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Apéndice A

Resultados adicionales

En este anexo se incluyen los resultados adicionales generados, producto de evaluar
el método a distintas distancias de visualizacion para todos los modelos del capitulo de
resultados con el objetivo de observar el comportamiento del filtrado a diferentes escalas.

En las Figuras A.1 y A.2 se muestra el tornillo, con detalles geométricos y de albedo,
mientras que en las Figuras A.3, A4, A.5 y A.6 se muestran las estatuas Lucy y Thai
Statue.

Figura A.1: Tornillo renderizado con mapa de ambiente, a diferentes distancias de
visualizacién. Puede observarse como el método filtra correctamente la apariencia,
preserva los detalles y evita el aliasing.
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Figura A.2: Tornillo renderizado con luz puntual a diferentes distancias de visua-
lizacidén para observar el correcto funcionamiento del filtrado.
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APENDICE A. RESULTADOS ADICIONALES

Figura A.3: Estatua Lucy renderizada con mapa de ambiente a diferentes distan-
cias de visualizacién para observar el correcto funcionamiento del filtrado.
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Figura A.4: Estatua Lucy renderizada con luz puntual a diferentes distancias de
visualizacidn para observar el correcto funcionamiento del filtrado.
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APENDICE A. RESULTADOS ADICIONALES

Figura A.5: Estatua Thai renderizada con mapa de ambiente a diferentes distan-
cias de visualizacién para observar el correcto funcionamiento del filtrado.
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Figura A.6: Estatua Lucy renderizada con luz puntual a diferentes distancias de
visualizacién para observar el correcto funcionamiento del filtrado.
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Apéndice B
Implementacion

En este anexo se describe el diseno de software realizado, para dar una buena intuicién
de la estructura y funcionamiento de la implementacién. Se ha llevado a cabo sobre el
trazador de rayos Mjolnir. Los diagramas que se muestran a continuacién se centran en
las clases méas importantes, pudiendo obviar algunas de pequeiio tamano y focalizar asi la
atencion en el funcionamiento global del sistema.

Precompute_CPMs MTLShader
- m.ater!al .

. DirectionalLight Is
shadef) ; Spectrum
set lightdd

CPEMtractor .
FointSampler int lod_index
immap_gize BDRF_Matusik
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compute_area_facetsd newedttr ; Integer sample_calumns
compute_samples_per_facet() get_weights

build_uv_parametarizationd)
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load_fram_fileg
push_backd
*, get()

Y avis_for_this_directiong

,, -
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add{)
get)

Figura B.1: Diagrama de clases de la fase de pre-cémputo.

Por otro lado, debido a la cantidad de datos que es necesario manejar simultdneamente
en la aplicacion, se han desarrollado estructuras out-of-core con un sistema de cache que

51



facilita la gestién eficiente de todos los datos que no caben en memoria.

Imain fnoint samnler Inarameterizer ICP_extractar IScene IMTLShader ICPsolver| |foutcore_CPs

sample)

outcore_w(SPoint)

<_ _________

parameterize(m ab_size, outcore_wv(SPoint)
T
l
outcdre_v(SPDint)

e e B LR
compute_CPstoutcore_vSPaint)
= {1 for all texel t

for all ptin t

5

visihility and shadow tests

T — ,

tracelray) |

koo e e e —

shadeintersectiob)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

: | ﬁj

1 1
Spectrum

i Fo-m—m - 1------

1

1

1

1

1

1

1

1

1

1

I

I

I

I

I

I

1

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
l

get_CPSdarray(Bpectru rrh)) }

T T
cps and\i'vmghts N ﬁ]

Figura B.2: Diagrama de secuencia de la fase de pre-cémputo.

Para generar el LOD de CPM, es necesario, para cada nivel, llevar a cabo un costoso
pre-calculo, compuesto de tres partes principales: distribucién de puntos sobre la superfi-
cie, muestreo de radiancias en todos esos puntos para un conjunto determinado de pares de
direcciones de luz y del observador, seleccién de puntos representativos, calculo de pesos
asociados y almacenamiento en memoria tanto de los puntos y pesos como del area visible
proyectada de cada uno de los téxels.

En la Figura B.1 se muestra el diagrama de clases bésico del algoritmo de precalculo,
y en la Figura B.2 el diagrama de secuencia para esta fase. En primer lugar se lleva a cabo
la distribucién de muestras sobre M,rg para, después, utilizar la parametrizacién para
obtener la correspondencia téxels-muestras. Para cada téxel t, se evalua la radiancia en
todos sus puntos, para el conjunto de direcciones de entrada y salida sobre la hemisfera. La
matriz de radiancias tabuladas sirve de entrada al algoritmo de selecciéon de columnas, que
devuelve un subconjunto ¢ con unos pesos asociados. El area visible proyectada se calcula
aprovechando los rayos trazados para evaluar la reflectancia, y CPs y A,;s se almacenan
en estructuras out-of-core para su posterior uso en tiempo de rénder.

