000085428 001__ 85428
000085428 005__ 20200117221659.0
000085428 0247_ $$2doi$$a10.1039/c7cc08373d
000085428 0248_ $$2sideral$$a113655
000085428 037__ $$aART-2018-113655
000085428 041__ $$aeng
000085428 100__ $$aVicente, Nuria
000085428 245__ $$aNew approaches to the lithiation kinetics in reaction-limited battery electrodes through electrochemical impedance spectroscopy
000085428 260__ $$c2018
000085428 5060_ $$aAccess copy available to the general public$$fUnrestricted
000085428 5203_ $$aElectrochemical impedance spectroscopy is a widely employed technique probing kinetic limitations in the charging of battery electrodes. Hindrance mechanisms locate at the interfaces between the active material and the electrolyte, and in the bulk of the reacting compound. Rate-limiting mechanisms are viewed as resistive circuit elements and can be extracted using standard impedance analyzers. Classical impedance models consider charge transport, mainly ion diffusion as slower carrier, as the principal kinetic limitation impeding full electrode charging. This is indeed the case for many technologically relevant battery compounds. In other instances, instead of being diffusion-limited, electrodes may undergo charging limitation caused by the kinetics of the reduction reaction itself. Specific impedance models for reactionlimited mechanisms are summarized here and proved for relevant electrode compounds, in particular for conversion or alloying electrodes in which Li+ intake produces a full rearrangement of the lattice structure
with significant atomic displacement.
000085428 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-76892-C3-1-R
000085428 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000085428 590__ $$a6.164$$b2018
000085428 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b31 / 172 = 0.18$$c2018$$dQ1$$eT1
000085428 592__ $$a2.177$$b2018
000085428 593__ $$aCatalysis$$c2018$$dQ1
000085428 593__ $$aCeramics and Composites$$c2018$$dQ1
000085428 593__ $$aChemistry (miscellaneous)$$c2018$$dQ1
000085428 593__ $$aSurfaces, Coatings and Films$$c2018$$dQ1
000085428 593__ $$aMaterials Chemistry$$c2018$$dQ1
000085428 593__ $$aMetals and Alloys$$c2018$$dQ1
000085428 593__ $$aElectronic, Optical and Magnetic Materials$$c2018$$dQ1
000085428 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000085428 700__ $$0(orcid)0000-0001-7246-2149$$aHaro, Marta
000085428 700__ $$aGarcia-Belmonte, G.
000085428 773__ $$g54 (2018), 1025 - 1040$$pChem. commun.$$tCHEMICAL COMMUNICATIONS$$x1359-7345
000085428 85641 $$uhttps://pubs.rsc.org/en/content/articlelanding/2018/cc/c7cc08373d#!divAbstract$$zTexto completo de la revista
000085428 8564_ $$s6784532$$uhttps://zaguan.unizar.es/record/85428/files/texto_completo.pdf$$yPostprint
000085428 8564_ $$s95011$$uhttps://zaguan.unizar.es/record/85428/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000085428 909CO $$ooai:zaguan.unizar.es:85428$$particulos$$pdriver
000085428 951__ $$a2020-01-17-22:12:13
000085428 980__ $$aARTICLE