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Abstract

The variety of depositional facies of a Lower Jurassic carbonate platform has been investigated on the island of Mallorca 
along a transect comprising six stratigraphic proiles. Twenty-nine facies and sub-facies have been recognized, grouped into 
seven facies associations, ranging in depositional environment from supratidal/terrestrial and peritidal to outer platform. 
Spatial and temporal (2D) facies distribution along the transect relects the evolution of the carbonate platform with time 
showing diferent facies associations, from a broad peritidal platform (stage 1) to a muddy open platform (stage 2), and 
inally to a peritidal to outer carbonate platform (stage 3). Stage 1 (early Sinemurian to earliest late Sinemurian) corresponds 
to a nearly-lat peritidal-shallow subtidal epicontinental platform with facies belts that shifted far and fast over the whole 
study area. The evolution from stage 1 to stage 2 (late Sinemurian) represents a rapid looding of the epicontinental shallow 
platform, with more open-marine conditions, and the onset of diferential subsidence. During stage 3 (latest Sinemurian), 
peritidal and shallow-platform environments preferentially developed to the northeast (Llevant Mountains domain) with a 
rapid transition to middle-outer platform environments toward the northwest (Tramuntana Range domain). Stages 1 and 3 
present facies associations typical of Bahamian-type carbonates, whereas stage 2 represents the demise of the Bahamian-type 
carbonate factory and proliferation of muddy substrates with suspension-feeders. The described platform evolution responded 
to the interplay between the initial extensional tectonic phases related to Early Jurassic Tethyan rifting, contemporaneous 
environmental perturbations, and progressive platform looding related to the Late Triassic–Early Jurassic worldwide marine 
transgression and associated accommodation changes.

Keywords Peritidal facies · Carbonate platform · Lias · Mallorca · Balearic basin · Tethyan rift

Introduction

Although ancient epicontinental carbonate platforms host 
the most proliic hydrocarbon reservoirs in the world, the 
knowledge and interpretation of their facies models have 
still some limitations because Holocene carbonate systems 
are not precise analogues for such large ancient carbonate 
depositional environments (Schlager 2005). These epiconti-
nental (i.e.,  epeiric) carbonate platforms developed during 

periods of global high sea level when large low-relief land 
areas were covered over hundreds to thousands of square 
kilometers with shallow seas. Facies architecture of these 
ancient carbonate settings difers from the recent epeiric 
platforms, which are much smaller, and from recent peri-
continental platforms that are facing a deep ocean (Schlager 
2005). The main diference lies in the fact that these ancient 
epicontinental platforms displayed a very low topographic 
gradient and as a consequence the facies belts shifted far and 
fast over large areas, making it diicult to track the position 
of the facies belts, and therefore, the proile of the platform 
(Schlager 2005). The facies architecture of the Sinemu-
rian carbonate platform system of the island of Mallorca 
(Balearic Basin; Fig. 1a) is an example of such complexity.

The character and distribution of the facies within the 
Lower Lias successions of Mallorca (Soller Formation, 
Álvaro et al. 1989) are relatively poorly known. The few 
previous studies on these successions have focused on the 
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paleontological and micropaleontological content (e.g., 
Fallot 1922; Colom 1942, 1966, 1970; Colom and Dufaure 
1962), on the stratigraphy (Álvaro et al. 1989) or on a gen-
eral description of the shallow-water limestone facies (Es 
Barraca Mb) and their cyclical organization (Barnolas and 
Simó 1984; Sevillano et al. 2013), but a detailed study of 
the facies types and architecture, and the evolution of sedi-
mentary environments in space and time, have not yet been 
addressed. This study aims to ill this gap of information 
and to improve the knowledge of the carbonate facies and 
distribution of depositional environments in the Es Barraca 
Member of the Soller Formation. This article approaches the 
reconstruction of the platform facies architecture and its evo-
lution through time, based on the correlation of six detailed 
stratigraphic proiles (including the type locality of the Es 
Barraca Mb) across two diferent paleogeographic domains 
of the island, the Tramuntana Range to the west and the Lle-
vant Mountains to the east (Fig. 1b). The aim is to establish 
the main controls on facies evolution and improve current 
understanding of platform development during the onset of 
rifting of the northwestern Tethyan continental margin. Cor-
relation between the diferent logged sections has allowed 
the division of the succession into three evolutionary stages 
with distinctive platform facies associations. A comparison 

with other contemporaneous platform successions from the 
Tethyan realm is also addressed.