En la Figuras B.3 y B.4 se exponen el diagrama de clases y de secuencia del algoritmo
de render. En el bucle de muestras sobre la imagen, se proyectan rayos sobre la geometria
simplificada. Una vez se produce la interseccion con M;, se accede, a través de la para-
metrizacién, al nivel de mipmap y al téxel ¢; adecuados. Para todos los CPs dentro de
ti, se llevan a cabo los test de sombra y visibilidad, y se evalua su radiancia. La suma
de las reflectancias pesadas, divididas por el A,;s de t; para la direccién de la cdmara
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APENDICE B. IMPLEMENTACION

CPMRenderer
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Figura B.3: Diagrama de clases del sistema de render.

correspondiente define el valor final del téxel.
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Figura B.4: Diagrama de secuencia de la fase de render.
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Apéndice C

Coordenadas de textura y nivel de
mipmap

Las coordenadas de textura estan definidas en cada vértice de la malla e indican la
correspondencia de ese punto con el mapa de textura en 2D. A la hora de renderizar, la
resolucién de dicho mapa de textura debe ser tal que la proyeccién de un téxel en el plano
de la pantalla no sea mayor que un pixel.

A N
dPdu,
P
dPdv T

Figura C.1: Geometria diferencial en un punto P, donde N es la normal y dPdu y

. . .. Op 0O
dPdv son las derivadas parciales de |a superficie, a—p y a—p
u~ Oy
se define sobre el plano tangente T a la superficie en el punto P.

. La geometria diferencial

Para elegir el nivel de mipmap se necesita por tanto conocer la variacién de u y v con
respecto a las coordenadas x, y, z. Se hace uso de la geometria diferencial (Figura C.1)
para conocer la cantidad de variacién en textura con relacién a la variaciéon en geometria.

Los vectores s y t son ortogonales en el plano tangente a la superficie en p. Las de-

: : . 0 .

rivadas parciales de la superficie, a—p y a—p , también se encuentran en el plano tangente
U v

pero no son necesariamente ortogonales. La normal de la superficie n viene dada por el

on (

ov

cambio diferencial en la normal de la superficie en funciin de u y v.

0 0 on
producto vectorial de op y PP os vectores -2 y no presentados aqui) guardan el
U



El nivel del mipmap [ viene definido por la siguiente expresién

ou\? v\ 2 ou\? ov\?
Il =1log2 — — |, — — C.1
I \/<3x> i <3$> \/<3y> " <3y> (1
donde u y v son las coordenadas de textura, x e y las coordenadas cartesianas, y las
derivadas parciales 0 indican el diferencial de textura con respecto a la geometria.
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Apéndice D
Characteristic Point Maps

Este anexo incluye la publicacién en la que se basa este proyecto, Characteristic Point
Maps, cuyos autores son Hongzhi Wu, Prof. July Dorsey y Prof. Holly Rushmeier, de Yale
University, y que fue publicada en Computer Graphics Forum en 2009.

o7



Eurographics Symposium on Rendering 2009
Hendrik P. A. Lensch and Peter-Pike Sloan
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Characteristic Point Maps

Hongzhi Wu

Julie Dorsey

Holly Rushmeier

Computer Graphics Group, Yale University

Abstract

Extremely dense spatial sampling is often needed to prevent aliasing when rendering objects with high frequency
variations in geometry and reflectance. To accelerate the rendering process, we introduce characteristic point
maps (CPMs), a hierarchy of view-independent points, which are chosen to preserve the appearance of the orig-
inal model across different scales. In preprocessing, randomized matrix column sampling is used to reduce an
initial dense sampling to a minimum number of characteristic points with associated weights. In rendering, the
reflected radiance is computed using a weighted average of reflectances from characteristic points. Unlike existing
techniques, our approach requires no restrictions on the original geometry or reflectance functions.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.7]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Rendering objects with high geometric and material varia-
tion at multiple scales is a challenging task. Efficient filter-
ing techniques are needed to avoid aliasing. To address this
issue, various level of detail representations have been pro-
posed. Mesh simplification techniques (e.g. [Hop96]) gen-
erate geometry at multiple resolutions, and texture mipmap
techniques [Wil83] pre-filter textures at various scales. Re-
cently, Han et al. [HSRGO7] have proposed a filtering
method, where normal maps are used to represent fine-scale
geometry. Unfortunately, these existing techniques are re-
stricted in the variations of geometry and reflectance for
which they can produce an accurate result. In this paper, we
present a new approach, characteristic point maps (CPMs),
to efficiently filter the appearance of models with arbitrary
geometry and material. CPMs can be viewed as a precom-
puted object-space adaptive sampling method for efficient
rendering.

