000086279 001__ 86279
000086279 005__ 20200609132538.0
000086279 0247_ $$2doi$$a10.1002/aenm.201802820
000086279 0248_ $$2sideral$$a109847
000086279 037__ $$aART-2018-109847
000086279 041__ $$aeng
000086279 100__ $$aCooper, C.B.
000086279 245__ $$aDesign-to-Device Approach Affords Panchromatic Co-Sensitized Solar Cells
000086279 260__ $$c2018
000086279 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086279 5203_ $$aData-driven materials discovery has become increasingly important in identifying materials that exhibit specific, desirable properties from a vast chemical search space. Synergic prediction and experimental validation are needed to accelerate scientific advances related to critical societal applications. A design-to-device study that uses high-throughput screens with algorithmic encodings of structure–property relationships is reported to identify new materials with panchromatic optical absorption, whose photovoltaic device applications are then experimentally verified. The data-mining methods source 9431 dye candidates, which are auto-generated from the literature using a custom text-mining tool. These candidates are sifted via a data-mining workflow that is tailored to identify optimal combinations of organic dyes that have complementary optical absorption properties such that they can harvest all available sunlight when acting as co-sensitizers for dye-sensitized solar cells (DSSCs). Six promising dye combinations are shortlisted for device testing, whereupon one dye combination yields co-sensitized DSSCs with power conversion efficiencies comparable to those of the high-performance, organometallic dye, N719. These results demonstrate how data-driven molecular engineering can accelerate materials discovery for panchromatic photovoltaic or other applications.
000086279 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E14-17R$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2014-52331-R
000086279 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000086279 590__ $$a24.884$$b2018
000086279 591__ $$aCHEMISTRY, PHYSICAL$$b3 / 148 = 0.02$$c2018$$dQ1$$eT1
000086279 591__ $$aENERGY & FUELS$$b4 / 103 = 0.039$$c2018$$dQ1$$eT1
000086279 591__ $$aPHYSICS, CONDENSED MATTER$$b4 / 68 = 0.059$$c2018$$dQ1$$eT1
000086279 591__ $$aPHYSICS, APPLIED$$b4 / 148 = 0.027$$c2018$$dQ1$$eT1
000086279 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b6 / 293 = 0.02$$c2018$$dQ1$$eT1
000086279 592__ $$a8.9$$b2018
000086279 593__ $$aRenewable Energy, Sustainability and the Environment$$c2018$$dQ1
000086279 593__ $$aMaterials Science (miscellaneous)$$c2018$$dQ1
000086279 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000086279 700__ $$aBeard, E.J.
000086279 700__ $$aVázquez-Mayagoitia, Á.
000086279 700__ $$aStan, L.
000086279 700__ $$aStenning, G.B.G.
000086279 700__ $$aNye, D.W.
000086279 700__ $$aVigil, J.A.
000086279 700__ $$aTomar, T.
000086279 700__ $$aJia, J.
000086279 700__ $$aBodedla, G.B.
000086279 700__ $$aChen, S.
000086279 700__ $$aGallego, L.
000086279 700__ $$0(orcid)0000-0001-9747-1789$$aFranco, S.$$uUniversidad de Zaragoza
000086279 700__ $$aCarella, A.
000086279 700__ $$aThomas, K.R.J.
000086279 700__ $$aXue, S.
000086279 700__ $$aZhu, X.
000086279 700__ $$aCole, J.M.
000086279 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000086279 773__ $$g9, 5 (2018), 1802820 [10 pp]$$pADVANCED ENERGY MATERIALS$$tADVANCED ENERGY MATERIALS$$x1614-6832
000086279 8564_ $$s2134390$$uhttps://zaguan.unizar.es/record/86279/files/texto_completo.pdf$$yPostprint
000086279 8564_ $$s42135$$uhttps://zaguan.unizar.es/record/86279/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000086279 909CO $$ooai:zaguan.unizar.es:86279$$particulos$$pdriver
000086279 951__ $$a2020-06-09-13:24:30
000086279 980__ $$aARTICLE