Geological setting and stratigraphic 
background

The Balearic archipelago, situated in the western Mediter-
ranean Sea, constitutes the northeast extension of the Rifean-
Betic alpine orogenic arc (Azañón et al. 2002). Mallorca, 
the biggest island of this archipelago, is formed by folded 
and thrusted Mesozoic–Lower Cenozoic rocks arranged 
into three NE–SW-oriented mountain belts: the Tramun-
tana Range, Central Range and Llevant Mountains (Fig. 1b; 
Sabat 1986; Ramos-Guerrero et al. 1989; Gelabert 1997). 
These mountain belts are partially surrounded by lowland 
plains of post-orogenic younger Cenozoic and Quaternary 
unconformable sedimentary rocks. The Lower Jurassic rocks 
studied here crop out in the Tramuntana Range and Llevant 
Mountains (Fig. 1b), where the main Jurassic exposures are 
located.

The Jurassic sedimentary successions of Mallorca repre-
sent deposition in the so-called Balearic Basin, located in the 
southeastern margin of the Iberian Plate, and according to 

Fig. 1  Paleogeographical and geographical location of the study area. 
a Paleogeographical map of the western Tethys for the Sinemurian-
earliest Pliensbachian (modiied from Dercourt et al. 2000). b Simpli-
ied geological map of the Mallorca with the location of the two main 
paleogeographic domains (Tramuntana Range and Llevant Moun-

tains) and location of the six studied stratigraphic sections. The dis-
tances between stratigraphic sections (COS Es Cosconar, EB Es Bar-
raca, CU Cutri, SH S’Heretat, CA Cuevas de Artá, MAI Son Maina) 
are shown as today, without restoring tectonic shortening
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recent paleogeographic reconstructions, in a position adja-
cent to the emergent Ebro High (Fig. 1a) (Thierry 2000; 
Scotese and Schettino 2017). The sedimentary evolution of 
the basin during the Jurassic responded to the opening of 
the Central Atlantic Ocean and the westward progression of 
the Tethyan rift (Dewey et al. 1973; Dercourt et al. 2000). In 
particular, during the Early Jurassic the basin evolved over 
time from a broad shallow epicontinental carbonate platform 
during the Hettangian–Sinemurian, to a fragmented platform 
during the Pliensbachian with heterogeneous syn-rift deposi-
tion of deltaic siliciclastics, intra-shelf marls and platform 
carbonates. In the Toarcian–Aalenian sedimentation became 
hemipelagic, then followed by pelagic to slope sedimenta-
tion with residual platforms during the rest of the Jurassic 
(Álvaro et al. 1989).

Previous work carried out in the Jurassic of the Balearic 
Basin provided the regional framework and general stratig-
raphy of the Lower Jurassic succession of Mallorca (Álvaro 
et al. 1989). According to these authors, this succession 
starts with widespread coastal sabkha to restricted platform 
dolomites of the Mal Pas Formation attributed to the Hettan-
gian, followed by the Sinemurian–lower Pliensbachian Sol-
ler Formation. The transition between the Mal Pas and Soller 
formations is not well established, due to the lack of fossils 
with biostratigraphical signiicance in this part of the suc-
cession, and to the pervasive diagenetic dolomitization pro-
cesses afecting this transition, which hinder its recognition. 
The Soller Formation comprises three members (Fig. 2): 
shallow platform limestone of the Es Barraca Member 

(Sinemurian); marl and marly limestone with brachiopods 
and scarce ammonites of the Sa Moleta Member (lowermost 
Pliensbachian or lower Carixian), which represent deposition 
in an intra-shelf basin, and inally terrigenous-clastic deltaic 
deposits of the Es Racó Member (lower Pliensbachian or 
upper Carixian). The available biostratigraphic data of this 
succession are scarce. According to Alvaro et al. (1989) a 
Sinemurian–earliest Pliensbachian age could be attributed 
for the shallow-marine carbonates of the Es Barraca Mb, 
based on their stratigraphical position and micropaleontolog-
ical data from benthic foraminifera and algae (Colom 1966, 
1970, 1980; Colom and Dufaure 1962). The overlying Sa 
Moleta Mb is attributed to the Jamesoni and Ibex ammonite 
zones of the early Pliensbachian, based on brachiopods and 
scarce ammonites (Uptonia jamesoni, Polymorphites sp. and 
Tropidoceras sp.; Colom 1942; Alvaro et al. 1989).

The upper Pliensbachian (Domerian) sedimentary record 
(Es Cosconar Formation; Fig. 2) is more heterogeneous. 
Whereas some stratigraphic sections include relatively thick 
open-platform limestone successions, others show reduced 
to condensed successions of bioclastic-crinoidal lime-
stones with quartzite pebbles. The chemostratigraphy and 
Sr-isotope dating of this succession have been investigated 
recently (Rosales et al. 2018). The Pliensbachian successions 
are usually overlain by a complex ferruginous hardground 
that represents a platform drowning unconformity (Barnolas 
and Simo 1984; Prescott 1988; Álvaro et al. 1989; Sevillano 
et al. 2010). The hardground includes a condensed ammo-
nite fauna of early and middle Toarcian age in some of the 

Fig. 2  General chronostratigraphic chart indicating the lithostratigraphic units of the Lower Jurassic of Mallorca Modiied from Álvaro et al. 
(1989)
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Tramuntana Range outcrops, and of middle Toarcian to early 
Aalenian in the Llevant Mountains (Álvaro et al. 1989). The 
Toarcian and Aalenian deposits overlying the hardground are 
represented by hemipelagic limestone-marl alternations of 
the Gorg Blau Formation.