Consider a problematic example, a cylinder with small-
scale sharp ridges with alternating reflectance on various
facets, as shown in Fig. 1. On the left is the result from
densely sampling the full detailed object representation. In
the center is a rendering produced by multi-sampling a sim-
plified geometry combined with a normal map to represent
the ridges. This is the ground truth result for normal map fil-
tering methods (e.g. [HSRGO7]). Clearly the result has not

© 2009 The Author(s)

Journal compilation (©) 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
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Characteristic
Point Maps

Multi-sampled

Ground Truth Normal Map

Figure 1: Renderings of a cylinder using different methods.
The ground truth (a) is obtained by expensive brute-force
multi-sampling. Multi-sampling the simplified geometry with
a normal map is shown in (b). Fig. 1(c) uses CPMs. Fig. 1(d-
f) are top views of different parts of the original cylinder.
The masking effect is shown in (d), and Fig. 1(f) illustrates
the shadowing effect, both of which cannot be represented
using normal maps and are well preserved by our CPMs.
The lighting direction is ®;, and the view direction is ®,.
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Mesh Hierarchy

original model  simplified meshes

Preprocess

=)

Characteristic Point Maps

o level 0 level 1 level n
Original Model

Figure 2: lllustration of our representation. Each texel in
one CPM contains characteristic points defined on the orig-
inal model, which are chosen to preserve the filtered re-
Sflectance function.

retained the appearance generated by the small scale geom-
etry. The masking effects of the blue ridges obscuring the
view of the yellow facets (Fig. 1(d)) that make the left most
part of the cylinder appear blue are lost. The shadowing ef-
fects of the blue ridges that keep light from reaching the yel-
low facets on the right side of the cylinder (Fig. 1(f)) re-
sulting in a blue color are also missing. Fig. 1(c) shows the
rendering using our CPMs. The appearance resulting from
facet masking and shadowing effects is retained.

The main challenge in generating a multi-scale reflectance
representation for simplified geometry is to efficiently com-
pute and represent the 6D spatially-varying filtered re-
flectance function — effectively the bidirectional texture
function BTF [DvGNK99]. BTFs are useful when capturing
real-world appearance, however they are notoriously diffi-
cult to compress or to represent with parametric functions
[MMS™*04]. With CPMs we demonstrate that the geometry
and SV-BRDF that produce the full 6D function can be rep-
resented with a much smaller footprint.

In this paper, we represent an object as a simplified mesh
hierarchy coupled with a CPM hierarchy (Fig. 2). Each texel
in one CPM contains view- and lighting- independent char-
acteristic points on the original object, whose density adapts
to the complexity of the filtered reflectance functions. A hi-
erarchy of CPMs is computed for a variety of scales. In ren-
dering, the reflected radiance is rapidly computed using a
weighted average of reflectances at individual characteristic
points.

The major contribution of this paper is a framework that
efficiently computes and adaptively represents a new hier-
archical representation for any geometry and SV-BRDFs,
using randomized column sampling on a matrix formula-
tion derived from the rendering equation [Kaj86]. Unlike
the normal map filtering method, we accurately incorporate
shadowing and masking effects. We are also able to handle
arbitrary BRDFs. We believe CPMs are the first structures

that efficiently represent multi-scale reflectance functions for
multi-resolution mesh hierarchy with arbitrary SV-BRDFs.

2. Previous Work

Hierarchy of Representations Our CPMs build on the basic
idea of using different representations at different levels of
detail. Kajiya [Kaj85] suggested a hierarchy of scales from
geometry, bump/normal maps to BRDFs. Many researchers
have explored the relationships between various scales. For
example, Westin et al. [WAT92] obtained a densely-sampled
BRDF from scattering events computed from fine-scale ge-
ometry. Becker et al. [BM93] computed smooth transition
from displacement maps, bump maps to BRDFs.

Appearance-Preserving Mesh Simplification Geometric
simplification techniques (e.g. [GH98, LT00, SSGHO1])
maintain small scale details by using colored texture maps
sampled from original objects. Most of these methods fo-
cus on minimizing the parameterization mapping distortion.
However, the actual appearance may not be well-preserved
as fine-scale geometry details are lost during simplification.
Cohen et al. [COM98] introduced normal maps, which cap-
ture small scale surface orientation, in addition to texture
maps. Cook et al. [CHPRO7] proposed an algorithm to ren-
der complex aggregate details by randomly selecting a sub-
set of the geometric elements which preserve the overall
appearance. While the method works well for procedurally
generated models, it is not clear how to extend the idea to
more general cases.

Reflectance Filtering Han et al. [HSRGO7] filtered a cer-
tain class of BRDFs with normal maps as the convolution
of Normal Distribution Function and BRDF. They implicitly
represent fine-scale geometry using a normal map, so nei-
ther shadowing nor masking effects are considered. Further-
more, there are limitations for handling multiple materials
(e.g. only a linear combination of basis BRDFs is allowed).
Tan et al. [TLQ*08] presented a mixture model that fits
the filtered reflectance of Gaussian or cosine-based BRDFs
using Expectation Maximization. Shadowing and masking
effects are approximated using horizon mapping distribu-
tion. Particularly, masking effects are implemented by atten-
uating the unmasked appearance. Ma et al. [MCT"05] fil-
tered BTF [DvGNK99] by applying Principle Component
Analysis(PCA) to the BTF tabulation. However, in order
to approximate high-frequency filtered reflectance functions
faithfully, dense sampling of the 6D BTF is needed which
is expensive both in time and space. Furthermore, it is chal-
lenging to extrapolate the filtered result beyond the resolu-
tion of BTF. In our method, conversion to a BTF representa-
tion is not required.

