENCY

After estimating weightsW, basis BRDFs Fb and shading normalsN,

we now aim to reconstruct the geometry X that agrees with the

shading observations. Figure 4 illustrates this process. From an ini-

tial point cloud, we first obtain a rough base geometry, which we

subdivide into a finer mesh. We then update this geometry with

estimated shading normals, for which two options exist: Nehab’s

method [2005], and the screened Poisson reconstruction method

[Kazhdan and Hoppe 2013]. While in principle both methods can

preserve both low- and high-frequency details, Nehab’s method
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transfers surface gradients to the target geometry directly, while

the Poisson method employs a coarse-to-fine reconstruction. This

is a crucial difference in our unstructured capture setup, since the

shading normals N can be assumed to contain high frequency noise,

and the direct transfer in Nehab’s method would also transfer this

noise. We thus choose the screened Poisson method, designed to

reconstruct implicit surfaces using tri-quadratic B-spline basis func-

tions in a voxel grid in the coarse-to-fine approach. This leads to a

robust performance when integrating noisy surface normals to 3D

geometry. Figure 5 shows a comparison between the two methods.

The screened Poisson method reconstructs an implicit surface χ̂
from an input point cloud as:

minimize
χ

∫ ��V(xp ) − ∇χ (xp )
��2dxp + α ∑

xp ∈X

χ2(xp ), (8)

where V: R3→R3 is a vector field derived from the set of shading

normalsN, ∇χ (xp ) is the gradient of the implicit scalar surface func-

tion χ : R3→R, χ2(xp ) is the squared distance between a point xp
and the implicit surface χ , and α is the weight of the regularization

term; we determine α ∈ [0.1, 4.0] depending on the confidence of

the initial geometry. For discretizing the implicit surface function χ ,
we set the resolution of our voxel grid to 29 or 210 for each dimen-

sion, which roughly corresponds to 0.1 – 0.2mm for the physical

objects captured in this paper.

While the original algorithm employs geometric normals, we

leverage our shading normals ñp , and aim to find an implicit surface

χ̂ whose gradients match ñp instead (i.e., each vertex should present

consistent shading given different view and light directions). Once

the implicit function is determined, we apply marching cubes [Kazh-

dan and Hoppe 2013] to convert it to a polygonal mesh.

We iteratively updateW, Fb ,N, andX until we find the optimal 3D

geometry and SVBRDF.We evaluate theHausdorff distance [Cignoni

et al. 1998] between the previous mesh and the newX. We repeat the

whole process in Figure 2 until the test RMS error of the photometric

difference in Equation (3) starts to increase. To avoid overfitting, we

randomly separate captured images into training and testing groups

with a 9:1 ratio.

Fig. 4. Updating 3D geometry. Initialization yields a rough base geometry

from an initial point cloud. After subdividing it into a finer mesh, we apply

Poisson surface reconstruction with photometric consistency.

7 RESULTS AND EVALUATION

Captured results. We demonstrate our method with two different

off-the-shelf cameras: a DSLR (Nikon D7000) and a mobile phone

Fig. 5. Comparison between Nehab’s method [2005] and screened Poisson

surface reconstruction [Kazhdan and Hoppe 2013] for our unstructured

capture setup. The result of Nehab method contains high-frequency noise

from the estimated shading normals in our unstructured capture setup. In

contrast, the geometry from the screened Poisson method presents cleaner

details, handling the input noise robustly through its coarse-to-fine recon-

struction.

(Nexus 5X). When using a mobile phone, we use the official Android

API which supports RAW data, and allows to adjust camera param-

eters such as exposure time, f-stop, or ISO. We capture between

100 – 400 images per object, which takes approximately 10 – 20 min-

utes.

Figure 6 shows some of our reconstructed results, including side-

by-side comparisons with a photograph, novel renderings under

environment maps, and the recovered normal maps. These objects

span a wide range of geometries and materials, including metal,

wood, plastic, ceramic, resin, and paper. Our method yields good

results in all cases, including complex shapes like the genus-one

shape of the ceramic frog. Please refer to the supplemental material

for videos.

Influence of ambient light. Using a mobile phone, we capture the

input images under dark illumination to minimize the impact of

ambient light; however, this is not necessary using a DLSR, which

has a stronger built-in flash. This is shown in Figure 7. We cap-

ture one image I1 under both flash light and indoor lighting (Fig-

ure 7(b)), and a second one I2 without the flash (Figure 7(c)), using

the same capture settings (1/250 sec., f /16, ISO 100) for both im-

ages. We calculate the signal-to-noise ratio (SNR) from those images

as SNR = 20log10 (‖I1 − I2‖F /‖I2‖F ), where ‖·‖ is the Frobenius

norm. The flash image shows a significantly higher SNR, 85.22 dB,

which confirms that the built-in flash in DSLRs is bright enough to

remove the need for a darkroom.