Materials and methods 

The Sinemurian shallow-water platform carbonates of the Es 
Barraca Member have been logged bed by bed in six strati-
graphic sections (Cosconar, Es Barraca, Cutri, S’Heretat, 
Son Maina and Cuevas de Artá; Fig. 3), which are located 
along a ca. 70-km-wide transect, from the Tramuntana 
Range to the Llevant Mountains with no palimpastic restora-
tion (Fig. 1b). According to Gelabert (1997) the total short-
ening for Mallorca, parallel to transport direction, is 48%. In 
addition, observations of intra-shelf basinal deposits of the 
Sa Moleta Mb and siliciclastic deposits of the Es Racó Mb 
have also been performed in one of the sections (Cosconar), 
despite these members are not the aim of this study. This is 
because the upper datum for correlation between sections 
has been placed at the base of the Es Cosconar Formation 
(Fig. 3). Determination of facies and facies associations has 
been based on ield observations of lithology, texture, com-
ponents and sedimentary and diagenetic structures. These 
observations were complemented with microscope analysis 
of more than 230 rock samples in thin-sections, in order 
to identify microfacies and micropaleontological content. 
Description of most of the limestone textures follows the 
extended classiication of Dunham (1962). The correlation 
of the stratigraphic proiles is based mainly on the vertical 
and lateral facies distribution, the identiication of diagnos-
tic surfaces (i.e.,  exposure surfaces, deepening surfaces, 
hardgrounds and sudden shifts in sedimentation) and the 
recognition of some key taxa.

The Cosconar and Es Barraca sections are located in the 
Tramuntana Range and are 8 km apart (Fig. 1b). The Cosconar 
section is placed at the foot of the Puig Roig peak (coordinates: 
39°50ガ47ギN, 2°50ガ9ギE; Fig. 1b). The logged proile includes 
98 m of limestone of the upper part of the Es Barraca Member. 

27.6 m of marl and marly limestone with brachiopods of the 
Sa Moleta Member (lower Carixian) and 28 m of the Es Racó 
Member (upper Carixian). These last two members are not 
the object of this study. The lower part of the section is not 
accessible and therefore not logged. The datum of the top of 
the section has been located in the contact of the deltaic silici-
clastics of the Es Racó Member with crinoidal limestone of 
the overlying Es Cosconar Formation. The Es Barraca section 
is located along the Inca-Lluc road (Ma-2130) (coordinates: 
39°47ガ26ギN, 2°53ガ40ギE; Fig. 1b). It is the type-section of the 
Es Barraca Member (Álvaro et al. 1989) and is composed of 
212 m of well-bedded limestone overlying dolomitic breccia 
attributed to the Mal Pas Formation (Hettangian). Here, the 
lower Pliensbachian marl of the Sa Moleta Mb and sandstone 
of the Es Racó Member are missing, and the datum at the top 
of the succession has been placed at a bioturbated surface at 
the contact with quartz-pebbly, crinoidal carbonates of the Es 
Cosconar Formation (Domerian) (Figs. 2, 3).

The Cutri, S´Heretat, Son Maina and Cuevas de Artá sec-
tions are located in the Llevant Mountains (Fig. 1b). The 
Cutri section is situated west of the town of Capdepera, on 
the mountainside of Cutri peak (coordinates: 39°42ガ31ギN, 
3°23ガ38ギE; Fig. 1b). Here the succession includes 200 m of 
well-bedded but dolomitized carbonates (late dolomitization 
according to Barnolas and Simó 1984), in spite of which a 
detailed facies description is possible. The S’Heretat sec-
tion is located south of Capdepera (coordinates: 39°40ガ47ギN, 
3°25ガ55ギE; Fig. 1b) and is 132 m thick. Its lower boundary 
is not well exposed, whereas the top boundary is the con-
tact with crinoidal limestone of the Es Cosconar Formation. 
The Son Maina section is located in the Son Amoixa moun-
tain range, southeast of the town of Manacor (coordinates: 
39º30ガ49ギN, 3º15ガ4ギE; Fig. 1b). It crops out in the inverted 
lank of a NW–SE fold (Fornós et al. 1984) and corresponds 
to a 220-m-thick succession of tabular limestones overlying 
dolomite possibly of the Mal Pas Formation (Hettangian). 
The datum of the top of the succession has been placed in 
a thin ferruginous crust overlain by limestones attributed to 
the Cosconar Formation. Finally, the Cuevas de Artá section 
is located close to Cap Vermell (coordinates: 39º39ガ55ギN, 
3º27ガ8ギ E; Fig. 1b). Here the Es Barraca Member is 110 m 
thick. Its lower boundary is the contact with basal dolomite 
attributed to the Hettangian Mal Pas Formation. The top 
boundary is an unconformity represented by a hardground 
overlain by pelagic limestone with thin-shelled bivalves 
referred to as ilaments (pelagic forms attributed to Bositra) 
and ammonites of Bajocian age (Álvaro et al. 1989).