While we use points in our representation, our approach
is qualitatively different from point-based rendering such as
[SPO4]. We do not represent the shape with points, and so
are not concerned with the issues of visibility of point sets.

(© 2009 The Author(s)
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Symbol Description

A a surface

L(x,0) reflected radiance at point x along
direction ®,

L(A, ) average reflected radiance of A along

direction ®,
bidirectional reflectance distribution
function at point x

f"(x7mz/'7m;))

(A, @;,0,) | average reflectance distribution function
of A

Ayis(@0) visible subset of A when viewed from
direction ®,

ayis(A, o) visible projected area function of A

fx, 0,00) apparent reflectance function at x

R a matrix containing sampled spatially-
varying reflectance functions of A

c a matrix containing sampled columns
from R

ct Moore-Penrose generalized inverse of C

Table 1: Summary of the notation used in the paper.

3. Characteristic Points

We select characteristic points to represent the light scatter-
ing properties of a surface using a filtered reflected function.
In this section we define the filtered reflectance function, and
then show how a matrix formulation is used to select char-
acteristic points.

3.1. Preliminaries

We derive the equation for the effective average reflectance
function. Note that throughout the paper, we focus on ren-
dering under direct illumination only. First, the reflected ra-
diance L at a single point x along direction ®, is

L(x,@,) = /sz Li(x, )V (x,0;) fr(x, 07, 05, ) (1 - ©0;)d ;.

M
Here o; is the lighting direction, ®, is the view direction, 0),’»
and @), are the same directions expressed in the local frame
at x. V is the visibility function, which returns 1 if x is not
blocked along the direction and O otherwise, and L; is the
incident radiance. f; is the SV-BRDF, and n is the normal.
In addition, (-) is the cosine of the angle between the two
vectors, which is clamped to zero if it is negative.

Now if we are looking at surface A from a distance, the
spatially averaged reflected radiance along direction ®, is
the average of all reflected radiance from visible part of A
(Figure 3 illustrates the case). If we define ay;s(A, @,) as the
visible projected area of A along direction ®,, then we have

© 2009 The Author(s)
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Figure 3: lllustration of A, A,js and a5 in the filtered re-
flectance function derivation.

the following equation:
T(A, 00) =———— /
’ avzv(A (00

avls A ,Wp) /m

fr(x,0f, 0p) (n- 0;) d(’Ji dAyis(0), 2

- L(x,@0)dAyis(@o)

L (x, 0;)V (x, ;)

where A,;s(®o) is the subset of A which are visible from di-
rection M,. Note that we use the differential dA,;s, not dA,
because invisible (masked) parts do not contribute to the re-
flected radiance.

It can be verified that
dAyis(00) =V (x,00)(n-0o)dA, 3)

as one could think of A as composed of infinitely many in-
finitesimal discs. dA is the area of one disc, then dA,;s(o)
is just the visible projected area of the disc along direction
,. We further define the apparent reflectance function f as

Fx,@4,00) =V (x, @)V (x, @) fr (x, 0, @ ) (1 - ;) (1~ ).

“
Substituting Eq. 3 and 4 back into Eq. 2 gives
L(A, 0)0)
_— Li( i dw;dA
avm A (00 / $? x ml)f(x’ 0)1,0)0) i
=/ Li(o)| —— ,00)dA |d
/S2 (ml)(awsA @o) /fx 0;, o) ) W;
- /Sz Li(0)T, (A, 01, 00)do;. 5)

In the above derivation, we assume that Vx € A, L;(x, ;) =
L;(®;). This assumption holds for distant lights (e.g. direc-
tional lights, environment maps), and we will discuss how to
handle local lights in Sec. 4.2.

Finally, we obtain the equation for filtered reflectance
function from Equation 5:

7 (A w0, 00) = Two /f 0 00)dA. (6)

VIS



0

Woqg

o

Figure 4: Conceptual diagram for computing characteristic points and weights. The original surface (a) is sampled as a dense
point set (b); (c) the reflectance for each point is computed for sampled incident and view directions and then stored in a matrix
with one column per sample point and one row per incident/view direction pair; (d) the matrix is approximated by a small
subset of columns with associated weights; (e) the filtered reflectance from a dense sampling of points on the original surface
is approximated by a weighted sum of reflectance from the points associated with the selected matrix columns.

3.2. Matrix Formulation of the Filtered Reflectance
Function

To compute the filtered reflectance function in Equation 6,
we first discretize the spatial integration into a summation:

1 m

(A 0,0,) ~ f(Xj,(Oi,(Dg)AAj. @)
1

Ayis (A7 (00) j=
Here we consider m points x; € A, each representing discrete
area AA ;. This discretization gives a reasonable approxima-

tion as long as we use a sufficiently large m.

