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Abstract

A number of artificial and natural systems can be modeled as hybrid models
in which continuous and discrete variables interact. Such hybrid models are
usually challenging to analyze and control due to the computational com-
plexity associated with existing methods. In this paper, the novel modeling
formalism of Guarded Flexible Nets (GFNs) is proposed for the modeling,
analysis and control of hybrid system. A GFN consists of an event net that
determines how the state changes as processes execute, and an intensity net
that determines the speeds of the processes. In a GFN, the continuous state
is given by the value of its state variables, and the discrete state is given by
the region within which such variables lie. GFNs are shown to possess a high
modeling power while offering appealing analysis and control possibilities.
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1. Introduction

Hybrid systems are a rather general class of dynamical systems that com-
bine continuous dynamics and discrete events [1, 2]. This generality allows
for the modeling of a number of system properties. Thus, not surprisingly,
hybrid systems have been used successfully to model systems in different ap-
plication domains such as manufacturing, the automotive industry, computer
networks, biological systems, etc. [3, 4, 5, 6, 7]. The state of a hybrid system
is usually given by two sets of variables: a set of real variables accounting for
the continuous state of the system, and a set of integer variables accounting
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for the discrete state. The way continuous and discrete state variables inter-
act over time depends on the adopted modeling framework (or formalism).

Among the most popular frameworks to model hybrid systems are hybrid
automata [8, 9], mixed logical dynamical (MLD) systems [10], and hybrid
Petri nets [11, 12]. Hybrid automata consist of a finite state machine and a set
of differential equations associated with each location of the state machine.
These automata have proved to be very successful for the verification and
analysis of hybrid systems through model checking techniques [13]. MLD
systems are computationally oriented models that describe the discrete-time
evolution of the system by means of linear inequalities that include both
real and binary variables. MLD systems have been shown to be equivalent
to piecewise linear affine systems [14] and are very well suited for use in
model predictive control [15]. Hybrid Petri nets are an extension of classical
discrete Petri nets [16, 17] in which the firing of some transitions is relaxed
to the real numbers. Some of the advantages of hybrid Petri nets are their
ability to represent the system graphically, and their potential to tailor (or
straightforwardly use) the existing toolbox of structural analysis techniques
of classical Petri nets.

Despite the success of the current approaches to hybrid systems, the mod-
eling, analysis, and control of some systems remains challenging. Among
these challenges are the difficulty these approaches have in accommodat-
ing parameter uncertainties in the model, and the computational complexity
associated with many analysis techniques and control tasks, i.e. the compu-
tation of control actions that achieve a given goal. This paper deals with
Guarded Flexible Nets (GFNs) [18], a modelling formalism inspired by Petri
nets, that attempts to alleviate these problems.

GFNs model the relationships between the state and the processes of
a system by means of two nets, the event net and the intensity net: the
event net specifies how the state changes when the processes of the system
execute, and the intensity net specifies the speed of the processes as a function
of the state of the system. Both the event net and the intensity net are
tripartite graphs composed of places, transitions and handlers. These nets
can accommodate uncertain parameters through sets of linear inequalities
that are associated with their handlers. The combination of an event net
and an intensity net results in a Flexible Net (FN) [18].

In an FN, the speeds of the processes depend linearly on the state of the
system. In order to model non-linear speed functions, FNs can be enriched
with guards that are associated with the intensity net, this leads to GFNs.
In a GFN, the speeds of the processes depend on the guards that are active.
Thus, a GFN can be seen as a hybrid system in which the continuous state
is given by the marking, and the discrete state is given by the set of active
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guards. As it is shown in the following sections, this simple relationship
between continuous and discrete states can be exploited to model a wide
variety of dynamical behaviours while keeping a relatively compact graphical
notation.

In contrast to hybrid Petri nets [19, 20, 21] that allow discontinuities in
the marking evolution, the marking of all the places of a GFN follows a con-
tinuous trajectory, and the discrete state is given by the set of active guards.
Thus, the marking discontinuities of hybrid Petri nets cannot be mimicked
by the marking of the places of a GFN. Nevertheless, particular classes of
hybrid Petri nets in which the evolution of continuous places does not contain
discontinuities, can be modeled by GFNs that map regions to the discrete
markings of the hybrid Petri net. On the other hand, it should be noted
that, in contrast to hybrid Petri nets, GFNs offer the possibility to model
separately the marking changes produced by the execution of transitions, and
the transitions speeds produced by the marking, through the event and in-
tensity nets. Moreover, GFNs can handle a number of uncertain parameters,
e.g. uncertain initial marking, uncertain default intensities, and uncertain
dynamics modeled by the inequalities associated with both the event and the
intensity handlers.

All the potential trajectories of a GFN can be accounted for by a set
of necessary reachability conditions [18]. These conditions are expressed
in terms of linear and quadratic inequalities that contain real and binary
variables, and that relate the initial, average, and final state of the net for a
given time period. In order to analyze the system, these constraints can be
combined with appropriate objective functions. The solution of the resulting
programming problems can be used to estimate the state of the system or to
compute bounds of interest.

Control actions can be introduced straightforwardly in a GFN by means
of intensity, or speed, variables associated with the transitions. The effect
of these control actions on the system dynamics is established by the inten-
sity net. A given control goal, expressed in terms of an objective function,
together with the reachability conditions of the GFN, make up a program-
ming problem whose solution contains the values of the control actions to be
implemented in the system.

The paper is organized as follows: FNs and GFNs are introduced in
Sections 2 and 3 respectively. Section 4 shows how hybrid systems can be
modeled an analyzed by GFNs. Section 5 focuses on the control possibilities
of hybrid systems by GFNs. The main conclusions are drawn in Section 6.
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2. Flexible Nets

A Flexible Net (FN) is composed of an intensity net and an event net.
This section first introduces intensity nets, then event nets, and finally FNs.

2.1. Intensity Nets

The intensity net determines the intensity, or speed, of the transitions
as a function of the marking. Intensity nets contain three types of ver-
tices: places, transitions and intensity handlers. Places and transitions are
connected through intensity handlers which establish the relation between
marking and intensity. An intensity net can be denoted as P/S/T nets,
which can be interpreted as: tokens in places P produce and consume inten-
sities in transitions T through intensity handlers S. More formally:

Definition 1 (Intensity net). An intensity net is a tuple NS =
(P, T, S, ES, C,D) where (P, T, S, ES) is a tripartite graph determining the
net structure and (C,D) are matrices determining the potential intensity
changes produced by the marking.

The set of vertices of the net is partitioned into three sets:

• P = {p1, . . . , pi, . . .} is a set of |P | places.

• T = {t1, . . . , tj , . . .} is a set of |T | transitions.

• S = {s1, . . . , sl, . . .} is a set of |S| intensity handlers.

Similarly to Petri nets, the places model the type of components of the
system and are depicted as circles, and the transitions model the processes
of the system and are depicted as rectangles. The intensity handlers are
depicted as dots and model the different ways in which the marking of places
can generate intensities in the transitions.

