Página principal > Artículos > Nickel supported on AlCeO3 as a highly selective and stable catalyst for hydrogen production via the glycerol steam reforming reaction
Resumen: In this study, a critical comparison between two low metal (Ni) loading catalysts is presented, namely Ni/Al2O3 and Ni/AlCeO3 for the glycerol steam reforming (GSR) reaction. The surface and bulk properties of the catalysts were evaluated using a plethora of techniques, such as N2 adsorption/desorption, Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy / Energy Dispersive X-Ray Spectroscopy (SEM/EDX, Transmission Electron Microscopy (TEM), CO2 and NH3-Temperature Programmed Desorption (TPD), and Temperature Programmed Reduction (H2-TPR). Carbon deposited on the catalyst’s surfaces was probed using Temperature Programmed Oxidation (TPO), SEM, and TEM. It is demonstrated that Ce-modification of Al2O3 induces an increase of the surface basicity and Ni dispersion. These features lead to a higher conversion of glycerol to gaseous products (60% to 80%), particularly H2 and CO2, enhancement of WGS reaction, and a higher resistance to coke deposition. Allyl alcohol was found to be the main liquid product for the Ni/AlCeO3 catalyst, the production of which ceases over 700 °C. It is also highly significant that the Ni/AlCeO3 catalyst demonstrated stable values for H2 yield (2.9-2.3) and selectivity (89-81%), in addition to CO2 (75-67%) and CO (23-29%) selectivity during a (20 h) long time-on-stream study. Following the reaction, SEM/EDX and TEM analysis showed heavy coke deposition over the Ni/Al2O3 catalyst, whereas for the Ni/AlCeO3 catalyst TPO studies showed the formation of more defective coke, the latter being more easily oxidized. Idioma: Inglés DOI: 10.3390/catal9050411 Año: 2019 Publicado en: CATALYSTS 9, 5 (2019), 411 [21 pp.] ISSN: 2073-4344 Factor impacto JCR: 3.52 (2019) Categ. JCR: CHEMISTRY, PHYSICAL rank: 65 / 158 = 0.411 (2019) - Q2 - T2 Factor impacto SCIMAGO: 0.722 - Physical and Theoretical Chemistry (Q2) - Catalysis (Q3)