000086420 001__ 86420 000086420 005__ 20200716101418.0 000086420 0247_ $$2doi$$a10.1109/TC.2018.2890259 000086420 0248_ $$2sideral$$a110664 000086420 037__ $$aART-2019-110664 000086420 041__ $$aeng 000086420 100__ $$aPerez, A.$$uUniversidad de Zaragoza 000086420 245__ $$aSelf-synchronized Encryption for Physical Layer in 10Gbps Optical Links 000086420 260__ $$c2019 000086420 5060_ $$aAccess copy available to the general public$$fUnrestricted 000086420 5203_ $$aIn this work a new self-synchronized encryption method for 10 Gigabit optical links is proposed and developed. Necessary modifications to introduce this kind of encryption in physical layers based on 64b/66b encoding, such as 10GBase-R, have been considered. The proposed scheme encrypts directly the 64b/66b blocks by using a symmetric stream cipher based on an FPE (Format Preserving Encryption) block cipher operating in PSCFB (Pipelined Statistical Cipher Feedback) mode. One of the main novelties in this paper is the security analysis done for this mode. For the first time, an expression for the IND-CPA (Indistinguishability under Chosen-Plaintext Attack) advantage of any adversary over this scheme has been derived. Moreover, it has been concluded that this mode can be considered secure in the same way of traditional modes are. In addition, the overall system has been simulated and implemented in an FPGA (Field Programmable Gate Array). An encrypted optical link has been tested with Ethernet data frames, concluding that it is possible to cipher traffic at this level, getting maximum throughput and hiding traffic pattern from passive eavesdroppers. 000086420 536__ $$9info:eu-repo/grantAgreement/ES/MEC/FPU14-03523$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/TEC2014-52840-R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/TEC2017-85867-R 000086420 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000086420 590__ $$a2.711$$b2019 000086420 592__ $$a0.943$$b2019 000086420 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b111 / 266 = 0.417$$c2019$$dQ2$$eT2 000086420 593__ $$aComputational Theory and Mathematics$$c2019$$dQ1 000086420 591__ $$aCOMPUTER SCIENCE, HARDWARE & ARCHITECTURE$$b19 / 53 = 0.358$$c2019$$dQ2$$eT2 000086420 593__ $$aTheoretical Computer Science$$c2019$$dQ1 000086420 593__ $$aSoftware$$c2019$$dQ1 000086420 593__ $$aHardware and Architecture$$c2019$$dQ1 000086420 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000086420 700__ $$0(orcid)0000-0001-8648-6248$$aGarcia-Bosque, M.$$uUniversidad de Zaragoza 000086420 700__ $$0(orcid)0000-0002-8236-825X$$aSanchez-Azqueta, C.$$uUniversidad de Zaragoza 000086420 700__ $$0(orcid)0000-0003-0182-7723$$aCelma, S.$$uUniversidad de Zaragoza 000086420 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada 000086420 7102_ $$15008$$2X$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cProy. investigación JBA 000086420 7102_ $$15008$$2250$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Electrónica 000086420 773__ $$g68, 6 (2019), 899-911$$pIEEE trans. comput.$$tIEEE TRANSACTIONS ON COMPUTERS$$x0018-9340 000086420 8564_ $$s1691478$$uhttps://zaguan.unizar.es/record/86420/files/texto_completo.pdf$$yPostprint 000086420 8564_ $$s118291$$uhttps://zaguan.unizar.es/record/86420/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000086420 909CO $$ooai:zaguan.unizar.es:86420$$particulos$$pdriver 000086420 951__ $$a2020-07-16-08:38:30 000086420 980__ $$aARTICLE