The vertices of the net are connected by the edges in ES. Each pair of
vertices can be connected by at most one edge. The set ES is partitioned
into two sets ET

S and EP
S , where E

T
S is a set of directed edges, or simply arcs,

connecting transitions to intensity handlers and vice versa, and EP
S is a set of

undirected edges, or simply edges, connecting places and intensity handlers.
More formally:

• Every e ∈ ET
S is either an arc e = (tj , sl) from a transition tj to a

handler sl, or an arc e = (sl, tj) from a handler sl to a transition tj .

• Every e ∈ EP
S is an edge e = {pi, sl} connecting a place pi and a handler

sl.
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Direct connections among places and transitions are not allowed. The
following notation will be used:

• tsl denotes the input transitions of sl, i.e.
tsl = {tj |(tj, sl) ∈ ET

S }

• stl denotes the output transitions of sl, i.e. s
t
l = {tj|(sl, tj) ∈ ET

S }

• stj denotes the input handlers of tj , i.e.
stj = {sl|(sl, tj) ∈ ET

S }

• tsj denotes the output handlers of tj , i.e. t
s
j = {sl|(tj, sl) ∈ ET

S }

• psl denotes the places connected to sl, i.e.
psl = {pi|{pi, sl} ∈ EP

S }

• psi denotes the handlers connected to pi, i.e. p
s
i = {sl|{pi, sl} ∈ EP

S }

Example 1. Fig. 1(a) depicts an intensity net with 4 places, p1, p2, p3 and
p4; 4 transitions, t1, t2, t3 and t4; and 3 intensity handlers s1, s2 and s3.
Places(transitions) are connected to intensity handlers by edges(arcs). As an
example of the introduced notation, the output transitions of s2 are s

t
2 = {t3},

and the intensity handlers connected to p3 are ps3 = {s2, s3}.

(a) (b)
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Figure 1: (a) Intensity net. (b) Event net.

Each place has a nonnegative real number of tokens (or marking) that
can be used by the intensity handlers that are connected to it in order to
produce intensities. A token is active if it is being used by an intensity
handler, otherwise it is idle. While idle tokens are associated with places,
active tokens are associated with edges. An intensity handler determines how
much intensity is produced in its arcs as a function of the number of active
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tokens in its edges. The intensity of a transition is obtained as function of
the intensity in its arcs. In order to account for these relations, the following
state variables are used:

Definition 2 (State). The state of an intensity net NS is given by the tuple
(m,µP , µE,∆λ, λ), where:

• m ∈ R
|P |
≥0 is the marking, i.e. a vector indexed by P where m[pi] is the

number of tokens in pi,

• µP ∈ R
|P |
≥0 is a vector indexed by P where µP [pi] is the number of idle

tokens in pi,

• µE ∈ R
|EP

S |
≥0 is a vector indexed by EP

S where µE[{pi, sl}] is the number
of active tokens of pi being used by sl,

• ∆λ ∈ R
|ET

S
|

≥0 is a vector indexed by ET
S where ∆λ[e] is the intensity in

arc e. If e = (tj, sl) then ∆λ[e] is a decrease of intensity in tj produced
by sl; if e = (sl, tj) then ∆λ[e] is an increase of intensity in tj produced
by sl,

• λ ∈ R
|T |
≥0 is a vector indexed by T where λ[tj] is the intensity of tj.

The number of tokens in a place, m[pi], is equal to the number of idle
tokens in the place, µP [pi], plus the number of active tokens, µE[{pi, sl}], in
the connected edges:

m[pi] = µP [pi] +
∑

sl∈p
s
i

µE[{pi, sl}] ∀ pi ∈ P (1)

which can be expressed in matrix form as:

m = µP + YmµE (2)

where Ym is a matrix with rows indexed by P and columns indexed by EP
S .

Example 2. Equation (2) of the intensity net in Fig. 1(a) is:









m[p1]
m[p2]
m[p3]
m[p4]









=









µP [p1]
µP [p2]
µP [p3]
µP [p4]









+









1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 1





















µE[{p1, s1}]
µE[{p2, s2}]
µE[{p3, s2}]
µE[{p3, s3}]
µE[{p4, s3}]












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The relation between the number of active tokens, µE, and the intensities
produced in arcs, ∆λ, is given by a set of inequalities associated with each
intensity handler sl ∈ S. The coefficients of these inequalities can be captured
by two matrices C and D of real numbers and same number of rows. The
columns of C and D are indexed by ET

S and EP
S , respectively. The relation

between active tokens, µE, and intensities in arcs, ∆λ, can be expressed by:

C∆λ ≤ DµE (3)

Example 3. Consider the net in Fig. 1(a). In order to simplify the writing
of inequalities, edges and arcs are associated with labels that denote num-
ber of active tokens and produced intensity. For instance, the label of edge
{p1, s1} is ’a’ and denotes µE[{p1, s1}]. In this way, the inequality 2a≤r≤3a
associated with s1 means that the intensity produced in (s1, t2) is between two
and three times the number of active tokens in {p1, s1} (any value in this
interval is valid). The equations associated with s2 imply that active tokens
both in {p2, s2} and {p3, s2} are required simultaneously to produce intensity
in (s2, t3) (more precisely, the number of active tokens in both edges and the
intensity produced are forced to be the same). The inequalities of s3 mean
that the intensity produced in (s3, t4) is less than or equal to µE[{p3, s3}] and
µE [{p4, s3}]. Notice that the tokens in p3 can synchronize either with tokens
in p2 and produce intensity in (s2, t3), or with tokens in p4 and produce in-
tensity in (s3, t4). Such a choice is nondeterministic and is allowed to change
over time. Equation (3) of the net in Fig. 1(a) is:
























−1 0 0
1 0 0
0 −1 0
0 1 0
0 −1 0
0 1 0
0 0 1
0 0 1





























∆λ[(s1, t2)]
∆λ[(s2, t3)]
∆λ[(s3, t4)]



 ≤

























−2 0 0 0 0
3 0 0 0 0
0 −1 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





































µE[{p1, s1}]
µE[{p2, s2}]
µE[{p3, s2}]
µE[{p3, s3}]
µE[{p4, s3}]













Each transition tj is assigned a default intensity λ0[tj ]. The intensity λ[tj ]
in a transition tj is equal to λ0[tj ] plus the positive changes in intensity minus
the negative changes in intensity:

λ[tj ] = λ0[tj ]−
∑

sl∈tsj

∆λ[(tj , sl)]+
∑

sl∈ stj

∆λ[(sl, tj)] ∀ tj ∈ T (4)

which can be expressed in matrix form as:

λ = λ0 + Zλ∆λ (5)
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where Zλ is a matrix with rows indexed by T and columns indexed by ET
S .

