000086271 001__ 86271 000086271 005__ 20230914083224.0 000086271 0247_ $$2doi$$a10.1021/acsphotonics.8b00954 000086271 0248_ $$2sideral$$a111230 000086271 037__ $$aART-2019-111230 000086271 041__ $$aeng 000086271 100__ $$0(orcid)0000-0002-8125-877X$$aMartínez-Pérez, M.J.$$uUniversidad de Zaragoza 000086271 245__ $$aStrong Coupling of a Single Photon to a Magnetic Vortex 000086271 260__ $$c2019 000086271 5060_ $$aAccess copy available to the general public$$fUnrestricted 000086271 5203_ $$aStrong light-matter coupling means that cavity photons and other types of matter excitations are coherently exchanged. It is used to couple different qubits (matter) via a quantum bus (photons) or to communicate different types of excitations, e.g., transducing light into phonons or magnons. A, so far, unexplored interface is the coupling between light and topologically protected particle-like excitations as magnetic domain walls, skyrmions, or vortices. Here, we show theoretically that a single photon living in a superconducting cavity can be strongly coupled to the gyrotropic mode of a magnetic vortex in a nanodisc. We combine numerical and analytical calculations for a superconducting coplanar waveguide resonator and different realizations of the nanodisc (materials and sizes). We show that, for enhancing the coupling, constrictions fabricated in the resonator are crucial, allowing to reach strong coupling in CoFe discs of radius 200-400 nm having resonance frequencies of a few GHz. The strong coupling regime permits coherently exchanging a single photon and quanta of vortex gyration. Thus, our calculations show that the device proposed here serves as a transducer between photons and gyrating vortices, opening the way to complement superconducting qubits with topologically protected spin-excitations such as vortices or skyrmions. We finish by discussing potential applications in quantum data processing based on the exploitation of the vortex as a short-wavelength magnon emitter. 000086271 536__ $$9info:eu-repo/grantAgreement/ES/DGA/Q-MAD$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-64083-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-73914-JIN$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-88358-C3-1-R$$9info:eu-repo/grantAgreement/EUR/QUANTERA/SUMO 000086271 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000086271 590__ $$a6.864$$b2019 000086271 592__ $$a2.974$$b2019 000086271 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b51 / 314 = 0.162$$c2019$$dQ1$$eT1 000086271 593__ $$aAtomic and Molecular Physics, and Optics$$c2019$$dQ1 000086271 591__ $$aOPTICS$$b9 / 97 = 0.093$$c2019$$dQ1$$eT1 000086271 593__ $$aElectronic, Optical and Magnetic Materials$$c2019$$dQ1 000086271 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b26 / 103 = 0.252$$c2019$$dQ2$$eT1 000086271 593__ $$aElectrical and Electronic Engineering$$c2019$$dQ1 000086271 591__ $$aPHYSICS, CONDENSED MATTER$$b15 / 69 = 0.217$$c2019$$dQ1$$eT1 000086271 593__ $$aBiotechnology$$c2019$$dQ1 000086271 591__ $$aPHYSICS, APPLIED$$b24 / 154 = 0.156$$c2019$$dQ1$$eT1 000086271 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000086271 700__ $$0(orcid)0000-0003-4478-1948$$aZueco, D.$$uUniversidad de Zaragoza 000086271 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000086271 773__ $$g6, 2 (2019), 360-367$$pACS photonics$$tACS photonics$$x2330-4022 000086271 8564_ $$s641807$$uhttps://zaguan.unizar.es/record/86271/files/texto_completo.pdf$$yPostprint 000086271 8564_ $$s252315$$uhttps://zaguan.unizar.es/record/86271/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000086271 909CO $$ooai:zaguan.unizar.es:86271$$particulos$$pdriver 000086271 951__ $$a2023-09-13-10:42:32 000086271 980__ $$aARTICLE