Validation of our BRDF model. We have validated our reconstruc-

tions against the full MERL BRDF dataset, following the process

shown in Figure 8(a). From a full 3D BRDF, we subsample a (θd ,ϕd )
plane at θd = 5◦, which corresponds to the BRDF sampling angles

in our flash photography setup. We add random noise to the sub-

sampled data, whose average intensity is set to one tenth of the

original signal intensity. We then fit the noisy samples to our BRDF

model and reconstruct the full 3D BRDF using the fitted parameters.

As opposed to previous works that model the Fresnel function with

a fixed IOR [Aittala et al. 2013; Dong et al. 2010; Xia et al. 2016], we

combine a fixed Fresnel term (F (h, i) = 1.0) with specular albedo ρs
as a Fresnel color vector instead. This is motivated by the fact that
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Fig. 6. Results of our acquisition. For each object, we present a photograph (a), our reconstruction (b), two novel renderings (c) and(d), and surface normals (e).

Please refer to the supplemental materials for the video versions.
ACM Trans. Graph., Vol. 37, No. 6, Article 267. Publication date: November 2018.
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Fig. 7. (a) Capture setup using a DLSR camera. (b) Captured image using

the flash light (1/250 sec., f /16, ISO 100). Its high SNR of 85.22 dB, confirms

that the built-in flash is bright enough to avoid the need for a darkroom.

(c) Captured image (amplified x16 for visualization) with only ambient

illumination without flash using the same settings.

Fig. 8. (a) Validation experiment design of our BRDF reconstruction method.

(b) Comparison of our reconstructed BRDFs with two measured BRDFs

from the MERL dataset (top: brass; bottom: pearl paint). The second and

fourth columns show the result using a constant index of refraction (IOR).

The third and fifth show our results with a constant Fresnel term F , leading

to a more accurate match. The average PSNR for the 100 MERL BRDFs are

12.98 dB and 34.50 dB respectively, for the two approaches. Please refer to

the supplemental material for results on the full MERL dataset.

when the Fresnel effect increases rapidly as θd approaches π/2, the
denominator 4(n · i)(n · o) in Equation (5) decreases significantly,

leading to poor reflectance estimations from inaccurate F .
Figure 8(b) shows rendering results of the reconstructed BRDFs

for two examples, (top) brass and (bottom) pearl paint. The sec-

ond column shows the estimated appearance with a constant IOR

(as previous works), while in the third we show the result of our

constant Fresnel approximation; as the false color maps indicate, a

constant Fresnel term leads to more accurate reconstructions. The

average PSNR of rendering results for the MERL dataset is 12.98

dB and 34.50 dB, respectively, for the two different Fresnel terms.

Please refer to the supplemental material for all the results.

Geometric accuracy. We evaluate our geometry reconstruction

accuracy, compared against a commercial 3D desktop scanner (Nex-

tEngine), and the state of the art 3D reconstructionmethodCOLMAP

[Schönberger 2016]. Since the quality of the output geometry from

COLMAP depends on the voxel resolution, we include both a high-

and a low-resolution result (210, and 27 voxel grids, respectively). As

Figure 11 shows, the high-resolution reconstruction contains high-

frequency errors, while the low resolution leads to over-smooth

surfaces. Starting from this low resolution result, our method yields

Fig. 9. Impact of the number of input images. (a) Captured photograph of

the ceramic frog. (b) Rendering results using 87, 60, and 40 input images. (c)

Corresponding PSNR values. Even with only 60 images, our method yields a

good reconstruction quality, with a plausible PSNR value (27.46 dB). Using

50 images or less, SfM/MVS fails to produce a valid initial geometry, leading

to poor results.

a final reconstruction on-par with the professional 3D scanner, while

also providing spatially-varying reflectance information. The aver-

age Hausdorff differences [Cignoni et al. 1998] from the reference

scanned geometry for the three methods are 0.1063, 0.0917, and

0.0593mm, respectively. The input images were taken with a hand-

held smartphone camera.

Impact of initial geometry. Figure 12 shows the impact of the

input geometry on the final results. We evaluate our geometric

reconstruction from two different input geometries: one from visual

hull [Matusik et al. 2000] (Figure 12, top), and one from COLMAP

(bottom). For both, structural details and reflectance information are

gradually improved in each iteration by our method (notice how the

stair-like artifacts in the initial visual hull reconstruction disappear).

While both input geometries lead to good results, the COLMAP

input geometry yields sharper details. The methods converged after

nine and seven iterations, respectively.

Impact of the number of basis BRDFs. Figure 13 evaluates the

impact of the number of basis BRDFs B on the final reflectance. The

RMSE between reconstructions and photographs in the test dataset

rapidly decreases as B increases. For the object shown in the figure,

we choose B = 9; for the other objects shown in this paper, Figure 14

shows the basis BRDFs (upper right spheres) and their associated

blending weight maps. Specular reflections and diffuse albedos are

well separated by the weight maps.