Facies association and paleoenvironmental 
interpretation

Based on texture, sedimentary, biogenic and diagenetic fea-
tures, and fossil content (macro and microfauna), 15 facies 

Fig. 3  Detailed logs of the six studied stratigraphic sections. Sedi-
mentary facies, sedimentary structures, main components, and 
principal fossil content are shown. The datum for stratigraphic cor-
relation is located in the contact with the overlying Es Cosconar 
Fm (upper Pliensbachian). Note that the Son Maina section (yellow 
start) is displaced several km to the south with respect to the cross 
section deined by the other sections. Diferent colors represent the 
facies types distinguished and correspond with the facies color codes 
on Fig.  4. For description of facies types, the reader is referred to 
Table  1. Numbers 1, 2, and 3 indicate the three stages of evolution 
of the platform system. Dark blue triangles show the general facies 
trends (shallowing-upward and deepening-upward) observed along 
the studied proiles
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types (1–15) grouped into seven facies associations have 
been recognized (Figs. 3 and 4). Some facies types have 
been subdivided in sub-facies based on particular sedi-
mentary features and/or components. Facies codes, facies 
description, and environmental interpretations are summa-
rized in Table 1. Microfacies types and microfossil content 
have been illustrated in Figs. 5, 6, 7, 8,  and 9, whereas some 
facies ield aspects are shown in Figs. 10, 11,  and 12.

The facies associations characterize a variety of depo-
sitional environments ranging from carbonate tidal lat to 
inner, middle, and outer carbonate platform (Fig. 4). How-
ever, it should be noted that the facies associations evolved 
with time relecting distinct stages of carbonate platform 
evolution (Fig. 4).

Tidal-lat facies association

Description. The tidal-lat facies association includes facies 
types 1–3 (Table 1, Fig. 5). According to the prevalent sub-
facies, two diferent types of tidal-lat facies associations 
have been distinguished: a type 1 including facies 1A–1D, 
and a type 2 represented by facies 2A–2D and 3.

The type 1 tidal-lat facies association includes lat-peb-
ble breccia and conglomerate with lat pieces of lithiied 
laminated microbialite and rarely with ferruginous clasts and 
low-angle cross-bedding (facies 1A; Figs. 5a–b and 10a–b). 
It is characterized also by the presence of well-developed 
wavy-crinkled and parallel microbial laminites (facies 1B 
and 1C respectively; Figs. 5d–e and 10c–g), and ine-grained 
agglutinated stromatolites (Riding 1991; Suárez-González 
et al. 2014) (facies 1D). Both wavy and parallel microbial 
laminites show millimeter to sub-millimeter-thick micritic 
and microbial laminae. Tepee structures and desiccation 
cracks are present in facies 1B and laminoid fenestral fabric 
is common in facies 1C. Facies 1D is composed of alternat-
ing millimetric couplets of dense micrite and ine peloidal 
laminae (Fig. 5c).

The type 2 tidal-lat facies association includes black-
pebble conglomerate (facies 2A) with associated shrinkage 
cracks, pedogenetic and stalactitic cements, spongiostrome 
stromatolites (facies 2B), coarse-grained agglutinated stro-
matolites (facies 2C), fenestral mudstones (facies 2D) and 
intraclastic-peloidal and oolitic-peloidal grainstones (facies 
3). Spongiostrome stromatolites (facies 2B; Fig. 5f) consist 
of irregular anastomosing microbial laminae with irregu-
lar fenestrae and birdeyes, and common geopetal ills. By 
contrast, coarse-grained agglutinated stromatolites (Riding 
1991; Suárez-González et al. 2014) (facies 2C; Fig. 5g) are 
made of alternating couplets of dense-laminated micrite and 
medium- to ine-grained peloidal-fenestral laminae. Fenes-
tral mudstone (facies 2D; Fig. 5h) is formed by dense micrite 
with irregular fenestral pores and local ine rhizotubules and 
desiccation cracks. Intraclastic-peloidal and oolitic-peloidal 

grainstone (facies 3; Fig. 5i) consists of decimeter-thick beds 
with normal grading and planar to low-angle cross-lamina-
tion. The main constituents are lithic peloids, ooids, and 
intraclasts made of lime mudstone, dolomitic mudstone and 
stromatolite. Vadose features are common, including mic-
ritic and ibrous stalactitic and meniscus cements, calcrete 
crusts, fenestrae, root-casts, rhizoliths, early dissolution vugs 
and oomolds, and internal sediment (vadose silt).

