000086303 001__ 86303
000086303 005__ 20201009175924.0
000086303 0247_ $$2doi$$a10.1016/j.ijpharm.2018.12.002
000086303 0248_ $$2sideral$$a110364
000086303 037__ $$aART-2019-110364
000086303 041__ $$aeng
000086303 100__ $$aAragón, J.
000086303 245__ $$aComposite scaffold obtained by electro-hydrodynamic technique for infection prevention and treatment in bone repair
000086303 260__ $$c2019
000086303 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086303 5203_ $$aBone infection is a devastating condition resulting from implant or orthopaedic surgery. Therapeutic strategies are extremely complicated and may result in serious side effects or disabilities. The development of enhanced 3D scaffolds, able to promote efficient bone regeneration, combined with targeted antibiotic release to prevent bacterial colonization, is a promising tool for the successful repair of bone defects. Herein, polymeric electrospun scaffolds composed of polycaprolactone (PCL) nanofibres decorated with poly(lactic-co-glycolic acid) (PLGA) particles loaded with rifampicin were fabricated to achieve local and sustained drug release for more efficient prevention and treatment of infection. The release profile showed an initial burst of rifampicin in the first six hours, enabling complete elimination of bacteria. Sustained and long-term release was observed until the end of the experiments (28 days), facilitating a prolonged effect on the inhibition of bacterial growth, which is in agreement with the common knowledge concerning the acidic degradation of the microparticles. In addition, bactericidal effects against gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) bacteria were demonstrated at concentrations of released rifampicin up to 58 ppm after 24 h, with greater efficacy against S. aureus (13 ppm vs 58 ppm for E. coli). Cell morphology and cytocompatibility studies highlighted the suitability of the fabricated scaffolds to support cell growth, as well as their promising clinical application for bone regeneration combined with prevention or treatment of bacterial infection.
000086303 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2014-52384-R$$9info:eu-repo/grantAgreement/ES/ISCIII/CIBER-BBN
000086303 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000086303 590__ $$a4.845$$b2019
000086303 591__ $$aPHARMACOLOGY & PHARMACY$$b31 / 270 = 0.115$$c2019$$dQ1$$eT1
000086303 592__ $$a1.081$$b2019
000086303 593__ $$aPharmaceutical Science$$c2019$$dQ1
000086303 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000086303 700__ $$aFeoli, S.
000086303 700__ $$0(orcid)0000-0002-2966-9088$$aIrusta, S.$$uUniversidad de Zaragoza
000086303 700__ $$0(orcid)0000-0003-2293-363X$$aMendoza, G.$$uUniversidad de Zaragoza
000086303 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000086303 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000086303 773__ $$g557 (2019), 162-169$$pInt. j. pharm.$$tInternational Journal of Pharmaceutics$$x0378-5173
000086303 8564_ $$s982893$$uhttps://zaguan.unizar.es/record/86303/files/texto_completo.pdf$$yPostprint
000086303 8564_ $$s195764$$uhttps://zaguan.unizar.es/record/86303/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000086303 909CO $$ooai:zaguan.unizar.es:86303$$particulos$$pdriver
000086303 951__ $$a2020-10-09-17:47:45
000086303 980__ $$aARTICLE