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A B S T R A C T

Understanding fire regime is a crucial step towards better knowledge of the wildfire phenomenon. However,
the concept itself, in spite of its widespread use, still lacks a clear, widely accepted definition and there is no
general agreement on which features define it best. In this paper we provide an in-depth characterization and
description of fire regimes in three regions – Northwest, Hinterland and Mediterranean – comprising the whole
of mainland Spain, to identify their key features. Data on number of fires, burned area, fire season and cause are
retrieved from historical fire records for the period 1974–2010. Specifically, fire frequency, burned area, number
of natural/human-caused fires, burned area from natural/human-caused fires, number of large fires (≥500 ha),
and burned area from large fires were examined for each region and fire season. We used a multi-group Princi-
pal Components Analysis approach to determine the importance of each fire regime feature. Next, climate and
socioeconomic variables were explored using Multidimensional Scatterplots and Generalized Additive Models to
find the extent to which fire regimes are controlled by either environmental, human, or both factors. Results
revealed differences among regions and seasons in terms of the characteristics of their respective fire regimes.
However, several common features have been identified as key components of fire regimes, regardless of re-
gion or fire season: fire frequency, number of large fires, and burned area from natural fires. In addition, results
confirm that fire regime in the Northwest area mainly depends on human activity, especially during winter, in
contrast to the Mediterranean region.

1. Introduction

Wildfires are one of the major environmental disturbances world-
wide, playing an important role in determining the structure and func-
tioning of many ecosystems (Archibald, Lehmann, Gómez-Dans, &
Bradstock, 2013; E. Chuvieco, 2009b; Ganteaume et al., 2013; Pausas
& Fernández-Muñoz, 2012). Understanding the complex interactions of
factors involved in wildfire activity still remains an unbeaten challenge,
which usually involves dealing with complex interactions among nu-
merous variables (Krawchuk, Moritz, Parisien, Van Dorn, & Hayhoe,
2009). In this regard, the analysis of fire regime is a crucial step to-
wards a better comprehension of wildfires. This is especially relevant in
the case of Spain, one of the most fire-affected areas within the Euro-
pean Mediterranean region in terms of annual cumulative burned forests
(Darques, 2016).

Fire regime is usually defined as the average conditions of fire that
are persistent and consistent within a particular area and over a given
period (Chuvieco, 2009a, 2009b; Krebs, Pezzatti, Mazzoleni, Talbot, &
Conedera, 2010). However, there is no agreement on how fire regime
should be characterized, hence the term itself still lacks a clear and
well-known definition (Krebs et al., 2010), although there is a list of
potential variables describing fire regime commonly accepted (Pyne,
Andrews, & Laven, 1996). Among the great variety of fire regime char-
acteristics that are generally described, we found those such as fre-
quency, seasonality, size, type, severity or intensity (Whitman et al.,
2015). It is widely thought that fire regime components have been –
and still are – highly variable across time and space (M. V. Moreno,
Conedera, Chuvieco, & Pezzatti, 2014). Several studies have demon-
strated that global fire regime has moved from being essentially con-
trolled by climate factors to become more dependent on human activ-
ity (Chuvieco, 2009a, 2009b; Pechony & Shindell, 2010), thus evolving
from natural to human fire regime. On a regional scale, and particu
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larly in the case of Spain, climate still influences fire regimes. However,
human impact has steadily gained importance over time (M. V. Moreno
et al., 2014). In this respect, human influence on wildfire usually has
a double-edge (Syphard et al., 2007). Fire suppression helps reduce the
impact of fire activity (Chuvieco, 2009a, 2009b), but simultaneously,
human pressure on wildlands is nowadays a major source of ignition
(Wang & Anderson, 2010).

There are many factors involved when a fire regime characterization
is approached (Murphy, Williamson, & Bowman, 2011). Despite consid-
erable research being applied to distinguishing attributes belonging to
different fire regimes or fire regions, it remains unclear which features
should be included, and further research is still needed (Archibald et
al., 2013). In this regard, an approach based on inter-regional and/or
inter-seasonal comparison, such as the one we propose, might be partic-
ularly suitable. Due to the huge variability of fire activity, the best fea-
tures to characterize fire regimes should be those that best differentiate
regions and/or seasons. A first step toward capturing the main contrasts
between fire metrics is to divide the whole period of study into two sea-
sons. Even though fire seasonality has been little studied until now, it
has proven useful in analysing the influence of human activities on fire
regime (Le Page, Oom, Silva, Jönsson, & Pereira, 2010). Several authors
have used different seasonal metrics as the median day of the fire sea-
son (Whitman et al., 2015), or the length of the fire season (Chuvieco,
Giglio, & Justice, 2008) or to distinguish between two seasons inside a
year (vegetative and non-vegetative) (M. V. Moreno et al., 2014).