Fossils are absent in the type 1 tidal-lat facies associa-
tion (Table 1), whereas they are scarce and dominated by a 
restricted shallow-marine fauna in the type 2 tidal-lat facies 
association (ostracods, bivalves, gastropods, and rare frag-
ments of dasycladalean algae and benthic foraminifera).

Paleoenvironmental interpretation In the type 1 tidal-lat 
the presence of laminated microbial facies such as microbial 
laminites (facies 1C) and ine-grained agglutinated stroma-
tolites (facies 1D) indicate deposition in a low-energy upper 
intertidal zone (Aitken 1967). The presence of laminoid 
fenestral fabric in facies 1C is also typical of upper inter-
tidal and supratidal areas with a subaerial exposure index 
higher than 60% (Shinn 1983; Tucker and Wright 1990). 
The associated wavy-crinkle laminites (facies 1B) with tepee 
structures and desiccation cracks, and the lat-pebble breccia 
(facies 1A), relect longer periods of subaerial exposure and 
deposition in a supratidal domain (Fig. 4) (Riding 1991). 
All these features indicate deposition on a low-energy tidal 
lat with a high subaerial exposure index. Occasional higher 
energy conditions, possibly related to storms or spring tides, 
may have reworked previously semi-consolidated microbial 
mudstone to form lat-pebble breccia and conglomerate 
(facies 1A). In other cases, the presence of conglomerate 
with low-angle cross-bedding is interpreted as the ill of 
shallow tidal channels in the intertidal zone.

In the type 2 tidal-lat facies association, the presence of 
abundant black pebbles with pedogenic features (facies 2A) 
is indicative of subaerial exposure with the development of 
calcareous and organic-rich coastal paleosoils (e.g., Miller 
et al. 2013), suggesting the existence of vegetated coastal 
areas. The black pebbles may have been derived from ero-
sion and reworking of these calcareous coastal paleosoils 
(Strasser et al. 1995). In this type of tidal lat, the irregular 
anastomosing microbial laminated facies (facies 2B) and 
the agglutinated stromatolites (facies 2C) are interpreted 
to have been deposited in intertidal areas with intermittent 
exposure and desiccation (Riding 1991). The fenestral mud-
stone (facies 2D) represents deposition in restricted mar-
ginal ponds developed in the intertidal belt, probably under 
brackish-water conditions, as indicated by the scarce fauna 
almost limited to gastropods and small foraminifera (e.g., 
Harris 1986). All these characteristics suggest deposition in 
coastal wetlands with vegetated marsh areas (e.g., Wright 
and Azerêzo 2006), and facies representative of terrestrial, 
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Fig. 4  Idealized platform proiles with distribution of the facies associations, facies types and depositional environments that characterize the 
three platform stages 1, 2 and 3. Note that any geographical references are absent because these platform proiles are conceptual models
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supratidal, intertidal, and pond environments. The associated 
planar and cross-laminated grainstone with vadose diage-
netic features (facies 3) is interpreted as local beach sands 
or event beds (e.g., storms), subaerially exposed. The abun-
dance of oomolds suggests that these ooids may have been 
originally aragonitic and that they were dissolved shortly 
after their accumulation due to subaerial exposure (Strasser 
1986; Flügel 2010).

Restricted lagoon facies association

Description This facies association includes massive to 
slightly laminated mudstone to wackestone (facies 4A) and 
oolitic-peloidal-skeletal wackestone (facies 4B) (Table 1). 
Facies 4A is arranged in 1 to 3-m-thick tabular beds that 
include interlayered cm- to dm-thick beds of the oolitic-
peloidal-skeletal wackestone of facies 4B, with faint mil-
limetric parallel lamination and local bioturbation on top.

Mudstone to wackestone facies 4A (Fig. 6a) has a low 
fossil diversity consisting of scarce ostracods, miliolids and 
other rare small benthic foraminifera. The main constitu-
ents of facies 4B are lithic peloids, supericial ooids, loat-
ing shrunken ooids and oomolds, intraclasts, fragments of 
bivalves, gastropods and rare benthic foraminifera (textulari-
ids, siphovalvulinids, and lituolids). Algae fragments includ-
ing the dasycladalean Palaeodasycladus mediterraneus (Pia) 
and the microproblematica Thaumatoporella parvovesiculif-

era (Raineri) are also present (Fig. 7d–g).

Paleoenvironmental interpretation Low fossil diversity and 
mud-supported texture in facies 4A suggest deposition in a 
low-energy shallow subtidal environment, most probably in 
a restricted lagoon with luctuations in seawater salinity and 
temperature, which inhibited the proliferation of normal-
marine benthic organisms. The intermittent intercalation of 
grain-rich beds with tractive laminated structures (facies 4B) 
represents periodic interruption of the quiet-water condi-
tions by high-energy events. They are interpreted as probable 
storm washover deposits, with sand bank- or shoal-derived 
sediments redeposited by episodic storms in the restricted 
lagoon, and afected by bioturbation during quiet conditions.

