000086315 001__ 86315
000086315 005__ 20200716101531.0
000086315 0247_ $$2doi$$a10.1103/PhysRevE.100.032313
000086315 0248_ $$2sideral$$a114956
000086315 037__ $$aART-2019-114956
000086315 041__ $$aeng
000086315 100__ $$aVentura Da Silva, Paulo César
000086315 245__ $$aEpidemic spreading with awareness and different timescales in multiplex networks
000086315 260__ $$c2019
000086315 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086315 5203_ $$aOne of the major issues in theoretical modeling of epidemic spreading is the development of methods to control the transmission of an infectious agent. Human behavior plays a fundamental role in the spreading dynamics and can be used to stop a disease from spreading or to reduce its burden, as individuals aware of the presence of a disease can take measures to reduce their exposure to contagion. In this paper, we propose a mathematical model for the spread of diseases with awareness in complex networks. Unlike previous models, the information is propagated following a generalized Maki-Thompson rumor model. Flexibility on the timescale between information and disease spreading is also included. We verify that the velocity characterizing the diffusion of information awareness greatly influences the disease prevalence. We also show that a reduction in the fraction of unaware individuals does not always imply a decrease of the prevalence, as the relative timescale between disease and awareness spreading plays a crucial role in the systems'' dynamics. This result is shown to be independent of the network topology. We finally calculate the epidemic threshold of our model, and show that it does not depend on the relative timescale. Our results provide a new view on how information influence disease spreading and can be used for the development of more efficient methods for disease control.
000086315 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E36-17R$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2017-87519-P
000086315 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000086315 590__ $$a2.296$$b2019
000086315 591__ $$aPHYSICS, MATHEMATICAL$$b9 / 55 = 0.164$$c2019$$dQ1$$eT1
000086315 591__ $$aPHYSICS, FLUIDS & PLASMAS$$b13 / 34 = 0.382$$c2019$$dQ2$$eT2
000086315 592__ $$a0.958$$b2019
000086315 593__ $$aCondensed Matter Physics$$c2019$$dQ1
000086315 593__ $$aStatistical and Nonlinear Physics$$c2019$$dQ1
000086315 593__ $$aStatistics and Probability$$c2019$$dQ2
000086315 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000086315 700__ $$aVelásquez-Rojas, Fátima
000086315 700__ $$aConnaughton, Colm
000086315 700__ $$aVazquez, Federico
000086315 700__ $$0(orcid)0000-0002-0895-1893$$aMoreno, Yamir$$uUniversidad de Zaragoza
000086315 700__ $$aRodrigues, Francisco A.
000086315 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000086315 773__ $$g100, 3 (2019), 032313 1-11$$pPhys. rev., E$$tPHYSICAL REVIEW E$$x2470-0045
000086315 8564_ $$s847728$$uhttps://zaguan.unizar.es/record/86315/files/texto_completo.pdf$$yVersión publicada
000086315 8564_ $$s17892$$uhttps://zaguan.unizar.es/record/86315/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000086315 909CO $$ooai:zaguan.unizar.es:86315$$particulos$$pdriver
000086315 951__ $$a2020-07-16-09:33:48
000086315 980__ $$aARTICLE