In this paper we characterize and describe in detail fire regimes in
three regions – Northwest (NW), Hinterland (HL) and Mediterranean
(MED) – comprising the whole of mainland Spain, to identify their key
features. We explore several fire regime features under the premise
that there are different fire regimes across the Spanish territory, pay-
ing special attention to seasonality, cause and the impact of large fires
(>500 ha; San-Miguel-Ayanz, Moreno, & Camia, 2013). The assessment
is developed from historical fire records for the period 1974–2010 from
the General Statistics Forest Fires database (EGIF). Our first goal is to
improve understanding of the spatial-seasonal patterns of fire regime
features and analyse their influence on the fire regime itself. A second
objective is to determine the extent to which fire regimes are linked
to human and/or climate factors. To achieve these goals, we examined
fire regimes from a quantitative and qualitative approach. The quantita-
tive approach is based in a multi-group Principal Components Analysis
which allows the most representative fire regime features to be identi-
fied and selected. In the latter, we combined the selected fire metrics
with climate and human variables, and plotted their relationships using
multidimensional scatterplots (MDS), then looked for patterns and rela-
tionships among these. MDS's outputs are complemented with General-
ized Additive Models in order to better describe the potential relation-
ships.

2. Materials

2.1. Study area

The study area encompasses the whole of mainland Spain (exclud-
ing Balearic and Canary archipelagos and also the autonomous cities
of Ceuta and Melilla) and covers a total surface area of 498,000 km2.
From a biogeographic point of view, mainland Spain is dominated by
two different bioregions, Eurosiberian and Mediterranean. On the one
hand, the Eurosiberian region covers the northern side of the country,
including Galicia, the Cantabrian cornice and the Pyrenees and is char-
acterized by an Oceanic climate, dominated by deciduous forest; while
the Mediterranean region extends all over the remaining territory. This
region is characterized by a Mediterranean climate, and is thus signifi

cantly drier and warmer than the Eurosiberian region. These conditions
favour complex mosaics of plant communities of evergreen, deciduous
and/or mixed forests, scrublands or natural grasslands.

Temperatures (Fig. A2, Appendix 1) vary from annual milder val-
ues in the NW provinces of the Eurosiberian region, dominated by an
Oceanic climate; to warmer temperatures in the MED region, character-
ized by high annual thermal amplitude in the inner region and milder
conditions towards the coast. The rainiest areas (Fig. A2, Appendix
1) are the Cantabrian cornice, and the highest mountain ranges as
Pyrenees (Eurosiberian region) and the western Central System (inner
Mediterranean region), with average values over 1000 mm per year and
maximum during winter. On the other hand, the driest areas are lo-
cated in the southeast and the Ebro Valley (inner Mediterranean region)
and the province of Almeria (Mediterranean coast). Precipitation in the
Mediterranean region is irregularly distributed both in time and space,
with autumn-spring maximums. Human activity also changes its foot-
print across the territory. According to Corine Land Cover 2006, in the
NW area approximately 68% of the region is covered by forests, shrubs
or grassland. This land cover has been traditionally shaped by seasonal
grazing at the end of the winter. In the HL region, there has been a
progressive abandonment of agricultural activity (crops and pastures)
which translates to around 54% of its territory being covered by wild-
land. Meanwhile, the Mediterranean region, the most populated area,
is characterized by an extended wildland-urban interface, due to wide-
spread urban development during the last few decades (M. V. Moreno et
al., 2014).

Due to this variety of landscapes, climate and socioeconomic condi-
tions, three different regions – NW, HL and MED – were used (Fig. 1),
following the criteria from the Spanish Department of Defense Against
Forest Fires (ADCIF). These regions outline homogeneous areas in terms
of fire activity and seasonal averages, so that they are expected to have
self-defining fire regimes (M. V. Moreno et al., 2014). The NW region
includes the Autonomous Communities of Galicia, Asturias, Cantabria
and the Basque Country, also the provinces of León and Zamora. This
region is located within the Eurosiberian region, excluding the Pyre-
nees areas. Woodlands cover around 41% of this region which is char-
acterized by long history of agricultural burning to maintain pastures
and grasslands (M. V. Moreno et al., 2014). The HL region includes
all of the Autonomous Communities without coastline, except for the
provinces of León and Zamora (included in the NW re

Fig. 1. Spatial distribution of the three regions and provincial division in mainland Spain.
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gion). This region, located in the Mediterranean biogeographical region,
has the greatest woodland surface proportion of the whole country (ap-
proximately 61%) mostly due to abandonment of agricultural activities
and lands (M. V. Moreno et al., 2014). Finally, the MED region (also in
the Mediterranean biogeographical region) includes all the Autonomous
Communities along the Mediterranean coast. It has the lower woodland
proportion (roughly 22%) because of the high degree of urbanisation
and tourism development.

