000086344 001__ 86344
000086344 005__ 20201130083156.0
000086344 0247_ $$2doi$$a10.3390/ijms20205083
000086344 0248_ $$2sideral$$a114921
000086344 037__ $$aART-2019-114921
000086344 041__ $$aeng
000086344 100__ $$aArilla-Luna S.
000086344 245__ $$aSpecific features for the competent binding of substrates at the FMN adenylyltransferase site of FAD synthase from corynebacterium ammoniagenes
000086344 260__ $$c2019
000086344 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086344 5203_ $$aBifunctional FAD synthases (FADSs) catalyze FMN (flavin mononucleotide) and FAD (flavinadenine dinucleotide) biosynthesis at their C-riboflavin kinase (RFK) and N-FMN: adenylyltransferase (FMNAT) modules, respectively. Biophysical properties and requirements for their FMNAT activity differ among species. Here, we evaluate the relevance of the integrity of the binding site of the isoalloxazine of flavinic substrates for FMNAT catalysis in Corynebacterium ammoniagenes FADS (CaFADS). We have substituted P56 and P58, belonging to a conserved motif, as well as L98. These residues shape the isoalloxazine FMNAT site, although they are not expected to directly contact it. All substitutions override enzyme ability to transform substrates at the FMNAT site, although most variants are able to bind them. Spectroscopic properties and thermodynamic parameters for the binding of ligands indicate that mutations alter their interaction modes. Substitutions also modulate binding and kinetic properties at the RFK site, evidencing the crosstalk of different protomers within CaFADS assemblies during catalysis. In conclusion, despite the FMNAT site for the binding of substrates in CaFADS appearing as a wide open cavity, it is finely tuned to provide the competent binding conformation of substrates. In particular, P56, P58 and L98 shape the isoalloxazine site to place the FMN-and FAD-reacting phosphates in optimal geometry for catalysis.
000086344 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E35-17R$$9info:eu-repo/grantAgreement/ES/MINECO/BIO2016-75183-P
000086344 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000086344 590__ $$a4.556$$b2019
000086344 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b48 / 177 = 0.271$$c2019$$dQ2$$eT1
000086344 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b74 / 297 = 0.249$$c2019$$dQ1$$eT1
000086344 592__ $$a1.317$$b2019
000086344 593__ $$aMedicine (miscellaneous)$$c2019$$dQ1
000086344 593__ $$aPhysical and Theoretical Chemistry$$c2019$$dQ1
000086344 593__ $$aComputer Science Applications$$c2019$$dQ1
000086344 593__ $$aInorganic Chemistry$$c2019$$dQ1
000086344 593__ $$aSpectroscopy$$c2019$$dQ1
000086344 593__ $$aOrganic Chemistry$$c2019$$dQ1
000086344 593__ $$aMolecular Biology$$c2019$$dQ2
000086344 593__ $$aCatalysis$$c2019$$dQ2
000086344 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000086344 700__ $$aSerrano A.$$uUniversidad de Zaragoza
000086344 700__ $$0(orcid)0000-0001-8743-0182$$aMedina M.$$uUniversidad de Zaragoza
000086344 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000086344 773__ $$g20, 20 (2019), 5083 [14 pp.]$$pInt. j. mol. sci.$$tInternational Journal of Molecular Sciences$$x1661-6596
000086344 8564_ $$s1734945$$uhttps://zaguan.unizar.es/record/86344/files/texto_completo.pdf$$yVersión publicada
000086344 8564_ $$s108042$$uhttps://zaguan.unizar.es/record/86344/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000086344 909CO $$ooai:zaguan.unizar.es:86344$$particulos$$pdriver
000086344 951__ $$a2020-11-30-07:58:13
000086344 980__ $$aARTICLE