Next, we focus on efficiently computing the summation
term in Eq. 7, and leave the m term to Sec. 3.4. Ob-
serve that in the summation, f is evaluated m times for dif-
ferent input parameters. This could be expensive since m is
typically large. Intuitively, if we could cluster "similar" f
functions together, the summation could be approximated by
evaluating f at only a few characteristic points Xy, with ap-
propriate weights oy

C

f(.xj'70)i,(,0())AAj ~ Zf(ffk,(l)[,(k)g)(lk, (8)

s

= =1
where ¢ < m.

In order to find these characteristic points {%1,%2,...,%}
as well as their corresponding weights {0, 0, ..., 0}, we

take advantage of recent advances in low-rank matrix ap-
proximation theory by adopting the algorithm described in
[DMMO6]. To apply the algorithm, we further convert our
problem to a matrix form by tabulating the summation term
at d sampled incident and view direction pairs:

m

f(xjvwilawO])AAjv"'v Zf(Xj70)id7(ng)AAj)
j=1

1)’ ©)

M=

~.
Il

=R

—
—
—

where matrix R is equal to

f(-thiu(DUI)AAl f(xm7(l)i],(0()l)AAm
f(xlvmizywﬂz)AAl f(Xm70)5270)02)AAm

f()C],(Did,(l)gd)AAl f(xm,mi,[7(00d )AAm

Observe that each column of R is a tabulation of the summa-
tion term at point x; at different sampled directions (w;, ).
Therefore, finding the characteristic points is equivalent to
choosing representative columns in R.

It is important to note that in the current formulation we
have introduced two simplifications that may limit the qual-
ity of our results. First, Eq. 5 effectively uses a box fil-
ter when integrating over the spatial domain. This does not
eliminate high frequency signals as a low-pass filter would
do. Second, the matrix formulation is based on the summa-
tion term in Eq. 7 only. As a result, our column sampling
technique described next can at best optimize point selection
with respect to the summation term, although we measure
errors using the full equation 7. A new matrix formulation
could be developed which also includes the ﬁ term. In fu-
ture work we plan to explore methods that do not include
these simplifications.

3.3. Randomized Matrix Column Sampling

We briefly describe the randomized column sampling al-
gorithm in [DMMO6] for selecting representative columns.
Given any matrix R and k < rank(R), the algorithm runs in
O(SVD(R)) time and selects ¢ columns of R as a new matrix
C. Then the matrix CC" R approximates R with relative error
in terms of || R — Ry, ||, where Ry is the best rank k approxi-
mation to R in the Frobenius norm, C™ is the Moore-Penrose
generalized inverse, and || - || is the Frobenius norm. We
show the pseudo-code in Tab. 2. (Interested readers are di-

(© 2009 The Author(s)
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1. Compute SVD of R as

by 0 vI
R=UxvT =U ( k > k
0" Tp i) \Voi

2. Compute p; as
=1 (AT AT S L (S )
bPi=3 Vell? (Vk)~():p_kVprk) Hzpfkvpr,k\lz
3. Sample ¢ columns from R according to {p;}

Table 2: Pseudo-code of the randomized matrix column
sampling algorithm in [DMMOG]. Here p = rank(R), {p;}
is the probability distribution to select a column from R.

rected to the original paper for details on the algorithm as
well as the proof.)

Once we have selected c¢ representative columns of R, it
is straightforward to compute corresponding weights o;,. We
just substitute the approximation matrix CC" R back into Eq.
9, which yields

m m

(Y fxj,0i1,001)A4 ..., Y f(x), 054, @04)AA;)
j=1 j=1
~CCtR(1 ... D' =cClo o ... o)

=Y [k i1, @01)0, ..., Y f(&k, 0ig, 0oq)0%). (10)
k=1 k=1

Hence we have

T a) =ctr(l 1 ... ' an
It is possible that some values of oy are negative. While
this formulation may produce a good approximation for all
sampled (;,®,) pairs, we have found in practice that the
reflectance computed from these weights is very unstable,
even for view and lighting directions that are slightly dif-
ferent from sampled ones. Therefore, we clamp negative
weights to zero, which essentially encourages a result with
non-negative weights. If negative weights cannot be avoided,
our algorithm tries to find the result which gives best ap-
proximation after clamping the negative weights. Our ex-
periments show good quality in computing reflectance for
directions that are not sampled during precomputation.

As in many randomized algorithms, we repeat the above
procedure a few times to improve the quality of the result.
‘We measure approximation error using the squared distance
between the average reflectance functions computed from R
and from column representatives. A similar error measure-
ment appears in [LFTG97].