2.2. Fire data

Fire data were retrieved from the General Wildfires Statistics (EGIF)
database, one of the oldest ‘complete’ fire databases in Europe (M. V.
Moreno, Malamud, & Chuvieco, 2011; Vélez, 2001). Specifically, fire
records for 1974–2010 were selected and spatialized according to the
10 × 10 km UTM reference grid (referred to as fire grid) used by fire-
fighting crews for approximate location of fire ignition points. Selected
baseline information refers to sections 0, 1, 2, 4, 5 and 9 of the Span-
ish Forests Fire Reports (PIF) compiled in the EGIF database. Next, fire
count data, total burned area size, ignition triggering date and fire cause
were retrieved for each fire event, and later separated by season and
region. Note that only information about fires ≥1 ha was used because
small fires (≤1 ha) were not fully compiled until 1988. The temporal
time span was established according to several factors. The starting year
was set as 1974, since it was the first year to use the 10 × 10 km grid.
Prior to that time, fire data were only recorded at province level, so
grid information was not available. The ending year was selected on the
basis of the availability of climate data from the MOTEDAS and MO-
PREDAS datasets (described below).

As stated before, regions were outlined following ADCIF specifica-
tions. In turn, two fire seasons were defined according to Moreno et al.
(2014). Thus annual data were split into a spring-summer season (S),
from April to September; and an autumn-winter season (W) from Oc-
tober to March. From all available fire data information, several fire
regime features were then constructed for each region, fire season and
grid cell: (i) fire frequency (F), calculated as the total number of fires;
(ii) burned area size (B), as the total fire affected area; (iii) number of
large fires (N500), as the total number of fires above 500 ha burned;
(iv) burned area from large fires (B500), as the total affected area from
fires above 500 ha; (v) number of natural fires, as the total number of

fires with natural cause (NL); and (vi) burned area from natural fires,
as the total burned area from fires with a natural cause (BL). Table 1
shows a statistical summary of the proposed features as well as some ad-
ditional information regarding fire events with an anthropogenic source
(NH/BH).

2.3. Climate data

Climate data were extracted from MOTEDAS (Monthly Tempera-
ture Dataset of Spain) and MOPREDAS (Monthly Precipitation Dataset
of Spain) datasets. These datasets provide monthly climate informa-
tion at a spatial resolution of 10 × 10 km, constructed from actual mea-
surements from the Spanish Meteorological Network in the period
1951–2010 (Jose Carlos González-Hidalgo, Brunetti, & de Luis, 2011;
José Carlos González-Hidalgo, Peña-Angulo, Brunetti, & Cortesi, 2015).
MOTEDAS and MOPREDAS stand out as one of the most accurate data-
bases in the context of climate data for mainland Spain. Their develop-
ment was based on the reconstruction of meteorological data time series
from each weather station in the region. In this paper, monthly data on
annual average maximum temperature (T) and total precipitation (P) in
the period 1974–2010 were extracted and adapted to the fire grid using
a nearest neighbour procedure. Both maximum temperature and precip-
itation were later reclassified into 10 homogeneous (equal interval) cat-
egories (see Table A1 from Appendix 2), used to construct climate codes
for the multidimensional scatterplots.

2.4. Land use, population and Human Pressure Index

Land use data were retrieved from Corine Land Cover 1990 (CLC),
since it is centred on the temporal span. CLC information was used to
outline the Wildland-Agricultural Interface (WAI) and the Wildland-Ur-
ban Interface (WUI), two variables strongly related to anthropogenic
ignitions (Leone, Lovreglio, Martín, Martínez, & Vilar, 2009; Martínez,
Chuvieco, & Martín, 2004; Rodrigues, de la Riva, & Fotheringham,
2014). The first represents the length of the boundary between agri-
cultural and wildland areas, and the second, the length between pop-
ulated and wildland areas. Both WAI and WUI were calculated at fire
grid level (Marcos Rodrigues, Jiménez, & de la Riva, 2016). On the
other hand, the Demographic Potential, which is an aggregate index
for the ultimate future potential of the population, was retrieved from

Table 1
Statistical summary of fire regime features 1974–2010. S: spring-summer, W: autumn-winter. In brackets: first value corresponds to inter-region percentage; and second value to intra-re-
gion percentage. N: Number of fires, N500: Number of large fires (>500 ha), NL: Number of fires by lightning, NH: Number of fires caused by humans, B: Total burned area, B500: Burned
area of large fires (>500 ha), BL: Burned area of fires by lightning, BH: Burned area of fires caused by humans. Burned area data expressed in km2.

Region Season N N500 N L NH B B500 BL BH

NW S 98,039 513 1385 66,862 21,557 4778 472 14,212
(40.8)
(61.7)

(30.2)
(81.9)

(26.8)
(96.4)

(40.8)
(59.1)

(34.6)
(71.5)

(20) (82.2) (12) (98.5) (34.7)
(68.5)

W 60,614 113 52 4633 8586 1.035 7 6531
(25.3)
(38.2)

(6.6) (18) (1) (3.6) (28.3)
(40.9)

(13.8)
(28.5)

(4.3)
(17.8)

(0.2) (1.5) (15.9)
(31.5)

HL S 33,073 470 2492 19,289 12,958 6572 1747 7477
(13.8)
(73.2)

(27.6)
(96.7)

(48.2)
(99.1)

(11.8) (68) (20.8)
(89.6)

(27.6)
(97.8)

(44.4)
(99.9)

(18.2) (87)

W 12,114 16 23 9073 1498 148 2 1112
(5.05)
(26.8)