Impact of the number of input images. We have evaluated the

impact of the number of input images in the final result (shown

in Figure 9 for the ceramic frog). Our method degrades gracefully

as this number decreases, until it reaches a threshold where MVS

fails to yield a complete 3D point cloud, resulting in only a partial

geometry of the object, or SfM fails to find enough camera poses to

reconstruct 3D geometry. For the object shown, MVS fails with less

than 50 images, while SfM fails with less than 40. Using as few as 60

images still produces good reconstruction results, with a high PSNR.

This behavior is similar across different objects: our method is robust

and yields good reconstructions even with a reduced set of images,

provided that SfM and MVS can generate an initial geometry.

Still images vs. video frames. We analyze the potential advantage

of using video instead of still images, due to its simpler capture

procedure and its potential to provide more input images. Figure 10
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Fig. 10. Comparison using video frames as input. The top row shows a

reconstructed 3D object from 195 still images, while the bottom row was

generated from 1,009 video frames. Due to motion blur, inaccurate focus,

and lower dynamic range, the reconstruction using video frames is less

accurate (both in terms of color and geometry), especially in dark areas of

the object.

compares the corresponding reconstructions. The top row shows the

result from 195 still images, captured with a DSLR camera (Nikon

D7000), while the bottom rowwas produced from 1,009 video frames

captured by a mobile phone camera (Nexus 5X; we recovered linear

signals of the video frames using existing methods [Aittala et al.

2015; Hui et al. 2017; Riviere et al. 2015]). Due to motion blur, inac-

curate focus, and a lower dynamic range than the DSLR still images,

the results from video frames show visible color shifts and geomet-

ric artifacts, especially in dark regions. Note that we use a mobile

camera to capture video since the DSLR camera flash light cannot

illuminate an object continuously.

Iterative optimization. Figure 15 analyzes the error evolution dur-

ing the optimization for the Bell object in Figure 11. Figure 15(a)

shows the photometric error, i.e., the difference between rendered

and captured images, where the RMSE values for both training and

test sets first decrease, then start to increase. We thus stop after

the fifth iteration for this object. Refer to Table 2 for reconstruction

details for every object.

Table 2. Reconstruction details for every object.

Figure 15(b) shows the evolution of the geometry; our reconstruc-

tion pipeline is robust, and rapidly updates the bulk of the geometry

in the first few iterations, then refines the geometry so that errors

decrease more slowly. Last, Figure 15(c) plots the angle differences

between the geometric normals ñp and the shading normals np for

every vertex, described in Section 5.2. The error starts to increase

after the fifth iteration, possibly due to SVBRDF overfitting.

Comparison with a spherical illumination method. We compare

in Figure 16 our method against another using spherical illumina-

tion [Xia et al. 2016], using the same physical object as in Xia’s

paper. Xia’s method estimates the geometry, SVBRDF and incident

illumination simultaneously; however, high-frequency details on

the surface appear to be lost during the reconstruction. In contrast,

our method with active local illumination preserves more geometric

details, and leads to more accurate SVBRDFs. Note that we used a

smartphone camera to obtain the input images.

Processing time. Each step of the initialization for obtaining the

base rough geometry and extrinsic camera parameters takes: (SfM)

∼5minutes, (MVS) 2 – 4 hours, (meshing) ∼1minute. One iteration

of our optimization takes about ∼10 minutes, equally distributed for

each step (W, Fb , N, and X). For the experiment, we used a desktop

computer with Intel i7-3770 CPU 3.40GHz and 32GB of memory

and an NVIDIA GTX1080 GPU.

8 DISCUSSION

We discuss and motivate in this section some key aspects of our

method, as well as its limitations and potential avenues of future

work.

Shadowing and masking. We adopt the V-groove cavity model for

the shadowing/masking termG in our basis BRDF model for simplic-

ity, given thatG is generally smooth and can be simplified without

significant loss of visual quality [Holroyd et al. 2008]. AlthoughG
can be derived from a data-driven normal distribution function D
term (e.g., [Ashikhmin et al. 2000]), this requires an integration of D
over the hemisphere for each observation, which is computationally

expensive.

Sparsity of basis BRDFs. We do not impose any sparsity constraint

when optimizing the blending weights of the basis BRDFs. Some

previous works explicitly limit the number of non-zero blending

weights per surface point to one or two; this is advantageous when

the goal is material editing or material decomposition [Lawrence

et al. 2006], or when there are just a few input images [Zhou et al.

2016]. In our case, this would unnecessarily limit the optimization

process, leading to inaccurate reflectance reconstructions; as shown

in Figure 14, accurate appearance is achieved when blending many

basis BRDFs.

