000086278 001__ 86278
000086278 005__ 20200609132538.0
000086278 0247_ $$2doi$$a10.1016/j.mcat.2018.11.020
000086278 0248_ $$2sideral$$a109835
000086278 037__ $$aART-2018-109835
000086278 041__ $$aeng
000086278 100__ $$aMeyer, C.I.
000086278 245__ $$aSelective lactose oxidation in aqueous-phase over Ag-Au bimetallic nanoparticles supported on Al2O3 under mild reaction conditions
000086278 260__ $$c2018
000086278 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086278 5203_ $$aIn this work, Au-Ag based catalysts supported on Al2O3 were prepared by a precipitation-deposition method at controlled pH and tested in the selective lactose (LA) oxidation to lactobionic acid (LB) in aqueous phase. Combining XPS and STEM-HAADF, it was found that there is an important surface Ag enrichment of bimetallic nanoparticles for bulk atomic ratios Au/(Au + Ag)>0.5. These bimetallic nanoparticles were active for the selective LA oxidation into LB and the maximum activity was reached with Au/(Au + Ag) = 0.9. In this case, the surface Au/(Au + Ag) atomic ratio was about 0.5, which indicates that there is the same amount of both elements at the active surface of the catalyst. Assuming that LA is chemisorbed on Au sites, and O2 on Ag ones, this particular surface atomic ratio would favor the interaction and reaction between both reactants. Thus, the synergistic effect between Au and Ag could explain the results of this study. A compensation effect between frequency factor and activation energy supports the existence of such synergy. If the atomic ratio is Au/(Au + Ag)=0.5, a layer of Ag deposits over the Au nanoparticles (core-shell structure) and the conversion of LA into LB drops to zero.
000086278 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000086278 590__ $$a2.938$$b2018
000086278 591__ $$aCHEMISTRY, PHYSICAL$$b67 / 148 = 0.453$$c2018$$dQ2$$eT2
000086278 592__ $$a0.999$$b2018
000086278 593__ $$aCatalysis$$c2018$$dQ1
000086278 593__ $$aProcess Chemistry and Technology$$c2018$$dQ1
000086278 593__ $$aPhysical and Theoretical Chemistry$$c2018$$dQ1
000086278 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000086278 700__ $$aRegenhardt, S.A.
000086278 700__ $$aDuarte, H.A.
000086278 700__ $$aZelin, J.
000086278 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, V.$$uUniversidad de Zaragoza
000086278 700__ $$aGaretto, T.F.
000086278 700__ $$aMarchi, A.J.
000086278 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000086278 773__ $$g481, 110249 (2018), [9 pp]$$pMolecular Catalysis$$tMolecular Catalysis$$x2468-8231
000086278 8564_ $$s525790$$uhttps://zaguan.unizar.es/record/86278/files/texto_completo.pdf$$yPostprint
000086278 8564_ $$s43953$$uhttps://zaguan.unizar.es/record/86278/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000086278 909CO $$ooai:zaguan.unizar.es:86278$$particulos$$pdriver
000086278 951__ $$a2020-06-09-13:24:09
000086278 980__ $$aARTICLE