(0.9) (3.3) (0.4) (0.9) (5.5) (32) (2.4)
(10.4)

(0.6) (2.2) (0) (0.1) (2.7)
(12.95)

MED S 28,289 513 1183 17,273 15,466 10,152 1686 10,158
(11.8)
(78.7)

(30.2)
(87.2)

(22.9)
(97.4)

(10.5)
(77.4)

(24.8)
(87.5)

(42.6)
(89.7)

(42.9)
(98.9)

(24.8)
(87.1)

W 7635 75 32 5032 221 1165 18 1508
(3.2) (21.2) (4.4)

(12.8)
(0.6) (2.6) (3.1) (22.6) (3.5)

(12.5)
(4.9)
(10.3)

(0.5)
(1.06)

(3.7)
(12.9)

Total 239.764 1700 5.167 163.859 62.275 23.85 3.932 40.998
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(Calvo & Pueyo, 2008) for 1991 at a spatial resolution of 5 × 5 km, later
rescaled to the fire grid as the average value inside each cell. WAI, WUI
and DP were normalized to a 0–1 interval and then aggregated to de-
velop a Human Pressure Index (HPI, Fig. 2), representing the overall
pressure of human activities likely to result in fire ignition.

3. Methods

As mentioned before, our methodology was based on quantitative
and qualitative approaches. In the first case, we used multi-group Prin-
cipal Component Analysis (MGPCA) to identity key fire regime features
and then investigated their relation to climate and human activity, al-
lowing us to describe and analyse fire regimes. This methodological ap-
proach is based on the one described in Whitman et al. (2015). How-
ever, instead of putting the focus on applying PCA to aggregate cli-
mate information and then exploring their relationships with fire data,
we used MGPCA combined with a Varimax Rotation (VR) procedure
to identify key fire regime features and then explore their association
with raw climate and socioeconomic information. Finally, relationships
among fire regime features, climate and human pressure were visually
explored from multidimensional scatterplots representing the qualita-
tive approach. Additionally, MDS were complemented by a regression
analysis using Generalized Additive Models (GAM) to provide deeper in-
sights into the potential relationships among variables and features, as
well as determine their statistical significance. All analyses, plots and
maps were developed using the R statistical software (R Core Team,
2016).

3.1. Multi-group Principal Component Analysis and Varimax rotation

With the objective of identifying the most representative fire regime
features from each region and season a PCA was carried out. PCA is
a classic statistical technique that has been widely used in many re-
search fields, and wildfire modelling is no exception. However, most of
the examples of PCA applied to fire science are concerned with synthe-
sising or reducing the amount of information for regression purposes
(Francos, Pereira, Alcañiz, Mataix-Solera, & Úbeda, 2016; Fréjaville &
Curt, 2015; Marcoux et al., 2015; Xu et al., 2006). It is even less
common to apply PCA to fire regime feature analysis, even though
some examples can be found in Drobyshev, Niklasson, and Linderholm
(2012) and Quazi and Ticktin (2016). PCA estimates the common fac-
tors which explain the variance of the input parameters. Initially vari

ables must be standardized so that each one has mean zero and unit
variance, regardless of its scale. This ensures that all variables have the
same weight in the analysis (Mardia, Kent, & Bibby, 1979).

Specifically, we used a multi-group PCA (MGPCA) procedure, which
is an evolution of classic PCA (Krzanowski, 1984). MGPCA can be con-
sidered an evolution of common principal components analysis (CPCA)
of multi-group datasets components analysis proposed by (Flury, 1984).
CPCA is defined as a generalization of PCA to the case of multi-group
setting. This consists in considering the variance-covariance matrices
associated to the groups and seeking common orthogonal vectors of
loadings associated with the components in the groups. However, the
determination of the common vectors of loadings which is based on
maximum likelihood estimation leads to a complex algorithm which
is time consuming and whose convergence is not granted. MGPCA is
simpler and more straightforward than CPCA (Eslami, Qannari, Kohler,
& Bougeard, 2013b). MGPCA allows dealing with the variance-covari-
ance between different groups (in our case regions and seasons). Hence,
it is more suitable for group comparison (Eslami, Qannari, Kohler, &
Bougeard, 2013a, 2013b) than ordinary PCA. We applied MGPCA split-
ting fire data into 6 different groups, one per region (NW, HL and MED)
and season (summer and winter).

The Kaiser Criterion (Kaiser, 1960) was applied to MGPCA outputs,
thus retaining only those PCs with eigenvalues greater than 1. Following
this, a VR procedure was applied to determine the correlation between
input variables (fire regime features) and PCs. VR consists of a PCA co-
ordinates transformation which maximizes the sum of the variance, ob-
taining higher or near to zero coefficients, thus with fewer intermediate
values. Consequently, the interpretation of PCA results becomes easier
(Horst, 1965; Kaiser, 1958). For each PC we selected the fire regime fea-
tures with a coefficient furthest from 0, identifying them as the most
representative. We considered that these features contributed the most
to the behaviour of fire activity across time (season) and space (region)
and thus were key parameters in the definition of fire regimes.

