000086343 001__ 86343
000086343 005__ 20200716101535.0
000086343 0247_ $$2doi$$a10.1103/PhysRevE.100.042302
000086343 0248_ $$2sideral$$a114918
000086343 037__ $$aART-2019-114918
000086343 041__ $$aeng
000086343 100__ $$aPeron, Thomas
000086343 245__ $$aOnset of synchronization of Kuramoto oscillators in scale-free networks
000086343 260__ $$c2019
000086343 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086343 5203_ $$aDespite the great attention devoted to the study of phase oscillators on complex networks in the last two decades, it remains unclear whether scale-free networks exhibit a nonzero critical coupling strength for the onset of synchronization in the thermodynamic limit. Here, we systematically compare predictions from the heterogeneous degree mean-field (HMF) and the quenched mean-field (QMF) approaches to extensive numerical simulations on large networks. We provide compelling evidence that the critical coupling vanishes as the number of oscillators increases for scale-free networks characterized by a power-law degree distribution with an exponent 2<¿=3, in line with what has been observed for other dynamical processes in such networks. For ¿>3, we show that the critical coupling remains finite, in agreement with HMF calculations and highlight phenomenological differences between critical properties of phase oscillators and epidemic models on scale-free networks. Finally, we also discuss at length a key choice when studying synchronization phenomena in complex networks, namely, how to normalize the coupling between oscillators.
000086343 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E36-17R$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2017-87519-P
000086343 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000086343 590__ $$a2.296$$b2019
000086343 591__ $$aPHYSICS, MATHEMATICAL$$b9 / 55 = 0.164$$c2019$$dQ1$$eT1
000086343 591__ $$aPHYSICS, FLUIDS & PLASMAS$$b13 / 34 = 0.382$$c2019$$dQ2$$eT2
000086343 592__ $$a0.958$$b2019
000086343 593__ $$aCondensed Matter Physics$$c2019$$dQ1
000086343 593__ $$aStatistical and Nonlinear Physics$$c2019$$dQ1
000086343 593__ $$aStatistics and Probability$$c2019$$dQ2
000086343 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000086343 700__ $$aMessias F De Resende, Bruno
000086343 700__ $$aMata, Angelica S.
000086343 700__ $$aRodrigues, Francisco A.
000086343 700__ $$0(orcid)0000-0002-0895-1893$$aMoreno, Yamir$$uUniversidad de Zaragoza
000086343 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000086343 773__ $$g100, 4 (2019), 042302  1-8$$pPhys. rev., E$$tPHYSICAL REVIEW E$$x2470-0045
000086343 8564_ $$s349887$$uhttps://zaguan.unizar.es/record/86343/files/texto_completo.pdf$$yVersión publicada
000086343 8564_ $$s18162$$uhttps://zaguan.unizar.es/record/86343/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000086343 909CO $$ooai:zaguan.unizar.es:86343$$particulos$$pdriver
000086343 951__ $$a2020-07-16-09:36:40
000086343 980__ $$aARTICLE