Bars/shoals facies association

Description This facies association is composed of four dis-
tinct grain-supported facies (Table 1): oolitic-peloidal grain-
stone (facies 5A), peloidal-intraclastic-foraminiferal grain-
stone (facies 5B), poorly sorted peloidal-oncolitic-oolitic 
grainstone (facies 5C) and dolograinstone (facies 5D).

The oolitic-peloidal grainstone (facies 5A; Fig. 6b) is 
arranged in 0.2–5-m-thick beds and are moderately to well 

sorted. Parallel to difuse wavy lamination, normal grading 
and grain orientation are present. The peloidal-intraclastic-
foraminiferal grainstone (facies 5B; Fig. 6c) is arranged in 
dm- to m-thick beds. It is moderate to poorly sorted and 
shows alternations of peloidal-oolitic and intraclastic-bio-
clastic laminae. The main non-skeletal grains, in both facies 
5A and 5B, are ooids with micritic and/or well-developed 
ibrous-radial cortices (types 1 and 3 of Strasser 1986), lithic 
peloids derived from reworking of lagoonal mudstone and 
microbial laminites, along with variable amounts of intra-
clasts, bahamite (micritized) ooids, eccentric and shrunken 
(geopetal) ooids, oomolds and peloids. The heterometric 
peloidal-oncolitic-oolitic grainstone (facies 5C; Figs. 6d–e 
and 10h) is arranged in dm- to m-thick beds with lamina-
tion deined by the alternation of peloidal-oolitic layers and 
oncolitic-intraclastic layers. Main components of this facies 
are mm- to cm-sized oncoids with complex cortices con-
sisting of calcimicrobes and encrusting foraminifera crusts 
(type IV of Dahanayake 1977), microbial lumps and aggre-
gate grains, intraclasts, ooids and ine-grained (50–100 µm) 
peloids.

Fossil content in facies 5A, 5B and 5C consists of frag-
ments of bivalves, gastropods, dasycladalean algae (Palaeo-

dasycladus mediterraneus), microproblematic algae Thau-

matoporella parvovesiculifera, favreinid coprolites (Fig. 7a, 
b) and benthic foraminifera including miliolids, textulariids, 
siphovalvulinids, and local lituolids (in facies 5C). Encrust-
ing foraminifera (nubecularids) are locally present. Some 
bed tops also show bioturbation.

In the Cutri section, the previous facies exhibit strong 
dolomitization destroying the original texture. In this case, 
these facies are represented by dolograinstone (facies 5D) 
with ghosts of ooids and oncoids, arranged in m-thick beds 
with cross-bedding.

Paleoenvironmental interpretation The oolitic and peloi-
dal grainstones (facies 5A and 5B) occur interbedded with 
lagoonal mudstone and laminated microbial facies of the 
tidal-lat facies association (Fig. 3), suggesting a shallow 
subtidal environment in the internal platform. The presence 
of ooids, intraclasts and lithic peloids, and the tractive struc-
tures (parallel to wavy lamination, normal grading, oriented 
bioclasts and intraclasts) suggest moderate to high energy. 
These facies are interpreted to represent internal and mar-
ginal sand bars and shoals (Fig. 4). The presence in some 
beds of shrunken ooids and oomolds could also be consistent 
with a shallow environment with occasional subaerial expo-
sure of the bar tops (Mazzullo 1977), as long as such ooids 
are interpreted to result from meteoric dissolution of the 
ooid cortices (that could have been originally of evaporite 
minerals or aragonite) with the consequent drop of the core 
(Strassser 1986; Flügel 2010). Alternatively, they may be the 
result of the selective aggrading recrystallization of the ooid 
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nuclei, in response to downward-migrating meteoric waters 
during periods of subaerial exposure (Mazzullo 1977). The 
abundance in some beds of bahamite ooids points also to 
an original composition as aragonite for this type of grain 
(Vulpuis and Kiessling 2018), whereas those ooids with 
well-preserved concentric ibrous-radial cortices are inter-
preted to have been precipitated as low-magnesium calcite 
or as high-magnesium calcite, transformed into stable low-
magnesium calcite during very early diagenesis (Strassser 
1986; Vulpuis and Kiessling 2018). The local presence of 
bioturbation at bed tops indicates quiet periods with stabi-
lization of the bars.

In facies 5C, the presence of type IV oncoids is indicative 
of long calm periods with intermittent agitation (Dahanay-
ake 1977). This facies is interpreted to have been deposited 
in backshoal protected areas (Fig. 4). Finally, the presence of 
cross-bedding in dolograinstone of facies 5D is interpreted 
to relect deposition in high-energy subtidal sand bars and 
barrier shoals.

