000086369 001__ 86369
000086369 005__ 20200716101557.0
000086369 0247_ $$2doi$$a10.3390/s19132856
000086369 0248_ $$2sideral$$a115030
000086369 037__ $$aART-2019-115030
000086369 041__ $$aeng
000086369 100__ $$aAlamán, Jorge
000086369 245__ $$aOptical planar waveguide sensor with integrated digitally-printed light coupling-in and readout elements
000086369 260__ $$c2019
000086369 5060_ $$aAccess copy available to the general public$$fUnrestricted
000086369 5203_ $$aOptical planar waveguide sensors, able to detect and process information from the environment in a fast, cost-effective, and remote fashion, are of great interest currently in different application areas including security, metrology, automotive, aerospace, consumer electronics, energy, environment, or health. Integration of networks of these systems together with other optical elements, such as light sources, readout, or detection systems, in a planar waveguide geometry is greatly demanded towards more compact, portable, and versatile sensing platforms. Herein, we report an optical temperature sensor with a planar waveguide architecture integrating inkjet-printed luminescent light coupling-in and readout elements with matched emission and excitation. The first luminescent element, when illuminated with light in its absorption band, emits light that is partially coupled into the propagation modes of the planar waveguide. Remote excitation of this element can be performed without the need for special alignment of the light source. A thermoresponsive liquid crystal-based film regulates the amount of light coupled out from the planar waveguide at the sensing location. The second luminescent element partly absorbs the waveguided light that reaches its location and emits at longer wavelengths, serving as a temperature readout element through luminescence intensity measurements. Overall, the ability of inkjet technology to digitally print luminescent elements demonstrates great potential for the integration and miniaturization of light coupling-in and readout elements in optical planar waveguide sensing platforms.
000086369 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/BIO2017-84246-C2-1-R
000086369 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000086369 590__ $$a3.275$$b2019
000086369 591__ $$aCHEMISTRY, ANALYTICAL$$b22 / 86 = 0.256$$c2019$$dQ2$$eT1
000086369 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b15 / 64 = 0.234$$c2019$$dQ1$$eT1
000086369 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b77 / 266 = 0.289$$c2019$$dQ2$$eT1
000086369 592__ $$a0.653$$b2019
000086369 593__ $$aInstrumentation$$c2019$$dQ1
000086369 593__ $$aAtomic and Molecular Physics, and Optics$$c2019$$dQ2
000086369 593__ $$aMedicine (miscellaneous)$$c2019$$dQ2
000086369 593__ $$aInformation Systems$$c2019$$dQ2
000086369 593__ $$aAnalytical Chemistry$$c2019$$dQ2
000086369 593__ $$aElectrical and Electronic Engineering$$c2019$$dQ2
000086369 593__ $$aBiochemistry$$c2019$$dQ3
000086369 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000086369 700__ $$aLópez-Valdeolivas, María
000086369 700__ $$aAlicante, Raquel
000086369 700__ $$0(orcid)0000-0003-3900-2866$$aSánchez-Somolinos, Carlos$$uUniversidad de Zaragoza
000086369 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000086369 773__ $$g19, 13 (2019), 2856  [14 pp.]$$pSensors$$tSensors (Switzerland)$$x1424-8220
000086369 8564_ $$s1380510$$uhttps://zaguan.unizar.es/record/86369/files/texto_completo.pdf$$yVersión publicada
000086369 8564_ $$s107283$$uhttps://zaguan.unizar.es/record/86369/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000086369 909CO $$ooai:zaguan.unizar.es:86369$$particulos$$pdriver
000086369 951__ $$a2020-07-16-09:50:49
000086369 980__ $$aARTICLE