Example 4. Equation (5) of the net in Fig. 1(a) is:









λ[t1]
λ[t2]
λ[t3]
λ[t4]









=









λ0[t1]
λ0[t2]
λ0[t3]
λ0[t4]









+









0 0 0
1 0 0
0 1 0
0 0 1













∆λ[(s1, t2)]
∆λ[(s2, t3)]
∆λ[(s3, t4)]





In order to account for partially known default intensities, λ0 is assumed
to be linearly constrained as:

Jλλ0 ≤ Kλ (6)

where Jλ and Kλ are real matrices of appropriate size. For instance, λ0[t1]
in Fig. 1(a) is constrained as 1≤λ0[t1]≤2, and the default intensities of the
other transitions is 0 (and hence are not specified in the Figure).

The combination of (2), (3), (5) and (6) leads to the state equations of
intensity nets:

SENS
(m, Jλ, Kλ) = {(m,µP , µE,∆λ, λ)|m = µP + YmµE

C∆λ ≤ DµE

λ = λ0 + Zλ∆λ

Jλλ0 ≤ Kλ}

(7)

The solutions of these equations contain all the potential states,
(m,µP , µE,∆λ, λ), of the intensity net for a given marking m and given
matrices Jλ and Kλ. Different additional constraints can be added to (7)
to model known system features. As an example, the constraint µP [pi] = 0
models the fact that all the tokens of place pi must be active.

2.2. Event Nets

The intensity of a transition tj is the speed at which the process modeled
by tj can perform its activities. The integral of the intensity λ[tj ] over time is
referred as the number of actions produced in tj and is denoted as σ[tj ]. Let
∆σ[e](τ) denote the number of actions produced in the intensity arc e ∈ ET

S

until time τ :

∆σ(τ) =

∫ τ

0

∆λ(s) ds (8)

then, the number of actions produced in transitions is:

σ(τ) = λ0τ + Zλ∆σ(τ) (9)
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Event nets determine how the produced actions can be used to perform
changes in the marking. An event net can be denoted as T/V/P nets, which
can be interpreted as: actions in transitions T produce and consume tokens
in places P through event handlers V . More formally:

Definition 3 (Event net). An event net is a tuple NV =
(P, T, V, EV , A, B) where (P, T, V, EV ) is a tripartite graph determining
the net structure and (A,B) are matrices determining the potential marking
changes produced by the actions.

Similarly to intensity nets, the set of vertices of the net is partitioned into
three sets, P is the set of places, T is the set of transitions, and:

• V = {v1, . . . , vk, . . .} is a set of |V | event handlers.

The event handlers, which are depicted as dots, model the different ways
in which the actions in the transitions can change the marking of places. The
vertices of the net are connected by the edges in EV . Each pair of vertices can
be connected by at most one edge. The set EV is partitioned into two sets
EP

V and ET
V , where EP

V is a set of directed edges, or simply arcs, connecting
places to event handlers and vice versa, and ET

V is a set of undirected edges,
or simply edges, connecting transitions and event handlers. More formally:

• Every e ∈ EP
V is either an arc e = (pi, vk) from a place pi to a handler

vk, or an arc e = (vk, pi) from a handler vk to a place pi.

• Every e ∈ ET
V is an edge e = {tj, vk} connecting a transition tj and a

handler vk.

As in the intensity net, connections among places and transitions are not
allowed. The following notation will be used:

• pvk denotes the input places of vk, i.e.
pvk = {pi|(pi, vk) ∈ EP

V }

• vpk denotes the output places of vk, i.e. v
p
k = {pi|(vk, pi) ∈ EP

V }

• vpi denotes the input handlers of pi, i.e.
vpi = {vk|(vk, pi) ∈ EP

V }

• pvi denotes the output handlers of pi, i.e. p
v
i = {vk|(pi, vk) ∈ EP

V }

• tvk denotes the transitions connected to vk, i.e.
tvk = {tj |{tj, vk} ∈ ET

V }

• tvj denotes the handlers connected to tj , i.e. t
v
j = {vk|{tj, vk} ∈ ET

V }

The state of an event net accounts not only for markings and number of
actions, but also for the marking changes and the execution of actions:

9



Definition 4 (State). The state of an event net NV is given by the tuple
(σ, aT , aE,∆m,m), where:

• σ ∈ R
|T |
≥0 is a vector indexed by T where σ[tj ] is the number of actions

produced in tj.

• aT ∈ R
|T |
≥0 is a vector indexed by T where aT [tj ] is the number of actions

available in tj.

• aE ∈ R
|ET

V |
≥0 is a vector indexed by ET

V where aE [{tj, vk}] is the number
of actions of tj executed by vk.

• ∆m ∈ R
|EP

V
|

≥0 is a vector indexed by EP
V where ∆m[(pi, vk)] is the number

of tokens in pi consumed by vk, and ∆m[(vk, pi)] is the number of tokens
in pi produced by vk.

• m ∈ R
|P |
≥0 is the marking, i.e. a vector indexed by P where m[pi] is the

number of tokens in pi.

Since actions need time to be produced, at the initial state it holds σ = 0,
aT = 0 and aE = 0.

Notice that the number of actions produced in a transition is equal to
the number of actions executed by the event handlers plus the number of
available actions:

σ[tj ] = aT [tj] +
∑

vk∈tvj

aE [{tj , vk}] ∀ tj ∈ T (10)

This can be expressed in matrix form as:

σ = aT + YσaE (11)

where Yσ is a matrix with rows indexed by T and columns indexed by ET
V .

Similarly to intensity handlers, each event handler vk ∈ V is associated
with a set of linear inequalities that relate the number of actions executed in
the transitions connected to it to the marking changes in the places connected
to it. The coefficients of these inequalities can be captured by two matrices
A and B of real numbers and same number of rows. The columns of A and
B are indexed by EP

V and ET
V , respectively. The relation between executed

actions, aE, and marking changes, ∆m, can be expressed by:

A∆m ≤ BaE (12)
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The number of tokens in a place pi is equal to the initial number of
tokens, which is denoted m0[pi], minus the number of tokens consumed plus
the number of tokens produced:

m[pi] = m0[pi]−
∑

vk∈pvi

∆m[(pi, vk)]+
∑

vk∈vpi

∆m[(vk, pi)] ∀ pi ∈ P (13)

which can be expressed in matrix form as:

m = m0 + Zm∆m (14)

where Zm is a matrix with rows indexed by P and columns indexed by EP
V .

Example 5. Fig. 1(b) depicts an event net with 4 places, 4 transitions and
5 event handlers. As in the intensity net, labels are associated with edges and
arcs to simplify the writing of inequalities. For instance, the equation a=x
associated with v1 means that each action of t1 executed by v1 produces one
token in p1. The inequalities associated with v2 (written down on the left of
the Figure for clarity) imply that each action of t2 executed by v2 consumes
a token from p1 and produces a number of tokens in the interval [2, 3] in p2
(the actual number of tokens produced in p2 is chosen nondeterministically).

In order to simplify the notation, no inequalities are written when the
labels of all the edges and arcs of a handler are forced to be equal. For
instance, the equation associated with v3 in Fig. 1(b) is a=x and hence it is
omitted (the equations of v4 and v5 are also omitted). The same omission is
done for event and intensity handlers in the following.