3.2. Multidimensional scatterplots

Once the key fire regime features were selected, we examined the
relationships between climate variables and fire features using multi-
dimensional scatterplots (MDS). The construction process is as follows:
(i) each grid cell in the study area was coded according to its respec-
tive combination of reclassified (from 1 to 10, see Table A1 in Appen-
dix 2) temperature and precipitation (henceforth referred to as climate

Fig. 2. Human Pressure Index (left) and generalized land cover from CLC 2006 (right).

4



UN
CO

RR
EC

TE
D

PR
OOF

A. Jiménez-Ruano et al. Applied Geography xxx (2017) xxx-xxx

code); (ii) cells were then grouped on the basis of their respective cli-
mate code; (iii) fire regime features and HPI were aggregated as the sum
and average value respectively; (iv) multidimensional scatterplots were
then constructed. We created a two-dimensional climate space on the
basis of climate codes for each region and season. On each plane, two
additional variables were then plotted. N is always represented using
proportional circles. Next, a fire regime feature was plotted on the N cir-
cles using different colour schemes. This led to multidimensional scat-
terplots, each one representing four variables (dimensions) in a single
plot. Furthermore, in order to explore the relationship between human
pressure, fire occurrence and climate, additional MDS were constructed
representing HPI instead of fire feature. HPI was, therefore, only com-
pared to climate and fire frequency as it mostly related to fire occur-
rence.

This kind of analysis has proved its potential in identifying relations
amongst vegetation, climate and fire in Whitman et al. (2015). How-
ever, in our case we did not include a climate space. Instead, two cli-
mate gradients (temperature and precipitation) were used. Our goal was
to determine the extent to which fire regimes are controlled by either
environmental, human or both factors.

3.3. Generalized Additive Models

Generalized Additive Models (GAM) are Generalized Linear Mod-
els (GLM) in which the usual linear relationships between the response
and predictor variables are replaced by non-linear 'smooths' (Hastie &
Tibshirani, 1986; Jones & Almond, 1992). With the purpose of unrav-
elling potential cause-and-effect relationships between fire features and
climatic/human variables, we calibrated several GAM regressions for
each MDS ‘scenario’.

Same as GLM, GAM allows using probability distributions other than
Gaussian. In this sense, we employed Negative Binomial to model num-
ber of fires (N) and log linear distribution in burned area variables
(B500, BL). NB is found particularly suitable to deal with zero-inflated
response variables as is the case of N (Boadi, Harvey, & Gyeke-dako,
2015). On the other hand, we have applied log linear family in burned
area fire features (Hernandez, Keribin, Drobinski, & Turquety, 2015).
Model selection, is based on the reduction of Generalized cross valida-
tion (GCV, Craven & Wahba, 1978; Golub, Heath, & Wahba, 1979). GVC
determines the optimal amount of smoothing and estimates the mean
squared prediction error over all datasets where a single observation is
omitted from the model fitting and then predicted Deviance explained
(analogous to variance in a linear regression) and partial effects in the
predictors were also calculated. All analyses were conducted using the
R package mgcv, version 1.8–9.

4. Results

4.1. Fire regime key features

MGPCA enables the comparison of fire regions as well as determin-
ing the most relevant fire regime features. Regardless of the region or
season of analysis, 3 PCs were always selected according to the Kaiser
Criterion. Therefore, PCA results are only presented and analysed for the
3 first PCs (PC1, PC2 and PC3). Hence, VR was only calculated for those
PCs.

According to MGPCA eigenvectors (Table 2), most of the total vari-
ance (61%) in fire activity in the NW region during summer is asso-
ciated with large fires, both in terms of number and the affected area
(N500, B500 = 0.50). N appears on a secondary plane located in PC2
and associated with human fires (0.69). This behaviour is reversed dur-
ing winter, when N and NH are promoted to PC1 and N500-B500 moved
to PC2. In the HL region large fires seem to be playing an important
role in both summer and winter, being in both cases located in PC1, al-
though winter shows a strong link between B500 and BH. Finally, in the
MED region, PC1 in summer correlates more with NH and N (0.51 and
0.5 respectively). During winter, B500 displaces N and NH towards PC2
being associated to BH (0.46). Whatever the region or season, the im-
pact of natural fires is always in PC3. In this regard, there is usually a
higher correlation between burned area rather than fire counts.

Features selected on the basis of the MGPCA-VR procedure are
mostly the same across regions and seasons –N, B500 and BL– although
there are differences in terms of the PC which each feature is associated
with. As stated before, we consider these features to contribute the most
to the behaviour of fire activity across time (season) and space (region)
and thus to be key parameters in the definition of fire regimes.

