000086238 001__ 86238
000086238 005__ 20200716101541.0
000086238 0247_ $$2doi$$a10.1038/s41598-019-50411-w
000086238 0248_ $$2sideral$$a114743
000086238 037__ $$aART-2019-114743
000086238 041__ $$aeng
000086238 100__ $$0(orcid)0000-0002-6180-8113$$aCórdoba, Rosa
000086238 245__ $$aUltra-fast direct growth of metallic micro- and nano-structures by focused ion beam irradiation
000086238 260__ $$c2019
000086238 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086238 5203_ $$aAn ultra-fast method to directly grow metallic micro- and nano-structures is introduced. It relies on a Focused Ion Beam (FIB) and a condensed layer of suitable precursor material formed on the substrate under cryogenic conditions. The technique implies cooling the substrate below the condensation temperature of the gaseous precursor material, subsequently irradiating with ions according to the wanted pattern, and posteriorly heating the substrate above the condensation temperature. Here, using W(CO)6 as the precursor material, a Ga+ FIB, and a substrate temperature of -100 °C, W-C metallic layers and nanowires with resolution down to 38 nm have been grown by Cryogenic Focused Ion Beam Induced Deposition (Cryo-FIBID). The most important advantages of Cryo-FIBID are the fast growth rate (about 600 times higher than conventional FIBID with the precursor material in gas phase) and the low ion irradiation dose required (~50 µC/cm2), which gives rise to very low Ga concentrations in the grown material and in the substrate (=0.2%). Electrical measurements indicate that W-C layers and nanowires grown by Cryo-FIBID exhibit metallic resistivity. These features pave the way for the use of Cryo-FIBID in various applications in micro- and nano-lithography such as circuit editing, photomask repair, hard masks, and the growth of nanowires and contacts. As a proof of concept, we show the use of Cryo-FIBID to grow metallic contacts on a Pt-C nanowire and investigate its transport properties. The contacts have been grown in less than one minute, which is considerably faster than the time needed to grow the same contacts with conventional FIBID, around 10 hours.
000086238 536__ $$9info:eu-repo/grantAgreement/ES/CSIC/PIE-201760E027$$9info:eu-repo/grantAgreement/ES/DGA/E13-17R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C1$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-82970-C2
000086238 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000086238 590__ $$a3.998$$b2019
000086238 591__ $$aMULTIDISCIPLINARY SCIENCES$$b17 / 71 = 0.239$$c2019$$dQ1$$eT1
000086238 592__ $$a1.341$$b2019
000086238 593__ $$aMultidisciplinary$$c2019$$dQ1
000086238 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000086238 700__ $$0(orcid)0000-0002-6087-7467$$aOrús, Pablo
000086238 700__ $$aStrohauer, Stefan
000086238 700__ $$0(orcid)0000-0002-6116-9331$$aTorres, Teobaldo E.
000086238 700__ $$0(orcid)0000-0001-9566-0738$$aDe Teresa, José María$$uUniversidad de Zaragoza
000086238 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000086238 773__ $$g9, 1 (2019), 14076 [10 pp.]$$pSci. rep.$$tScientific Reports$$x2045-2322
000086238 85641 $$uhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072848221&doi=10.1038%2fs41598-019-50411-w&partnerID=40&md5=a729ccc5791a9ba8d8f5003a16ba3455$$zTexto completo de la revista
000086238 8564_ $$s1493398$$uhttps://zaguan.unizar.es/record/86238/files/texto_completo.pdf$$yVersión publicada
000086238 8564_ $$s112220$$uhttps://zaguan.unizar.es/record/86238/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000086238 909CO $$ooai:zaguan.unizar.es:86238$$particulos$$pdriver
000086238 951__ $$a2020-07-16-09:40:15
000086238 980__ $$aARTICLE