000086144 001__ 86144
000086144 005__ 20230921135429.0
000086144 0247_ $$2doi$$a10.1039/C9NA00344D
000086144 0248_ $$2sideral$$a113286
000086144 037__ $$aART-2019-113286
000086144 041__ $$aeng
000086144 100__ $$aOnna, Diego
000086144 245__ $$aDiameter distribution by deconvolution (DdD): absorption spectra as a practical tool for semiconductor nanoparticle PSD determination
000086144 260__ $$c2019
000086144 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086144 5203_ $$aSemiconductor nanoparticles (SNPs) are excellent candidates for various applications in fields like solar cells, light emitting diodes or sensors. Their size strongly determines their properties, thus characterizing their size is crucial for applications. In most cases, they are included in complex matrices which make it difficult to determine their average diameter and statistical distribution. In this work, we present a non-destructive, cheap and in situ procedure to calculate particle size distributions (PSDs) of SNPs in different media based on deconvolution of the absorbance spectrum with a database of the absorbance spectra of SNPs with different sizes. The method was validated against the SNP sizes obtained from transmission microscopy images, showing excellent agreement between both distributions. In particular, CdS SNPs embedded in mesoporous thin films were analyzed in detail. Additional composite systems were studied in order to extend the method to SNPs in polymers or bacteria, proving that it applies to several SNPs in diverse matrices. The PSDs obtained from the proposed method do not show any statistical difference with the one derived from TEM images. Finally, a web app that implements the methodology of this work has been developed.
000086144 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E26$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-82970-C2
000086144 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000086144 592__ $$a0.0$$b2019
000086144 593__ $$aAtomic and Molecular Physics, and Optics$$c2019
000086144 593__ $$aBioengineering$$c2019
000086144 593__ $$aMaterials Science (miscellaneous)$$c2019
000086144 593__ $$aEngineering (miscellaneous)$$c2019
000086144 593__ $$aChemistry (miscellaneous)$$c2019
000086144 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000086144 700__ $$aPerez-Ipiña, Ignacio
000086144 700__ $$aFernández-Casafuz, Agustina
000086144 700__ $$0(orcid)0000-0002-5229-2717$$aMayoral, Álvaro
000086144 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra García, M. Ricardo$$uUniversidad de Zaragoza
000086144 700__ $$aBilmes, Sara A.
000086144 700__ $$aMartínez-Ricci, María Luz
000086144 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000086144 773__ $$g1, 9 (2019), 3499-3505$$tNanoscale Advances$$x2516-0230
000086144 8564_ $$s486907$$uhttps://zaguan.unizar.es/record/86144/files/texto_completo.pdf$$yVersión publicada
000086144 8564_ $$s29084$$uhttps://zaguan.unizar.es/record/86144/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000086144 909CO $$ooai:zaguan.unizar.es:86144$$particulos$$pdriver
000086144 951__ $$a2023-09-21-13:29:49
000086144 980__ $$aARTICLE