Partially known initial marking can be accounted for by:

Jmm0 ≤ Km (15)

where Jm and Km are real matrices of appropriate size.
Equations (11), (12), (14) and (15) compose the state equations of event

nets:

SENV
(σ, Jm, Km) = {(σ, aT , aE ,∆m,m)|σ = aT + YσaE

A∆m ≤ BaE

m = m0 + Zm∆m

Jmm0 ≤ Km}

(16)

These equations represent necessary reachability conditions for the state
of an event net, for a given number of produced actions, σ, and an initial
marking constrained by the matrices Jm and Km. The solution space can be
further constrained by known system features. For instance, the constraint
aT [tj] = 0 forces the execution of all the actions produced in tj.
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2.3. Flexible Nets

This section introduces Flexible Nets (FNs), which can be denoted as
P/H/T nets, i.e. places P and transitions T are connected by event and
intensity handlers.

Definition 5 (FN). A Flexible Net (FN) is a tuple N =
(P, T, V, EV , A, B, S, ES, C,D) where (P, T, V, EV , A, B) is an event net
and (P, T, S, ES, C,D) is an intensity net.

Example 6. Fig. 2 shows a FN composed by the intensity net in Fig. 1(a)
and the event net in Fig. 1(b). In the resulting FN, the event net determines
the way actions produce marking changes, and the intensity net determines
the way tokens produce intensity changes.

4

4 3

2

a

b

c

c

d

r

r

x

1≤λ0[t1]≤2

p1 p2

p3

p4

t1 t2 t3

t4

v1

v2:

{

b=x

2x≤c≤3x v3

v4 v5

s1:2a≤r≤3a
s2

r≤c

r≤d

}

:s3

Figure 2: FN resulting of combining the intensity net and the event net in Fig. 1.

In addition to the state variables of the event and intensity net, ∆σ
(see (8)) is included in the tuple of variables defining the state of the FN.

Definition 6 (State). The state x of an FN is given by the vector
that results from the concatenation of the state variables, i.e. x =
(m,µP , µE,∆λ, λ,∆σ, σ, aT , aE ,∆m).
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All the state variables are time dependent. For the sake of clarity, the
time dependency will be omitted when it is clear from the context, e.g.
σ(τ) is shortened to σ. In the initial state at time 0 it holds ∆σ = 0,
σ = 0, aT = 0, aE = 0, ∆m = 0, i.e. the initial state can be written as:
(m,µP , µE,∆λ, λ, 0, 0, 0, 0, 0).

By making use of SENS
(m, Jλ, Kλ) (see (7)), (8), (9), and

SENV
(σ, Jm, Km) (see (16)), it is possible to write a set of equations that

any potential state at time τ must satisfy.

Proposition 1 (State equations (FN)). Let N be an FN with initial
marking m0 satisfying Jmm0 ≤ Km, and default intensities λ0 satisfying
Jλλ0 ≤ Kλ. Every state (m,µP , µE,∆λ, λ,∆σ, σ, aT , aE ,∆m) reachable at
time τ belongs to SEN (τ, Jm, Km, Jλ, Kλ) where:

SEN (τ, Jm, Km, Jλ, Kλ) = {(m,µP , µE,∆λ, λ,∆σ, σ, aT , aE,∆m)|

m = µP + YmµE; C∆λ ≤ DµE; λ = λ0 + Zλ∆λ; Jλλ0 ≤ Kλ

∆σ =

∫ τ

0

∆λ(s) ds; σ = λ0τ + Zλ∆σ

σ = aT + YσaE; A∆m ≤ BaE; m = m0 + Zm∆m; Jmm0 ≤ Km}

(17)

where every variable is nonnegative.

Thus, an FN is a time continuous model, where time, denoted as τ , is the
independent variable, and all the state variables are nonnegative reals.

Equations (17) can be interpreted as follows: At a given time τ , some of
the produced actions (σ) are available (aT ), and the rest (aE) were executed
before τ . The executed actions produced marking changes (∆m) which re-
sulted in the marking m in places at τ . Some of the tokens in m are active
(µE) and the rest are idle (µP ). Active tokens produce intensity changes
(∆λ) which result in overall intensities (λ) in transitions at τ . The integral
of the intensity changes and overall intensities over time after τ will produce
more actions (σ), i.e. σ is produced as time elapses. This behavior repeats
over time: when a new marking is reached, intensities are updated, which
can lead to the production and execution of new actions, which consequently
results in a new marking.

Equations (17) can be relaxed by dropping their time dependency. This
leads to a set of constraints that represent a necessary condition for reacha-
bility at any time.

Proposition 2 (Untimed state equations (FN)). Let N be an FN with
initial marking m0 satisfying Jmm0 ≤ Km, and default intensities λ0 satisfy-
ing Jλλ0 ≤ Kλ. Every state (m,µP , µE,∆λ, λ,∆σ, σ, aT , aE,∆m) reachable
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at any time τ ≥ 0 belongs to USEN (Jm, Km, Jλ, Kλ) where:

USEN (Jm, Km, Jλ, Kλ) = {(m,µP , µE,∆λ, λ,∆σ, σ, aT , aE,∆m)|

m = µP + YmµE; C∆λ ≤ DµE; λ = λ0 + Zλ∆λ; Jλλ0 ≤ Kλ

σ = aT + YσaE ; A∆m ≤ BaE ; m = m0 + Zm∆m; Jmm0 ≤ Km}

(18)

where every variable is nonnegative.

3. Guarded Flexible Nets

FNs can account for linear relationships between the marking of places
and the intensities produced in transitions by means of the inequalities as-
sociated with intensity handlers. Although these inequalities allow for the
modeling of a number of dynamical behaviors, they cannot accommodate the
nonlinear dynamics of many systems of interest. This section introduces an
extension of FNs, called guarded FNs (GFNs), that associates guards with
the intensity arcs. In a GFN, intensity is produced at an intensity arc only
if one of its guards is active. As it will be shown, GFNs are specially well
suited to model hybrid systems.

3.1. Regions and partitions

The structure of a GFN, denoted NG, is defined in the same way as the
structure of an unguarded one. The difference lies in the guards assigned to
each intensity arc e ∈ ET

S . Each guard is defined by a region of the state
space, and a guard is said to be active if and only if the state of the net is in
the region that defines that guard. A set of linear inequalities relating active
tokens and intensities is associated with each guard of each arc. The intensity
∆λ[e] of e ∈ ET

S is determined by the set of linear inequalities associated with
the guard of e that is active, if no guard is active then ∆λ[e] = 0.

More formally, each region Rr is a convex polytope of the form
Rr = {y | Sry ≤ Qr} where Sr(Qr) is a real valued matrix(vector)
and the components of y are associated with the state variables as y =
(m,µP , µE,∆σ, σ, aT , aE,∆m). Hence, only the state variables in y can be
used to define guards (notice that such guards will in turn determine the value
of the intensities, and thus, neither ∆λ nor λ are used to define guards). The
set of all the regions is denoted R.