Types of cameras and flash. Our reconstruction algorithm does

not depend on the type of cameras or the type of flash light; most

off-the-shelf cameras in the market, e.g., DLSRs, mirrorless cameras,

point-and-shoot cameras, and mobile phones, have built-in flash

lights, and thus are suitable for our method. As we have shown in

Section 7 with the built-in flash of an entry-level DSLR (e.g., Nikon

D7000), a bright enough flash minimizes the impact of ambient

illumination.

Limitations and future work. Our method is not free from limi-

tations, which open up several avenues of interesting future work.

Due to the hand-held nature of our capture setup, it may be that not

all surface points are properly captured, missing specular highlights
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Fig. 11. We compare our geometric reconstruction with a reference geometry from a commercial 3D scanner (NextEngine), a high-resolution reconstruction

using COLMAP (210 voxel grid for each dimension, same resolution as our output), and a low-resolution reconstruction by COLMAP (27 voxel grid, used as

input for our method). Our reconstruction leads to sharper and cleaner geometry, closer to the reference scanned geometry. The average differences from the

reference geometry are shown on the right.

Fig. 12. Impact of the input geometry. We evaluate our geometric recon-

struction results from two different input geometry: visual hull (top), and

COLMAP (bottom). (a) Progressive updates from the initial geometry. (b)

Close up results including SVBRDF rendering. Although in general an in-

put COLMAP geometry leads to sharper results, note how our method is

robust enough to eliminate the stair-like artifacts from the visual hull input

geometry.

at mirror reflection angles. An alternative approach to represent

SVBRDF is to estimate per-point BRDFs independently, as presented

in [Hui et al. 2017; Riviere et al. 2015; Xia et al. 2016]. In this case, ev-

ery surface point needs to be captured with at least one specular and

one diffuse observation. This may be achieved if the target objects

are 2D planes [Hui et al. 2017; Riviere et al. 2015], or if spherical

illumination is used [Xia et al. 2016]. In our capture setup, we could

increase significantly the number of input images. However, this

becomes impractical and there is no obvious way to ensure that all

the information has been captured. Instead, we have chosen a basis

BRDF approach with their corresponding weight maps.

In terms of geometry, our method inherits some of the fundamen-

tal limitations of image-based 3D modeling techniques: it is thus

possible that overly complex geometries like pinecones cannot be

reconstructed accurately.

Fig. 13. Impact of the number of basis BRDFs. (a) Photograph in the test

set. (b) Evolution of the photometric consistency error (in RMSE) with

the number of basis B . (c) Rendering images with increasing basis BRDFs.

Estimations with a small numbers (B < 7) tend to alter the colors in the

reconstruction, while there are almost no visual differenceswhen the number

is large enough (B > 7).

Fig. 14. Basis BRDFs (upper right sphere) and their associated blending

weight maps. Specular reflections and diffuse albedos are well separated by

the weight maps.

ACM Trans. Graph., Vol. 37, No. 6, Article 267. Publication date: November 2018.



Practical SVBRDF Acquisition of 3D Objects with Unstructured Flash Photography • 267:11

Fig. 15. (a) Photometric errors between reconstructions and photographs

(object: Bell, shown in Figure 11). The RMSE values for both training and

test sets decrease for several iterations, then start to increase at which point

we stop the process (iteration #5). (b) Geometric errors. (c) Angle differences

between the geometric normals and the estimated shading normals. The

angle differences increase after the fifth iteration possibly due to SVBRDF

overfitting.

Fig. 16. We compare our method against the recent work by Xia et al.,

using spherical illumination [Xia et al. 2016]. (left) Reference photograph

and geometry from the NextEngine 3D scanner. (middle) Results from Xia’s

method (images taken from the authors’ paper). (right) Our results, showing

more accurate geometry and reflectance information.

Last, we do not take into account interreflections, subsurface

scattering, nor transparency in our light transport model. Although

we show results with a wide range of materials, capturing objects

with these characteristics with our unstructured approach remains

an open challenge.

9 CONCLUSION

In summary, we have presented a novel solution to simultaneously

reconstruct spatially-varying reflectance and 3D geometry using

just an off-the-shelf camera, by jointly formulating three recon-

struction problems (SVBRDF, shading normals and 3D geometry) as

one. Current works aiming at obtaining similar information simul-

taneously usually require more complex hardware, limiting their

applicability. We have shown the performance of our method over

a wide range of materials and geometries, with results that are

comparable or many times superior to state-of-the-art methods for

capturing only reflectance or geometry; our geometric reconstruc-

tions are comparable to commercial 3D desktop scanning systems.

We believe that our work offers an attractive solution, which can fa-

cilitate in-the-wild geometry and reflectance acquisition for a wider

public.
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