Inner platform/open-lagoon facies association

Description This facies association consists of mud-sup-
ported and commonly bioturbated facies that includes 
two facies types (Table 1): skeletal mudstone-wackestone 
(facies 6A) and foraminiferal-peloidal-oncolitic wacke-
stone to packstone (facies 6B). These facies are arranged 
in tabular, massive beds, with thicknesses ranging between 
0.5 and 2 m. The main components are bioclasts (fragments 
of bivalves, gastropods, Fig. 12a), algae (Palaeodasycladus 

mediterraneus, microproblematic Thaumatoporella parvo-

vesiculifera, Figs. 6h, 7d–g), the calcimicrobe Cayeuxia sp. 
(Fig. 7c), echinoderm plates, benthic foraminifera (textulari-
ids, siphovalvulinids, Glomospira sp. and large lituolids), 
peloids, cortoids and porostromate oncoids more than 2 mm 
in size (Fig. 6f–g). The oncoids have micritic, non-laminated 
and non-concentric thick cortices with irregular to elongate 
sparitic patches probably representing an irregular growth 

of multitaxon communities of algal ilaments, Rivularia-
type and other calcimicrobes, and encrusting foraminifera 
(Fig. 6f–g). Many of the oncoids do not have a well-diferen-
tiated nucleus (simple or complex type IV oncoids of Daha-
nayake 1977), but others show fragments of bivalves, gas-
tropods, algae or intraclasts in their nuclei (type III oncoids 
of Dahanayake 1977).

Paleoenvironmental interpretation The abundance of 
foraminifera including larger lituolids, dasycladalean and 
other green algae, and molluscs suggests a shallow marine 
environment with normal-marine salinity (e.g., Barattolo 
and Bigozzi 1996). Mesozoic oncoids could have been 
formed in a wide variety of environments (e.g., Bádenas and 
Aurell 2010), but in this facies association, the accompany-
ing shallow-platform components, as well as the irregular 
shape and the nature of oncoid cortices and nuclei suggest 
a shallow low-energy and protected environment (Flügel 
2010). The shape of the oncoids (type III and IV) with their 
irregular morphology and thick cortices, and the presence 
of encrusting microorganisms, suggest long periods of quiet 
environmental conditions interrupted by occasional events 
of water agitation (Dahanayake 1977). Therefore, this facies 
association is interpreted to characterize an open lagoon or 
a low-energy inner platform setting (Fig. 4).

Muddy shallow open-platform facies association

Description This facies association is characterized by 
skeletal mudstone-wackestone to loatstone (facies 7A) and 
skeletal-oncolitic-peloidal wackestone-packstone (facies 
7B) (Table 1, Figs. 8a–d and 12b). Both facies are arranged 
in massive dm- to m-thick beds with common bioturba-
tion. Facies 7A shows common skeletal fragments (typi-
cally > 2 mm in size; Fig. 8a) usually aligned and oriented 
parallel to bedding. The skeletal content includes whole shell 
and articulated heterodontid and megalodontid bivalves, 
gastropods, brachiopods, crinoids, and benthic foraminifera 
(textulariids, siphovalvulinids, nodosariids, and lituolids). 
Facies 7B contains the same bioclasts encountered in facies 
7A, in addition to peloids, oncoids (types II and IV of Daha-
nayake 1977), cortoids (Fig. 8b–d) and locally thin ooid-rich 
intercalations.

Paleoenvironmental interpretation This facies association 
is representative of a low-energy shallow subtidal environ-
ment on a muddy platform (Fig. 4). The diversity of the 
skeletal content indicates open-marine conditions. The com-
mon bioturbation and the rare presence of tractive structures 
(oriented skeletal fragments) suggest deposition in a pre-
dominantly quiet environment below fair weather wave base. 
Local intercalation of ooid-rich layers suggests that the ooids 

Fig. 5  Microfacies images of the tidal-lat facies association. a, b 
Photomicrographs of supratidal lat-pebble breccia (facies 1A). Intra-
clasts are made of microbial laminite. c Fine-grained agglutinated 
stromatolite (facies 1D) with parallel laminae. Note the alternation of 
darker laminae (micritic) and lighter laminae (micropeloidal), the lat-
ter with fenestrae. d, e Parallel microbial laminites (facies 1C). Note 
strong dolomitization (white color) of grain-supported laminae in e. f 
Spongiostrome stromatolite (facies 2B) with irregular lamination and 
well-developed fenestrae. Note the presence of the microproblem-
atic Thaumatoporella parvovesiculifera (red arrows) in the peloidal-
bioclastic laminae. g Coarse-grained agglutinated stromatolite (facies 
2C). Note couplets of dense micrite laminae (black color) and peloi-
dal fenestral laminae. h Mudstone with irregular fenestrae (facies 
2D). Note micritic geopetal sediment illing pores (red arrows). i 
Intraclastic-bioclastic-peloidal grainstone (facies 3). Note micrite 
envelopes around grains. Some bioclasts and intraclasts dissolved and 
molds illed by calcite spar cement
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likely formed in adjacent shallower areas and were reworked 
into this part of the platform by currents or storms.