For modeling and analysis purposes, it is useful to consider sets of regions
that partition the state space. A partition Pn is a set of regions Pn =
{R1, . . . ,Rr, . . .} such thatRr∩Rs = ∅ for every pair of regionsRr,Rs ∈ Pn,
and all the values of the state variables in y that satisfy (18) are contained
in

⋃

Rr∈Pn

Rr. In order to allow the modeler to partition the state space in
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different ways, a set of partitions can be considered. The set of partitions is
denoted P = {P1, . . . ,Pn, . . .}.

The guards and the intensities determined by the guards can be included
in the graphical representation of the net by associating linear inequalities
and boolean conditions (that represent the guards) with intensity handlers.

Example 7. Let us associate the following inequalities with the intensity
handlers s1 and s3 of the FN in Fig. 2:

s1 :

{

2a≤r≤3a if a≤3

r=4a otherwise
s3 :

{

r=c if c≤d

r=d otherwise
(19)

Such association turns the net in Fig. 2 into a GFN. The inequalities of s1
mean that if the number of active tokens in {p1, s1}, µE[{p1, s1}], which is
shortened as a, is less than or equal to 3 then the intensity in (s1, t1) is in
the interval [2a, 3a], otherwise the intensity is equal to 4a. The inequalities
of s3 imply that the intensity in (s3, t4) is equal to the minimum number of
active tokens in {p3, s3} and {p4, s3}.

The above inequalities represent two partitions, P1 and P2, of the state
space. Partition P1 contains 2 regions, P1={R1,R2}, where R1 is defined
by µE[{p1, s1}]≤3, and R2 by µE [{p1, s1}]≥3. Partition P2 also contains 2
regions, P2={R3,R4}, where R3 is defined by µE[{p3, s3}]≤µE[{p4, s3}], and
R4 is defined by µE[{p3, s3}]≥µE[{p4, s3}].

Notice that the non-strict inequalities used to define regions entails a non-
null intersection of the polytopes at the borders. When the state of the net
is at a shared border, it will be assumed to be in only one of the regions (any
of them) sharing that border.

3.2. Definition and state equations

In a guarded net, each intensity arc e ∈ ET
S is assigned a set of regions

through the function ϕ : ET
S → 2R. Each region Rr ∈ ϕ(e) is a guard of e

that is denoted as gr. It is assumed that the regions in ϕ(e) are disjoint, i.e.
Rr ∩ Rs = ∅ for every pair of regions Rr,Rs ∈ ϕ(e). Thus, at most, one
guard of a given intensity arc is active at any given time.

In order to account for intensities that can be determined by different
sets of linear inequalities, two vectors are considered for the intensity of arcs:
∆λU (τ) and ∆λ(τ).

The vector ∆λU(τ) contains all the potential intensities that the arcs can
have, hence, a component of ∆λU corresponds to an arc e ∈ ET

S and a guard
of e, thus, ∆λU is indexed by the pairs (e, gr) where e ∈ ET

S and Rr ∈ ϕ(e).
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Notice that the value of ∆λU [(e, gr)] can be negative if the state is not in Rr.
In a guarded net, ∆λU is considered a state variable, therefore, the state of
a guarded net is given by x = (m,µP , µE,∆λU ,∆λ, λ,∆σ, σ, aT , aE,∆m).

The vector ∆λ(τ) represents the actual intensity in arcs. Hence, as in
unguarded nets, ∆λ is indexed by e ∈ ET

S and is nonnegative.
In a guarded net, matrices A and B are defined as in unguarded nets,

and matrices C and D are used to determine ∆λU . More precisely, the value
of ∆λU can be determined by:

C∆λU ≤ DµE (20)

where C and D are defined in such a way that every pair (e, gr) is taken into
account.

Example 8. Let us consider the partitions, regions and inequalities of the
GFN defined in Example 7. The guards associated with the intensity arc
(s1, t2) are g1 and g2; and the guards associated with (s3, t4) are g3 and g4.
Notice that the intensity arc (s2, t3) is not guarded and, hence, its intensity
is produced as in an unguarded FN. Equation (20) of the GFN is:

























−1 0 0 0 0
1 0 0 0 0
0 −1 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 1 0 0
0 0 −1 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 1 0
0 0 0 0 −1
0 0 0 0 1





























∆λU [((s1, t2), g1)]
∆λU [((s1, t2), g2)]

∆λU [(s2, t3)]
∆λU [((s3, t4), g3)]
∆λU [((s3, t4), g4)]



≤

























−2 0 0 0 0
3 0 0 0 0
−4 0 0 0 0
4 0 0 0 0
0 −1 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 1 0
0 0 0 0 −1
0 0 0 0 1





























µE [{p1, s1}]
µE [{p2, s2}]
µE [{p3, s2}]
µE [{p3, s3}]
µE [{p4, s3}]





A GFN is defined as follows:

Definition 7 (GFN). A Guarded Flexible Net (GFN) is a tuple NG =
(P, T, V, EV , A, B, S, ES, C,D,P, ϕ) where (P, T, V, EV , A, B, S, ES) denote
the same elements as in an FN, C and D account for the all the poten-
tial intensities in arcs, P is a set of partitions, and ϕ is a function that
associates regions with intensity arcs.

In order to establish state equations, let us define a binary variable δr(τ)
per region Rr that indicates whether the state is in Rr:

δr(τ) =

{

1 if x(τ) ∈ Rr

0 otherwise
(21)
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Let e ∈ ET
S andRr ∈ ϕ(e), if the state is inRr then the intensity ∆λ[e](τ)

is ∆λU [(e, gr)](τ). Thus, ∆λ can be expressed in matrix form as:

∆λ(τ) = δ(τ)∆λU (τ) (22)

where δ[e, (e, gr)](τ) = δr(τ) (the pair (e, gr) is the index of the column
associated with the guard gr of e) for every e ∈ ET

S and every Rr ∈ ϕ(e),
and the rest of the elements of δ are 0.

Example 9. Equation (22) for the guarded net described in Example 7 is:





∆λ[(s1, t2)]
∆λ[(s2, t3)]
∆λ[(s3, t4)]



 =





δ1 δ2 0 0 0
0 0 1 0 0
0 0 0 δ3 δ4

















∆λU [((s1, t2), g1)]
∆λU [((s1, t2), g2)]

∆λU [(s2, t3)]
∆λU [((s3, t4), g3)]
∆λU [((s3, t4), g4)]













where, for instance, δ1 = 1 iff µE[{p1, s1}]≤3.

Equation (22) can be used to write the state equations of a GFN.

Proposition 3 (State equations (GFN)). Let NG be a GFN with initial
marking m0 satisfying Jmm0 ≤ Km, and default intensities λ0 satisfying
Jλλ0 ≤ Kλ. Every state (m,µP , µE,∆λU ,∆λ, λ,∆σ, σ, aT , aE ,∆m) reachable
at time τ belongs to GSENG

(τ, Jm, Km, Jλ, Kλ) where:

GSENG
(τ, Jm, Km, Jλ, Kλ) = {(m,µP , µE,∆λU ,∆λ, λ,∆σ, σ, aT , aE,∆m)|

m = µP + YmµE; C∆λU ≤ DµE; ∆λ = δ∆λU ;λ = λ0 + Zλ∆λ; Jλλ0 ≤ Kλ

∆σ =

∫ τ

0

∆λ(s) ds; σ = λ0τ + Zλ∆σ

σ = aT + YσaE ; A∆m ≤ BaE ; m = m0 + Zm∆m; Jmm0 ≤ Km}
(23)

where every variable, except ∆λU , is nonnegative.