In a sense, the column-sampling process can be viewed
as expressing the summation in Eq. 7 in terms of a minimal
set of basis functions U{ f (&)} € U{f(x;)}, given approxi-
mation error constraint. Essentially we are exploiting the co-
herence in apparent reflectance functions defined at different
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points. Note that we cannot select CPs directly from the re-
sult of SVD, since we have to be able to select columns of
the original matrix and the eigenvectors do not correspond
to original columns anymore.

In a different context, Hasan et al. [HPBO7] formalizes
their problem also as column-based matrix sampling to re-
duce the number of lights in rendering computations. While
their paper develops a rapid clustering method for fast pre-
viewing, which might be applicable to our problem, we are
more concerned about approximation quality and therefore
we would like to base our algorithm on a theoretical re-
sult that is proved to be optimal for any input, as shown
in [DMMO6]. In contrast, [HPB07] does not give formal
proof, except for showing that their method is unbiased.

3.4. Visible Projected Area Function

In Eq. 7 the filtered reflectance function is represented as a
! term times a summation term. We have described

avis(A, M,
the<détagls of simplifying the summation term which leaves
consideration of the a;s term. Essentially a,;s(A,-) is a 2D
spherical function whose computation requires costly global
visibility calculations. Fortunately, a,;; can be precomputed
and compressed for efficient evaluation during rendering. In
precomputation, we render the original mesh on the GPU
from a densely sampled set of directions ®,. A high resolu-
tion texture is used to mark which part of the mesh corre-
sponds to a texel in the CPM hierarchy. The rendering result
is then read back from GPU to compute the visible projected
area. In our experiments, this approach is an order of mag-
nitude faster than an implementation solely based on CPU.
Finally, we parameterize a,;; over a cube-map and compress
each face of the cube-map using Haar wavelets. We choose
Haar wavelets for its simplicity, good compression rate and
rapid signal reconstruction.

4. Computing and Using Characteristic Point Maps

Given the method for computing characteristic points in Sec.
3, we describe in this section how an object is preprocessed
into a CPM hierarchy and a mesh hierarchy. We then de-
scribe the corresponding rendering algorithm.

4.1. Preprocessing

Starting from an original model Morg, we apply existing
geometry-based simplification techniques (e.g. [GH97]) to
get a hierarchy of simplified meshes {M|,M>,...}. We then
establish a parameterization 7 on M, for the CPM hierar-
chy. The visible projected area functions a,;s for all texels in
CPMs are computed using the method described in Sec. 3.4.

Next, we densely sample random points over the surfaces
of Morg, denoted as X. Then, for every texel p in each mip
level of the CPMs, we find its corresponding geometry g(p)
on Myrg based on Euclidean distances. We densely sample
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point set Xy over M and use the parameterization 7 to
assign each of these points to a corresponding texel in the
CPM. Then we sort Xy, into a k-d tree. Finally, for any point
x on Morg, we look up in the k-d tree for the closest point in
X1, and assign the associated texel to x. The union of all
points belonging to texel p is defined as g(p).

We select characteristic points for texel p from g(p), us-
ing the technique introduced in Sec. 3.3. We determine the
parameters required by the randomized matrix column sam-
pling algorithm as follows. First, we select a minimum k
such that the energy of the rank-k approximation matrix is
above a user-specified percentage y (a typical value is 97%)
of the total energy of R in the Frobenius norm (see Sec. 3.3
for more details on k). Second, we compute the number of
CPs, ¢, using a binary-search like algorithm, based on a user-
specified error threshold € (a typical value is 30dB in terms
of Signal-to-Noise Ratio(SNR)). We start with the interval
[k,cm], where ¢, is the maximum number of CPs supplied
by the user. We use the median in the current interval as
the number of columns to see whether we could approxi-
mate with an error below € (see Sec. 3.3 on how we com-
pute approximation error). Based on this result, we reduce
the interval into its upper or lower half, and then repeat the
above process until there is only one integer left, which is
recorded as c. Third, the number of directional pair samples,
d, is estimated based on the angular frequency of the filtered
reflectance functions. A typical value of 4096 is sufficient to
produce good results in most of our experiments.

The reflectance function is different for each color chan-
nel. One option is to use the weighted average of the sampled
reflectances for each channel to select characteristic points.
Then weights for each individual color channel are com-
puted separately for better approximation quality. In cases
where the reflectances in three color channels are highly de-
correlated (e.g. the cylinder in Fig. 1), we compute charac-
teristic points separately for each color channel.

We build the mipmap in a bottom-up fashion. Each level
is directly computed from the initial point sample set due
to the non-linearity of _—. Note that at higher levels of the
mipmap, one texel could correspond to many point samples
such that the matrix R (Sec. 3.2) is too large to fit in mem-
ory. To tackle this problem, we allow the user to specify a
number Ny, SO that if the number of point samples for
one texel exceeds npqc,, We process them in batches with at
most npge points at a time. Theoretically this method does
not produce a result as good as that by processing all point
samples at the same time. In our experiments, we found that
it gives satisfactory approximation quality while strictly fol-
lowing the memory constraint. Note that similar to the dis-
cussion at the end of Sec. 3.1, we also use a box filter here
when building the hierarchy, which does not eliminate high
frequency signals and may cause aliasing. In future work we
would like to apply a low-pass filter in the mipmap genera-
tion.

simplified ——

mesh / /\ / \

ap

Figure 5: Filtered reflectance reconstruction from charac-
teristic points.