4.2. Climate-human-fire relationships

Figs. 3–5 display MDS for N500, BL and N, respectively, whereas
Table 3 and appendix S3 summarize the main outputs from GAM. Ac-
cording to Figs. 3–5 we can identify two different climatic patterns and
a transition in fire activity from NW region to HL and MED. Most of
the fires ignite during summer, regardless of the region. Nonetheless,
the proportion of winter wildfires is larger in NW than in any other
region, with nearly 40% occurring during winter (Table 1). Summer
number fires (Figs. 3–5) in NW appear to be associated with mid-range
temperatures (T3-7) and mid-to-low precipitation (P6-2). NW winter
fires are mainly related to relatively high temperatures (T7-8) and

Table 2
Correlation values according to Varimax Rotation, variance explained (% var) and specific variance of groups (Var) extracted from MGPCA. Selected features (correlation > 0.5) high-
lighted in light grey.
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Fig. 3. Multidimensional scatterplots for burned area from large fires. Note values are given on the logarithmic scale.

moderate rainfall (P5). GAM reports significant relationships for both
climate variables, adding human pressure as significant predictor in all
seasons. Partial plots revealed a positive association during summer of N
with temperature and human pressure (i.e. the higher the temperature
or human pressure the higher the number of fire events). In winter tem-
perature shifts towards negative relationship whereas human pressure
remains positive. Through HL to MED, N becomes closer to higher T
and lower P in both seasons as climate conditions change from Oceanic
to inner Mediterranean, finally reaching the Mediterranean climate do-
main on the coast. However, HL summer fires take place mainly in areas
with very high temperatures (T9-10), whereas in MED, the temperature
interval widens to 6–10. On the contrary, MED fires occur in areas with
lower precipitation than fires in HL. This difference is also evidenced in
GAM models which report non-significant relationship with T and sig-
nificant in P in the Mediterranean region, and the opposite in HL (see
Figs. A4 and A5). In turn, winter fires in HL are less selective, occurring
under different conditions while MED shows fewer seasonal differences,
and fires ignite under roughly the same conditions, i.e. high T (6–10)
and low P (1–4) during winter or summer.

As with N, B500 shows different behaviour across regions and sea-
sons with NW as the most fire-prone region (Fig. 3). The pattern is, to
some extent, similar to that of N, as areas with a large occurrence of
fire are more likely to retain most burned area, regardless of burned
size. During summer, NW appears to be associated with relatively low
P (3–4) and moderate intervals of T (P3-7), although relationships are
found to be significant. However, during winter, most of the burned
area from large fires is located in areas with high T (8) and moderate P
(5), with P losing significance in GAM models. Note that B500 in winter
is more strongly linked to high T than N (see Fig. A3). In HL and MED,
B500 behaves mainly in the same way as N, with the exception of sum-
mer wildfires in MED, where most of the area from large fires converges
between P3-4 and T6-7, being more linked to P (significant p < 0.05)
than T (non-significant).

Fig. 4 summarises the results from BL analysis. Again, the climatic
pattern shows differences between NW and HL-MED. On the other hand,
by putting BL and B500 together, we can establish some interesting as-
sociations. To a certain extent, there is a link between B500 and BL. In
NW summer, the area from natural fires has its maximum values in sev-
eral spots in P3-6 (significant p < 0.05) and T3-7 (non-significant). This
pattern matches a part of B500 quite closely, suggesting that large sum-
mer fires under these conditions are mostly caused by natural ignitions.
This association strengthens in HL and MED regions – again only dur-
ing summer. GAM detects several significant relationships among T and
P although no clear explanatory sense is observed in partial plots (Figs.
A3–A5) other than P in NW winter.

Attending to the percent of deviance explained we found large dif-
ferences among regions and seasons, in terms of the overall explained
variance, and thus reliability. DE ranges from 0.42 to 0.41 in number of
fires in NW regardless of the season to 0.13 in B500 in MED summer.
Overall, winter DE values are higher than summer, especially in HL and
MED. Lowest proportion of variance explained is usually obtained for
natural fires.

Finally, an exploration of the relationship between N and HPI pro-
vides some remarkable insights. The link between N and human ac-
tivity is noticeable. For instance, MGPCA (Table 2) reveals an associa-
tion between N and NH in any given region or season; likewise GAM
outputs report significant and positive relationships among N and HPI
(Table 3 and Figs. A3–A5). According to the results in Fig. 5 and Fig
A3, HPI mainly relates similarly to N in the NW region both during
summer and winter. However, the relationship is slightly stronger in
winter, although this association is less evident in HL and MED, espe

cially during winter (decreasing contribution, see Figs. A4 and A5), this
fact is also supported by a lower deviance explained. In NW, summer
fires ignited at low T (3–4) and moderate P (4–6) present high HPI aver-
age values. During winter, almost every combination of P and T, taken
from over 100 fires, have HPI average values around or higher than 0.2.
Both in HL and MED summer, high HPI values are mostly located in
T5-7 and P2-6.

5. Discussion

This paper characterizes and describes in detail fire regimes in main-
land Spain, to identify their key features under the premise that differ-
ent fire regimes exist across Spanish territory. We proposed a combina-
tion of statistical (MGPCA, VR and GAM) and visual techniques (MDS)
as an approach to understanding climate-human-fire relationships, en-
abling the easy identification of contrasts in fire regime among the dif-
ferent regions analysed. This is particularly noticeable in the Northwest
region, where fire behaviour is dissimilar to the rest of the study area in
terms of both fire behaviour and ignition cause. In other words, fires are
more frequent in Northwest, less related to climate conditions and more
dependent on human pressure, whereas Hinterland-Mediterranean are
more influenced by climate with greater seasonal differences.