In [18], a set of constraints that represent necessary reachability con-
ditions, i.e. that contains all the solutions of (23), was developed. Such
constraints consist of linear and quadratic inequalities that combine real and
binary variables. The combination of such constraints with an objective func-
tion results in a programming problem that can be used to compute bounds
on the state variables at a given time τ . A series of intermediate states at
different time instants can be considered to obtain time trajectories.
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4. Modeling and analysis of hybrid systems

Some of the modeling capabilities of GFNs and different types of analyses
that can be conducted by employing these nets are presented in this section.
The plots in the rest of the paper have been carried out by the tool fnyzer
(available at https://bitbucket.org/Julvez/fnyzer.git) which builds a
programming problem from a GFN and an objective function [18]. The tool
makes use of Pyomo [22] to build the programming problems and Gurobi [23]
and CPLEX [24] to solve them. The fnyzer tool was executed on a desktop
computer (Intel i7, 2.00 GHz, 8 GiB, Ubuntu 14.04 LTS).

The net in Fig. 3(a) represents a simple cycle of two places p1 and p2
whose tokens are consumed and produced by two event handlers v1 and v2.
These event handlers make use of the actions in t1 and t2. In this net, all the
tokens are forced to be active, and all the actions are forced to be executed.
Hence, given that the intensity arc (s2, t2) is unguarded, the rate at which
actions are produced in t2, i.e. λ[t2], is equal to m[p2], and λ[t2] is also the
rate at which tokens are consumed from p2 and produced in p1. The arc
(s1, t1) has two guards, one is defined by the region m[p1]≤5 and the other
by the regionm[p1]≥5. The inequalities associated with the guards state that
λ[t1] = 2m[p1] if m[p1]≤5, and 1.4≤λ[t1]≤1.6 otherwise. The initial marking
is m0[p1]=6 and m0[p2]=0.

Given that the intensity of t1 is uncertain (but constrained to [1.4, 1.6]) if
m[p1]≥5, different time trajectories of the state are possible. Fig. 3(b) shows
the time trajectory of m[p1] when m[p1] is minimized(red trajectory) and
maximized(blue trajectory). Notice that, given the structure of the event
net, m[p2] can be computed by m[p2]=6−m[p1] at any time instant. The
time trajectories have been obtained by a model predictive control (MPC)
approach [15], according to which a number of time intervals (or sample
times) are considered, and the programming problem mentioned above yields
the state of the net for each sample time. At the end of the first interval the
state of the system is updated and the procedure is repeated. In Fig. 3, the
sample time was set to 0.1 time units and the prediction horizon to one step.
The dotted line is the border between the two regions. The green trajectory
is obtained by setting λ[t1]=1.5, i.e. there is no uncertainty, and the state
evolution is given by a system of ordinary differential equations (ODE).

Let the regionsm[p1]≤5 andm[p1]≥5 be denoted as L and U respectively.
Initially the system is in region U. In order to minimize(maximize) m[p1], the
solver sets λ[t1] to 1.6(1.4). Thus, the trajectory switches from region U to
region L at different time instants depending on whether m[p1] is minimized
or maximized. Notice that the obtained upper and lower bounds envelop the
ODE trajectory when λ[t1] is set to 1.5. Hence, GFNs can be used to com-
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6

r

a

p1

p2

t1

t2

v1

v2

s1:

{

r=2a if m[p1]≤5

1.4≤r≤1.6 if m[p1]≥5

s2

Figure 3: (a) GFN with two regions. (b) Time trajectory of m[p1]. (c) Time trajectory of
λ̄[t1].

pute trajectories that bound the potential evolutions of dynamical systems
with uncertainties, and thus, that are difficult to integrate. The tightness of
the bounds can be improved by decreasing the sample time. The average in-
tensity of t1, λ̄[t1], at each sample time when m[p1] is minimized(maximized)
is the red(blue) trajectory in Fig. 3(c). The time trajectory of the intensity
of t1 obtained by the ODE with λ[t1]=1.5 for the region U is shown in green.
At the steady state, the equality λ̄[t1]=λ̄[t2]=4 necessarily holds true. The
CPU time to compute each interval of the MPC was 5.34s.

In guarded nets, it is useful to consider a binary variable αr that indicates
if the regionRr has been visited and has contributed to the system dynamics.
For instance, for the red trajectory in Fig. 3(b) (when m[p1] is minimized),
αL = 0 and αU = 1 until time interval [0.8, 0.9], i.e. the system dynamics
of all the time intervals before time 0.8 were determined exclusively by the
region U. During the time interval [0.8, 0.9], αL = αU = 1 because the overall
system dynamics was a combination of the dynamics of both regions during
this time interval (the system is crossing the border between regions). From
time instant 0.9 onwards, αL = 1 and αU = 0.
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More formally, the binary variable αr ∈ {0, 1} is defined as:

αr = 0 ↔ δ̄r = 0 (24)

where δ̄r is the time ratio spent by the net in Rr. More precisely:

δ̄r =
1

θ

∫ θ

0

δr(τ) dτ (25)

where θ is the length of the considered time interval.
The following example shows that αr can be used to force the dynamics

of the system to be determined just by one region during each time interval.
The intensity arc (s1, t1) in the net in Fig. 4 has three guards. Let

us denote the regions associated with the guards as: L (m[p2]≤8), M
(8≤m[p2]≤15), and U (15≤m[p2]). Thus, the intensity produced in (s1, t1),
and hence in t1, depends on the guard that is active, and is determined by
the equations written next to s1. Note that this relatively complex dynami-
cal behaviour, which would require a more involved graphical representation
with self-loops if Petri nets were used, can be expressed rather cleanly by
the intensity net of the GFN. The intensities of t2 and t3 are constant and
equal to 12 and 10 respectively. In this GFN, all the tokens are forced to be
active, and all the actions are forced to be executed. Hence, the intensity in
t4 is equal to m[p1]. The initial marking is m0[p1] = 4 and m0[p2] = 12.

4

12

r

a

p1

p2

t1 t2

t3 t4

v1 v2

v3 v4

s1:











r=1.5a if m[p2]≤8

r=a if 8≤m[p2]≤15

r=1.5a if 15≤m[p2]

s2

λ0[t2]=12

λ0[t3]=10

Figure 4: GFN with three regions.

Let us make use of the introduced binary variable αr to force the system
dynamics to be determined just by one region during each interval. This can
be done by including the equation αL+αM +αU = 1 in the set of constraints
of each time interval. In this way, the evolution of the state can be seen as
that of a discrete time system in which the same linear dynamics are applied
during each time interval.
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Figure 5: Time evolution (a) and evolution in the phase space (b) of the first cycle of the
net in Fig. 4.