After precomputation, each texel p in the CPMs consists
of

1. Characteristic points selected from X
2. Corresponding weights
3. Wavelet coefficients for a,;s

In addition, we build a parameterization 7; on each of the
meshes left in the hierarchy M;,i = 2,3,... and use it to
sample the parameterization T on M;. Then the composite
parameterization T(7;(-)) can be used to map points on M;
to texels in the CPMs .

4.2. Rendering

An object with CPMs can be rendered in a ray-tracer. Given
a view and lighting configuration, we first determine the ap-
propriate level i in the mesh hierarchy based on the screen-
space projected area of the bounding volume of the original
mesh. Then we proceed with ray-object intersection test and
shadow test on M; we have just selected. If an intersection
point is found and it is not in shadow, we calculate the corre-
sponding uv coordinates for the CPMs using the composite
mapping 7' (7;(+)) described in Sec. 4.1. Screen-space deriva-
tives for the CPMs are subsequently computed to determine
the appropriate level j in the CPM hierarchy for rendering.
Next, we reconstruct average reflectance from current texel
p at mip level j. Let g(p) denote the corresponding geome-
try of p on the original mesh Mo, (see Fig. 5). From Eq. 7,
8 and 4, we immediately have

Xk, Wo )

G
f ((Dlaw() N— Z xk70)l

Qyis (00 -

fr(G 0F,005) (n- @) (n- @00y (12)

For each characteristic point X; in p, we sum up the product
of its BRDF f;- with two visibility terms, two cosine terms
and its weight ay,.. The average reflectance is computed as di-
viding the summation by the visible projected area, which is
obtained using inverse wavelet transform from correspond-
ing wavelet coefficients. Note that the two visibility terms
are computed on Myg to account for small-scale shadowing
and masking effects which are not represented by M;. Since
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we have already performed a shadow test on the coarse ge-
ometry M; for inter-object shadows, we can accelerate the
computation of visibility terms by limiting the intersection
test only to Moy for intra-object shadows. Note that when
there are objects close to g(p), we no longer do the initial
shadow test on M; and instead perform visibility tests at mul-
tiple points on g(p), for better precision in inter-object shad-
ows. If the test results indicate that g(p) is partially occluded
by other objects, we switch to rendering using the original
representation as to our knowledge it is impractical to incor-
porate such cases during CPMs precomputation. Otherwise,
g(p) is either completely visible to the light or completely in
shadow, so we continue to do the shading using CPMs.

Similar to traditional texture mipmaps, we could perform
trilinear interpolation between neighboring texels and adja-
cent levels in the CPM hierarchy. Once we get the prop-
erly filtered reflectance function from the CPMs, the out-
going radiance is obtained using Eq. 5 by multiplying the
reflectance with the incoming radiance.

In cases where the mip level j computed from screen-
space derivatives is beyond the most detailed level in the
CPM hierarchy (e.g. the viewer is too close to the object),
we switch to multi-sampling of the original representation
instead of using CPMs.

In addition, when the distant light assumption in Sec. 3.1
does not hold, we slightly change the process for choosing
mip level j in CPMs to handle local lights. Specifically, we
consider the ratio between the distance from the intersection
point to the light and the size of the geometry covered by
one texel in CPMs when determining the mip level. The idea
is that this ratio should be large enough so that the incident
direction ®; is approximately constant across the texel.

5. Results

We conducted our experiments on a workstation with a
2.66GHz quad-core processor, 3GB memory and an nVidia
8800GT graphics card. When computing the a,;s function,
a resolution of 6 x 642 is used for the cube map to sam-
ple directions. Applying Haar wavelets allowed us to use
4% ~ 6.5% of the original space to store ay;;. All images
were rendered with a resolution of 512x512, using our own
unoptimized Monte Carlo ray-tracer. We used only 4 eye
rays per pixel for CPMs rendering, while 64-1024 rays were
required in rendering the ground truth images with no alias-
ing. Timing results along with other details are listed in
Tab. 3. For each scene we show rendering results for nor-
mal maps, ground truth (i.e. the original model, densely
sampled), CPM and the original model rendered in approxi-
mately the same amount of time as the CPM (i.e. an "equal
time budget" image).

In addition to the images shown in the paper, please re-
fer to the accompanying video that shows smooth transitions
through different mip levels. In each frame the boundaries
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between different mip levels are not visible, and there is no
popping as the levels change between frames. We believe
that the pixel level flickering may be due to the use of a box
filter in our formulation.