Multi-group PCA combined with VR has led to identifying large fires
(B500 and N500), overall fire frequency (N) and burned area of light-
ning fires (BL) as the features strongly relating to fire activity, and thus
considered as key fire regime features. In addition, MGPCA also enables
the importance of each fire feature to be explored. For instance, depend-
ing on the PC that a given feature is related to, we can determine its
importance. In this regard, we have identified two different seasonal be-
haviours. Summer fire activity is more closely related to fire frequency
(N located in PC1) and the impact of large fires appears on a secondary
plane (B500 and N500 correlate more to PC2), whereas winter shows
the opposite. In fact, in the case of the Northwest region the seasonal
reversion of its components suggests that summer fire activity is mostly
related to the impact of large fires, whereas winter fire behaviour is bet-
ter explained by fire frequency from anthropogenic wildfires. In turn,
the impact of natural fires, despite being systematically selected among
the available features, always appears in PC3 both in terms of fire counts
(NL) and affected area (BL). Varimax rotation results show that burned
area coefficients are generally higher. Thus, natural fires appear to be
better characterized in terms of affected area rather than number of fire
events. Finally, MGPCA allows us to investigate the relationships among
fire features. In this respect, the most relevant finding is that fire fre-
quency (N) is always associated with anthropogenic fires (NH). On the
one hand, this supports the hypothesis that Spanish fire regime is hu-
man-dominated (Rodrigues et al., 2014; San-Miguel-Ayanz et al., 2012).

The visual inspection of the MDS and the statistical interpretation
of GAM models are particularly useful in terms of pyrogeography, i.e.
the spatial distribution of fire regime features and their relationship
with climate and socioeconomic factors (Fréjaville & Curt, 2015). These
procedures were applied to the selected key fire features. The analy-
sis reveals that the NW fire regime, which is mostly dependent on hu-
man activities, is in contrast to Hinterland and Mediterranean. It is
well known that in Northwest, fire is traditionally involved in several
activities such as pasture burning and grazing (M. V. Moreno et al.,
2014) close to forest areas. Conflicts between landowners or individu-
als and the forest administrations leading to arson are another partic-
ular characteristic of this area, where deliberate fires have increased
since the early 90s (Leone et al., 2009). In any case, it is clear that hu
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Fig. 4. Multidimensional scatterplots for burned area from natural fires. Note values are given on the logarithmic scale.

man activity is responsible for, or at least has helped in shaping fire
regime in the Northwest region. Moreover, winter fires are most fre-
quent here than in any other region, not only in terms of number of
fires, but proportion of overall fires. This fact makes the region particu-
larly difficult in terms of wildfire modelling, since most of the variables
used are usually concerned with summer fire activity (M. Rodrigues et
al., 2014). On the other hand, wildfires are especially numerous during
early spring coinciding with south winds (M. V. Moreno et al., 2014).
In this case, there is an evident association between the hotter and drier
conditions in this season, linked to this particular weather and, once
again, to human factors – intentional fires peak (M. V. Moreno et al.,
2014) – (Fig. A6 in Appendix 3 and Fig. 5).

Hinterland and Mediterranean regions share more similarities than
differences. These regions show a stronger dependency on climate fac-
tors than Northwest. In fact, human pressure is generally associated
with climate conditions unlikely to ignite fires, thus complementing the
influence of climate. During summer, HL shows significant and positive
relationships among N, B500 and temperature and negative with precip-
itation while MED displays significant relationships with precipitation
alone. As expected, fire features adapt to the climate gradient. For in-
stance, in these regions, natural fires play a more decisive role since they
are more linked to burned area from large fires, so they have a greater
impact in terms of affected area. Or what is the same, a high propor-
tion of large fires in HL and MED regions have a natural source. Natural
fires usually hinder suppression tasks, since accessibility to the burning
area may be significantly difficult. Thus natural fire has a higher chance
of propagating than human-caused fires since climate and fuel condi-
tions are usually favourable (Chuvieco, 2009a, 2009b). Therefore, we
can safely assume that natural fires explain, or at least have some in-
volvement with, a part of the burned area from large fires. HL, which
can be considered as a transition area between pure Eurosiberian con-
ditions to Mediterranean ones, is still influenced by human activities,
although human factors are somewhat complementary to climate con-
ditions. Multi-group PCA supports this to some extent. PC1 meets large
fire activity with burned area from human-caused fires, suggesting that
winter wildfires may have a human origin. The reasons explaining this
fact may be found in agricultural practices or in negligence and acci-
dents from recreational use of forest areas (Leone et al., 2003). With re-
gard to the MED region, the situation is slightly different compared to
HL. Fire frequency and total affected are more influenced by climate,
specifically by precipitation or better the lack of it. The more impor-
tant role of precipitation and the lesser human influence is manifested
in the huge area of large fires, greater than any other region (Table 1),
favoured by dry fuels, something that several authors have previously
pointed out (Pausas & Fernández-Muñoz, 2012; Pausas, 2004; Vázquez,
Climent, Casais, & Quintana, 2015).