The time evolution of the net in Fig. 4 and its evolution in the phase
space are shown in Fig. 5. As in the previous example, the trajectories
are obtained through an MPC approach with sample time of 0.1 time units
and prediction horizon of one step. The objective function is to minimize
m[p1]. Let us define a binary variable, φ, as φ = αL + 2αM + 3αU , i.e.
φ = 1(φ = 2)(φ = 3) if the net is in region L(M )(U ). The value of φ, which
is depicted in the black trajectory in Fig. 5(a), can be interpreted as the
discrete state of the system that determines the continuous dynamics. The
dotted lines represent the borders of the regions. The CPU time to compute
each interval of the MPC was 4.83s.

Notice that GFNs can mimic the behavior of continuous Petri nets under
different server semantics [25], e.g. t2 in Fig. 3(a) is under infinite server
semantics, and t2 in Fig. 4 is under finite server semantics. With respect to
hybrid Petri nets [11] (which include discrete and continuous Petri nets), it
should be noted that the range of potential marking evolutions arising from
the inequalities associated with handlers in GFNs, see Fig. 3(b), cannot be
accommodated in a single hybrid Petri net. On the other hand, given that
the marking evolution of a GFN is continuous, the marking discontinuities
produced by discrete firings of hybrid Petris nets cannot be captured by the
marking of GFNs.

5. Control of hybrid systems

As shown in the previous sections, GFNs can accommodate different types
of uncertain parameters. If such uncertain parameters are thought of as
control actions that can be applied to the system, the same approach to
compute bounds of the system trajectory can be used to compute control
actions that optimize a given control goal. This section demonstrates the
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ability of GFNs to model and solve different control problems.
Let us focus on a GFN that models a hybrid system in which the dynamics

of the continuous variables are determined by the discrete state, which in turn
can be controlled by a delayed input action.

1

3

r r rr

r

r

a

tank open send c closed send o

spump
tpumpvpump

tout

t1 t2 t3 t4

v1 v2 v3 v4

vout

s1 s2 s3 s4

sout:r = 0.7a

Figure 6: FN modeling a tank with a delayed control signal.

The net in Fig. 6 models a tank (place tank) from which liquid is removed
by tout at a rate 0.7m[tank], where m[tank] is the level of liquid in the tank.
The tank can be filled by means of a pump (transition tpump) which can be
either open or closed. If the pump is open, the tank is fed at a constant flow
rate of 4.0, and if the pump is closed there is no flow into the tank. It is
assumed that a delay of 0.5 time units exists from the moment the controller
sends a signal to open (or close) the pump until the signal is received by
the pump, which is then opened (or closed) instantaneously. The pump is
initially closed and the initial level in the tank is m0[tank] = 3.0.

The elements on the left of Fig. 6, i.e. tank, tpump, tout and the handlers
connected to them, model the tank together with its input and output
flows. The elements on the right are used to model the following discrete
states: 1) pump open and no signal sent; 2) pump open and closing signal
sent; 3) pump closed and no signal sent; 4) pump closed and opening
signal sent. These states will be denoted as open, send close, closed, and
send open, respectively. A region is associated with each of these possible
states, the constraints that define the regions are: r open: m[open] ≥ 1;
r send close: ǫ ≤ m[send c], m[send o] = 0; r closed: m[closed] ≥ 1 and
r send open: ǫ ≤ m[send o], m[send c] = 0, where ǫ, set as ǫ = 10−3, is used
to check if a marking is strictly positive. The initial marking of the places
on the right is m0[closed] = 1, m0[open] = m0[send c] = m0[send o] = 0, i.e.
the pump is initially closed.

In this net the sum of αr (see (24)) is forced to be 1, i.e. αopen+αsend close+
αclosed + αsend open = 1. This constraint has the following implications: a)
during a given time interval, the system is driven by the dynamics of just
one region; and b) the system state is forced to remain within the constraints
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that define the regions, i.e. it cannot move away from those constraints (this
implies that m[send o] and m[send c] cannot be strictly positive at the same
time as such a state would not belong to any of the four defined regions).

The intensity of each transition, except tout that satisfies λ[tout] =
0.7m[tank], is determined by the region at which the state lies as follows:

spump:

{

r=4.0 if r open or r send close

r=0 otherwise

s1:

{

0≤r≤M if r open or r send close

r=0 otherwise

s2:

{

r=ss if r send close

r=0 otherwise

s3:

{

0≤r≤M if r closed or r send open

r=0 otherwise

s4:

{

r=ss if r send open

r=0 otherwise

where M and ss are constants used to model the time it takes for a signal
to reach the pump. Namely, M is an arbitrarily high value set to M = 10.0
to upper bound the speeds of t1 and t3, and ss represents the speed of the
signal, which is set to ss = 2.0 to model the 0.5 time units delay of the signal.
In words, assume that m[open] = 1, i.e. the pump is open and no signal has
been sent, and the controller decides to send a closing signal at time τ , which
implies moving to region r send close. The token in open can then move at
maximum rate M = 10.0 to send c and exactly at rate ss = 2.0 to closed
so that at time τ+0.5 the equality m[closed] = 1 will hold true. The same
mechanism is used for the signal to open the pump. In this net, only the
tokens in tank are forced to be active, and the actions of all the transitions
are forced to be executed.

Let us assume that the control goal is to minimize the actuation of the
pump, i.e. to minimize the number of times the pump is opened and closed,
while the level of the tank is maintained within the interval [1, 4]. Thus, the
controller must send the open and close signals at appropriate time instants
so that the constraints on the level of the tank are not violated. This control
goal is captured by the objective function

min δ̄send close + δ̄send open

where δ̄r denotes the time ratio spent in region Rr (see (25)) during the
prediction horizon.
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Figure 7: Control and marking trajectory of the net in Fig. 6.

Let the sample time be 0.25 time units; thus, the signal needs 2 sample
times to reach the pump. Hence, in order to allow the controller to send the
control signal sufficiently in advance, a prediction horizon of 3 sample times
is used. Fig. 7 shows the trajectories of the level of the tank and the control
required to minimize the objective function obtained by MPC. The control
is represented by function φ, which is defined as φ = 0αopen+0.25αsend close+
0.5αclosed+0.75αsend open. The pump is initially closed and therefore the level
of liquid in the tank decreases. After four time intervals, i.e. at time 1.0, the
signal to open the pump is sent by the controller. The pump is effectively
opened at time 1.5. Then, it remains opened for 3 time periods, after which
the close signal is sent. Since the goal was to minimize the number of times
the pump was actuated, the level of liquid in the tank gets close to the set
limits 1 and 4. The CPU time to compute each interval of the MPC was
7.94s.

Let us now explore how GFNs can model a discrete control action and how
sample intervals of different lengths can be used to improve the performance
of the controller.