The details of the cylinder scene is described in Sec. 1.
The bolts scene (Fig. 6) is populated with bolts with many
diamond-shaped bumps on the body, along with a high-
frequency BRDF, silver-metallic-paint-2 from [MPBMO3].
In addition, spatial variation of reflectance is modeled using
a texture of tainted metal. Our method preserves the com-
plex shading variations along silhouettes of the bolts, while
multi-sampled normal map method tends to give more uni-
form appearance over the body of the bolts.

In the wall scene, highly detailed geometry is used to
model the fine scale features on the surfaces of the walls
(see Fig. 6). A Lambertian BRDF model is used along with
a color texture. The greatest challenge here is the high fre-
quency spatial variation of visibility due to small-scale ge-
ometric details. Our method gives a good approximation by
exploiting the spatial coherence of apparent reflectance func-
tions, while normal-map method produces brighter results
due to the lack of support for subtle shadowing and masking
effects. Note that we tile basic blocks in the cylinder (Fig. 1)
and the wall scene to reduce repetitive precomputation.

The scene in Fig. 7 consists of gargoyles made of bumpy
surfaces plus a highly complex procedural shader, which
employs cellular texture [Wor96] to simulate Cloisonné. In-
side each cell, a Lambertian BRDF model with a particu-
lar color is defined. Along the boundaries among cells, a
high-frequency gold-metallic-paint BRDF from [MPBMO03]
is used. Normal-map based methods not only ignore shad-
owing and masking effects, but also have difficulty in han-
dling such complex materials. For example, the size of the
representations in [HSRGO7] grows linearly with the num-
ber of different materials, which is very inefficient in our
case where there are many different materials but the appar-
ent reflectance functions are coherent. It is unknown how to
extend [TLQ™08] to efficiently handle multiple materials. By
contrast, our representation is not tied to any specific type of
BRDFs and could faithfully filter arbitrarily complex mate-
rials, as shown in Fig. 7.

We show how CPMs adapt to the complexity of filtered re-
flectance functions in Fig. 8. On the left is a rendering of the
original bolt, and on the right shows the characteristic point
density distribution over a simplified mesh. As expected, our
method allocates a relatively large number of characteristic
points in the middle part of the bolt body, where the visibility
and the normal change rapidly. And there are few character-
istic points at other parts, where the variation in geometry
is small and the reflectance functions only vary by a con-
stant (a color fetched from the tainted metal texture). We
can view our method as a precomputed object-space adap-
tive sampling for efficient rendering.

In Fig. 9 we show bolts rendered at a resolution where
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Model #Faces Precomputation Time CPM Rendering Time
a,is | Reflectance CPs Size Finest Ground Our
Sampling | Computation Resolution truth | method
Cylinder 3072 12.5min 59.2min 485.9min 2.2MB 32x32 62.4min 2.4min
Bolt 10496 57.4min 366.3min 824.7min | 21.0MB 128x128 69.1min | 10.1min
Wall 491164 86.5min 856.6min 913.1min | 28.0MB 128x128 499min | 14.5min
Gargoyle | 200000 | 203.6min | 1063.9min 3572.3min | 79.1MB 256x256 | 191.4min | 52.1min

Table 3: Timing results and various statistics from our experiments.

Multi-sampled Normal Map

SR

Ground Truth

Characteristic Point Maps

Equal Time Budget

Figure 6: Comparison of results using various methods. From left to right: multi-sampled normal-map renderings, ground truth
renderings, renderings using CPMs and equal time budget renderings of original models. A magnification view is shown in the
bottom left corner of each image.

Figure 7: Cloisonné gargoyles. From left to right: a close-up view of the micro structures of one gargoyle, a ground truth
rendering, a rendering using CPMs and an equal time budget rendering of the original model.
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Figure 8: Characteristic point density visualization. Left: a
rendering of the original model. Right: characteristic point
density distribution for one mip level in the CPM hierar-
chy. Using our method, the number of characteristic points
automatically adapts to the complexity of the apparent re-
flectance functions.

Original Model
Rendering

Mip Level 0
Mip Level 1
Mip Level 2

Mip Level 3

Figure 9: An example that shows switching from full model
to various levels of CPM representation. Top left: the image
rendered with CPMs. Top right: the ground truth rendering
of the original model. Bottom: the mip levels color coded.

the representation used changes from the original model to
various CPM levels. We use 4 eye rays per pixel for CPMs
rendering and 64 eyes rays per pixel for the ground truth
rendering.

6. Conclusions and Future Work

We have presented a general framework, Characteristic
Point Maps, for efficiently computing and representing 6D
spatially-varying average reflectance function for highly-
detailed geometry along with complex BRDFs. Unlike ex-
isting reflectance filtering techniques, our method makes no
assumption on the underlying geometry or BRDFs. We have
demonstrated the ability of CPMs to accelerate the rendering
process while maintaining image quality.

In future work, we would like to apply a low-pass filter in
both filtered reflectance formulation and CPM mipmap gen-
eration to completely avoid aliasing. It would also be inter-
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esting to incorporate indirect illumination. In addition, ap-
plying our method to deformable objects would be useful
future work.
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