In summary (Table 4), we can state that fire regime is strongly influ-
enced by human activities in each region and season. Wildfire frequency
is always significantly related to temperature, precipitation and human
pressure, except in the case on MED during summer which is only tied
to P and HPI. Large fires exhibit a strong relationship with precipita-
tion during summer, being also linked to high temperature in HL. Nat-
ural fires are somewhat tied to large fires although better explained by
precipitation. Finally, from a seasonal standpoint, winter is perhaps the
most complex season of the year, due to climate conditions losing part
of their influence and human activities taking over, especially evident
in the case of the NW and HL regions.

Nevertheless, our research has several limitations that must be
pointed out. Firstly, our analysis is focused on a single study period
(1974–2010), and even though it includes the seasonal scale, does not

include temporal evolution of fire features, and fire activity has most
likely changed over the temporal span (see Moreno et al., 2014). On the
other hand, the scope is focused on several features extracted and con-
structed on the basis of the available fire information. However, other
fire metrics beyond fire reports (e.g. fire severity or intensity) may be
included in further analysis.

6. Conclusions and further research

In this paper, we have described and characterized the major char-
acteristics of the fire regimes in Spanish mainland through quantitative
and visual analyses of relationships between fire components, climate
and human pressure, using fire data from 1974 to 2010. We were able
to determine the most important fire regime features and analyse fire
regime on that basis. Our results suggest that not all the regions exam-
ined have the same fire regime, although they share some characteris-
tics, as in the case of HL and MED during summer.

The combination of multi-group PCA techniques with visual analy-
sis of multidimensional scatterplots and GAM regression has proved to
be a powerful toolset that enables characterization and investigation of
fire regimes. On the one hand, MGPCA has revealed that the main fea-
tures of Spanish fire regimes are total frequency of fires, burned area
from fires over 500 ha big and burned area of natural fires. In addition,
the analysis of these fire regime features in the context of climate and
human factors enabled the main drivers behind fire regime characteris-
tics over regions and seasons to be established. In this sense, the NW re-
gion represents a paradigmatic example of the impact from human fac-
tors, especially during winter, whereas Hinterland and Mediterranean
regions are mostly dependent on climate conditions.

Overall, the NW region is characterized by fire frequency and large
fire activity during summer, whereas during winter, anthropogenic fires
play a more important role. HL reproduces the same behaviour, human
fires during winter and large fires during summer. Finally, MED is char-
acterized by burned area metrics, whereas fire frequency is located in
first place during summer but remains in second place, during winter. In
any case, fire activity shows contrasting characteristics among regions
and seasons. Therefore, fire modelling should take this seasonality into
account in order to produce more reliable results.

The identification of key features opens new research lines that shall
be further investigated. For instance, the spatial and temporal variabil-
ity of fire regimes must be explored in depth. This means that, rather
than consider homogeneous regions (e.g. NW, HL and MED), we must
outline them on the basis of fire features. On the other hand, deeper in-
sights into the temporal evolution of fire regimes have to be provided,
since fire activity has most likely changed over the years, the same as
climate and human factors on which they are dependent.
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Fig. 5. Multidimensional scatterplots for HPI. Note values are given on the logarithmic scale.

Table 3
Deviance explained (DE) and p-values of the GAM outputs for each fire feature with reclassified data of temperature (T), precipitation (P) and human pressure (H) in the three regions and
both seasons (S: spring-summer, W: autumn-winter). Negative binomial distribution was applied for number of fires (N) and log linear family for burned area ones (BL and B500). Bond
values are significant (<0.05).

DE NW S DE HL S DE MED S

T P H T P H T P H

N 0.41 0.000 0.000 0.000 0.14 0.000 0.000 0.000 0.2 0.074 0.000 0.000
BL 0.18 0.644 0.000 – 0.10 0.035 0.104 – 0.2 0.492 0.039 –
B500 0.17 0.012 0.000 – 0.12 0.000 0.000 – 0.13 0.245 0.000 –

DE NW W DE HL W DE MED W
T P H T P H T P H

N 0.42 0.000 0.000 0.000 0.32 0.000 0.000 0.000 0.21 0.000 0.000 0.000
BL 0.2 0.062 0.000 – 0.2 0.000 0.000 – 0.31 0.000 0.000 –
B500 0.15 0.013 0.093 – 0.3 0.2 0.000 – 0.25 0.034 0.000 –

Table 4
Summarize of the main fire features characterizing and median values of climatic variables (reclassified, see Table A1 of Appendix 2 for original values) and human pressure (H) for each
region and season. More representative fire features are highlighted with a tic symbol (?) according to MGPCA results. Colors represent the sign of estimate effects (Red: Increase, Orange:
Stable or very variable, Green: Decrease) of the relationship between fire feature and climatic/human variables (see Figs. A3–A5 for details). Asterisks represent significant relationships
between fire features and climate/human variables.
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