The net in Fig. 8(a) models a system in which the intensity of t1, λ[t1],
can be either 0.5 or 3.0. The actual value of λ[t1] depends on the number of
active tokens in {pu, s1}, µE[(pu, s1)]; if µE[(pu, s1)] ≤ 0.5 then λ[t1] = 0.5,
else λ[t1] = 3.0. Thus, the number of active tokens in {pu, s1} acts a as switch
that determines λ[t1]. The token in pu is not forced to be active, and hence,
µE [(pu, s1)] becomes a control variable that can be used to optimize a given
control objective. The region defined by µE[(pu, s1)] ≤ 0.5 will be called
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s1:

{

z=0.5 if x≤0.5

z=3.0 otherwise

s2:











z=x if m[p2]≤2

z=4− x if 2<m[p2]<3

z=− 8 + 3x if 3≤m[p2]

Figure 8: (a) GFN with a discrete control action modeled by the active tokens in {pu, s1}.
(b) Piecewise linear function associated with λ[t2].

OFF, and the region µE [(pu, s1)] ≥ 0.5 will be called ON. It is assumed that
the system can commute between the ON and OFF regions at most every 0.1
time units, i.e. once the system is in one region, it cannot move to the other
until at least 0.1 time units have elapsed. The intensity of t2 is a piecewise
linear function of m[p2], see Fig. 8(b). All the tokens in p2 are forced to be
active and all the actions in the transitions are forced to be executed.

An MPC approach is considered where the control goal is to maximize
the average intensity of t2, λ̄[t2], during the prediction horizon. The final
time is set to 3.5. Two approaches to define prediction horizons are assessed:

a) Even time intervals: The prediction horizon consists of two time inter-
vals, each interval of 0.1 time units. In order to model the requirement that
the gap between switches must be at least 0.1, the system is forced to be at
only one region of each partition during each interval.

b) Uneven time intervals: The prediction horizon consists of two intervals,
the length of the first interval is 0.1 time units, and the second interval
spans until the final time 3.5. For instance, at time 0, the first interval is
[0.0, 0.1] and the second interval is [0.1, 3.5]; at time 0.1, the first interval is
[0.1, 0.2] and the second interval is [0.2, 3.5]. The system is forced to be at
only one region of each partition only during the first interval. Thus, the
system evolution during the second interval can be the result of combining
the dynamics of more than one region. In particular, this allows the control
action to be ON only for some time in the potentially long second interval,
and the average intensity of t2 can be the result of combining several segments
of the piecewise linear function associated with s2.

25



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0 m[p1]
m[p2]
λ[t2]
αON

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m[p1]
m[p2]
λ[t2]
αON

(a) (b)

Figure 9: Time evolution of markings, λ̄[t2] and control action of Fig. 8 under constant
(a), and variable length (b) of the second interval of the prediction horizon.

Figs. 9(a) and Figs. 9(b) show the evolution of the system with the pre-
diction horizons described in a) and b) respectively, where αON is equal to
1(0) if the system is in region ON(OFF), and hence λ[t1] = 3.0(λ[t1] = 0.5).

In approach a), the action is ON until time instant 0.8. At this instant
m[p2] is close to 2.0 and a local maximum for λ[t2] is reached, see Fig. 8(b).
From time 0.8 the control action switches from ON to OFF in order to keep
m[p2] as close to 2.0 as possible. The average time spent on the ON action
is 0.6, which yields λ̄[t1] = 2.0.

In approach b), the control action is always ON. As in a), the local maxi-
mum is reached when m[p2] is close to 2.0, but given that the second interval
extends up to time 3.5, higher values of the objective function can be ex-
pected if m[p2] is increased further. By keeping the action always ON, m[p2]
and λ̄[t2] tend asymptotically to 11/3 and 3.0, respectively. Thus, a higher
value could be attained for the control objective with respect to approach a).
A long second interval, which can be handled straightforwardly by GFNs,
has the potential to stretch the prediction horizon without adding more in-
tervals; hence, it can avoid “falling” to a local maximum without increasing
excessively the computational burden. The CPU time to compute each in-
terval of the MPC was 7.81s for approach a), and 10.35s for approach b).
In addition to considering long intervals to tame the computational burden
required to solve the associated programming problem, neighbor regions of
the net could be merged into a single region that abstracts their dynamic
behavior by bounding the intensities that can be produced. This will result
in a programming problem with fewer binary variables, and hence, a lower
computational burden at the cost of a lower accuracy, i.e. a less tight bound
yielded by the solver. In this way, the trade-off “computational burden vs.
accuracy” can be easily tuned in GFNs.
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6. Conclusions

This paper describes the use of GFNs for the modeling, analysis and
control of hybrid systems. In a GFN, the set of inequalities that determines
the intensity in an arc depends on the current state of the net. More precisely,
the state space is partitioned into regions, that are taken as guards of the
intensity arcs, and each region is associated with a set of inequalities. Thus,
on the one hand, the continuous state variables determine the region in which
the state is and, on the other hand, such a region determines the dynamics
of the continuous variables. This interplay between continuous and discrete
states can be used to model a number of features of hybrid systems. All the
potential trajectories that are consistent with the inequalities are accounted
for by a set of constraints that represent necessary reachability conditions of
the system. These constraints can be used to compute bounds for a given
function of interest by a programming problem that includes such a function
as its objective.

The same approach to compute bounds can be used to compute control
actions that optimize a given function. In a GFN, different elements of the
net, such as the default intensities or the number of active tokens, can be
considered as control actions. The solution of the programming problem
associated with a given objective function contains the values of the control
actions that must be implemented on the system to control it in the desired
way. GFNs have been demonstrated to be especially well suited for MPC
approaches. In particular, they have been demonstrated to easily cope with
delayed control actions, discrete control actions and uneven sample times.
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[18] J. Júlvez, D. Dikicioglu, S. G. Oliver, Handling variability and incom-
pleteness of biological data by flexible nets: a case study for Wilson
disease, npj Systems Biology and Applications 4 (1) (2018) 7.

[19] F. Balduzzi, A. Giua, G. Menga, First-order hybrid Petri nets: a model
for optimization and control, IEEE Transactions on Robotics and Au-
tomation 16 (4) (2000) 382–399. doi:10.1109/70.864231.

[20] A. D. Febbraro, D. Giglio, N. Sacco, Urban traffic control structure
based on hybrid Petri nets, IEEE Transactions on Intelligent Trans-
portation Systems 5 (4) (2004) 224–237. doi:10.1109/TITS.2004.838180.

[21] G. Cavone, M. Dotoli, C. Seatzu, Management of Intermodal Freight
Terminals by First-Order Hybrid Petri Nets, IEEE Robotics and Au-
tomation Letters 1 (1) (2016) 2–9. doi:10.1109/LRA.2015.2502905.

[22] W. E. Hart, C. Laird, J.-P. Watson, D. L. Woodruff, Pyomo–
Optimization Modeling in Python, Vol. 67, Springer Science & Business
Media, 2012.

[23] I. Gurobi Optimization, Gurobi optimizer reference manual (2015).

[24] IBM ILOG CPLEX Optimizer (2010).
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