000086346 001__ 86346
000086346 005__ 20201022135734.0
000086346 0247_ $$2doi$$a10.3390/catal9100867
000086346 0248_ $$2sideral$$a114929
000086346 037__ $$aART-2019-114929
000086346 041__ $$aeng
000086346 100__ $$0(orcid)0000-0003-3211-0485$$aJulian I.
000086346 245__ $$aOvercoming stability problems in microwave-assisted heterogeneous catalytic processes affected by catalyst coking
000086346 260__ $$c2019
000086346 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086346 5203_ $$aMicrowave-assisted heterogeneous catalysis (MHC) is gaining attention due to its exciting prospects related to selective catalyst heating, enhanced energy-efficiency, and partial inhibition of detrimental side gas-phase reactions. The induced temperature difference between the catalyst and the comparatively colder surrounding reactive atmosphere is pointed as the main factor of the process selectivity enhancement towards the products of interest in a number of hydrocarbon conversion processes. However, MHC is traditionally restricted to catalytic reactions in the absence of catalyst coking. As excellent MW-susceptors, carbon deposits represent an enormous drawback of the MHC technology, being main responsible of long-term process malfunctions. This work addresses the potentials and limitations of MHC for such processes affected by coking (MHCC). It also intends to evaluate the use of different catalyst and reactor configurations to overcome heating stability problems derived from the undesired coke deposits. The concept of long-term MHCC operation has been experimentally tested/applied to for the methane non-oxidative coupling reaction at 700¿C on Mo/ZSM-5@SiC structured catalysts. Preliminary process scalability tests suggest that a 6-fold power input increases the processing of methane flow by 150 times under the same controlled temperature and spatial velocity conditions. This finding paves the way for the implementation of high-capacity MHCC processes at up-scaled facilities.
000086346 536__ $$9info:eu-repo/grantAgreement/EC/H2020/680777/EU/Adaptable Reactors for Resource- and Energy-Efficient Methane Valorisation/ADREM$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 680777-ADREM
000086346 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000086346 590__ $$a3.52$$b2019
000086346 591__ $$aCHEMISTRY, PHYSICAL$$b65 / 159 = 0.409$$c2019$$dQ2$$eT2
000086346 592__ $$a0.722$$b2019
000086346 593__ $$aPhysical and Theoretical Chemistry$$c2019$$dQ2
000086346 593__ $$aCatalysis$$c2019$$dQ3
000086346 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000086346 700__ $$aPedersen C.M.
000086346 700__ $$aAchkasov K.
000086346 700__ $$0(orcid)0000-0002-4546-4111$$aHueso J.L.
000086346 700__ $$aHellstern H.L.
000086346 700__ $$aSilva H.
000086346 700__ $$0(orcid)0000-0002-4758-9380$$aMallada R.$$uUniversidad de Zaragoza
000086346 700__ $$aDavis Z.J.
000086346 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria J.$$uUniversidad de Zaragoza
000086346 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000086346 773__ $$g9, 10 (2019), 867 [14 pp.]$$pCatalysts$$tCATALYSTS$$x2073-4344
000086346 8564_ $$s1873121$$uhttps://zaguan.unizar.es/record/86346/files/texto_completo.pdf$$yVersión publicada
000086346 8564_ $$s103660$$uhttps://zaguan.unizar.es/record/86346/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000086346 909CO $$ooai:zaguan.unizar.es:86346$$particulos$$pdriver
000086346 951__ $$a2020-10-22-13:50:15
000086346 980__ $$aARTICLE