Muddy outer-platform facies association

Description This facies association includes massive mud-
stone (facies 8), peloidal wackestone-packstone levels 
(facies 9), and spiculitic wackestone-packstone (facies 10) 
(Table 1, Fig. 8e–i). Mudstone of facies 8 is arranged in 
m-thick beds with abundant bioturbation (Fig. 12c). It con-
tains small peloids, mm-sized planktic pteropods (Pseudo-

creceis liasicus Colom 1970; Fig. 8e–f), crinoid ossicles, 
sponge spicules, rare textulariids, nodosariids, gastropods, 
and bivalve shells loating in a micritic matrix. Facies 9 
forms discrete mm- to cm-thick graded layers intercalated 
in facies 8 (Fig. 8g), composed of small bioclasts, mm-sized 
mudstone intraclasts and peloids. The spiculitic wackestone-
packstone (facies 10) is arranged in 1 to 2-m-thick strata, 
with local presence of slightly slumped beds (Fig. 3, Es 
Barraca section). It is composed of abundant sponge spic-
ules (monoaxon, triaxon), calcispheres, ostracods, planktic 
foraminifera, and rare textulariids (Fig. 8h–i). Other minor 
components are lithic peloids and small glauconite grains 
and pyrite.

Paleoenvironmental interpretation The mud-supported tex-
ture, the presence of bioturbation and the skeletal content of 
this facies association indicate an outer, open-marine, low-
energy environment below storm wave base, but occasion-
ally afected by waning storm lows. During these higher-
energy episodes, thin layers made of peloids and intraclasts 
(facies 9) were resedimented as distal tempestites (Einsele 
and Seilacher 1991). The presence of glauconite and pyrite 
may indicate slightly reducing sealoor conditions and rela-
tive low oxygen levels (Harder 1980; Fernández-Bastero 
et al. 2000), and the abundance of sponge spicules, calci-
spheres, and planktic foraminifera indicate open-marine 

conditions on an outer platform. The local slumped beds 
observed could have been triggered by episodes of over-
steepening (e.g., Cook and Mullins 1983; Einsele 1991) or 
seismic activity (e.g., Martín-Chivelet et al. 2011).

Middle to outer platform facies association

Description This facies association consists of seven facies 
types (facies 11–15, Table 1), which can be either matrix 
or grain supported. Facies 11 consists of well to very well 
sorted peloidal-skeletal ine-grained grainstone (Fig. 8j–l), 
arranged in tabular beds 20–50 cm thick, with plane-par-
allel, undulating in-phase and current-ripple lamination. 
Locally, it shows alternating, millimeter-thick, peloidal-rich, 
and skeletal-rich laminae. The main constituents are small 
(100–200 µm) lithic peloids and bioclasts (Fig. 8l). Less 
abundant are intraclasts, ooids, and silt to ine-grained sand 
quartz grains (Fig. 8j–k). The fossil content consists of small 
unidentiied mollusc debris, echinoderm plates and spines, 
textulariids, and other small benthic foraminifera.

Facies 12A consists of very ine laminated mudstone and 
calcisiltite, arranged in cm- to m-thick tabular beds, with 
plane-parallel and undulated climbing-ripple lamination, 
hummocky cross-lamination and cross-bedding in sets up to 
1 m thick. Calcisiltite (> 50% of detrital silt-sized carbonate 
particles) is characterized by very ine mm-thick laminae, 
with usual normal grading (Fig. 9a). The components are 
lime mud and very ine to medium silt-sized lithic peloids 
and rare intraclasts. Facies 12B is associated with facies 
12A, but difers from it in the larger size of the particles. It 
consists of mm-thick laminae of graded, ine-grained peloi-
dal packstone (Fig. 9b–c) interlayered with laminated mud-
stone (facies 12A). Facies 12C consists of cm-thick layers of 
oolitic-peloidal grainstone that are interbedded with facies 
12A and 12B (Fig. 9d).

Facies 13 consists of poorly sorted intraclastic pebbly 
grainstone to rudstone. It occurs in cm- to m-thick tabular 
beds with sharp erosive bases and clasts and pebbles usu-
ally chaotically oriented (Figs. 9e and 12d) or with inverse 
grading (Fig. 11f–g). The intraclasts and pebbles are well 
rounded. Principal components are intraclasts of diferent 
limestone lithologies (lime mudstone, skeletal wackestone, 
oolitic grainstone, peloidal grainstone, etc.) and sizes (up 
to 5 cm), rare cm-sized and rounded quartzite extraclasts, 
scarce ooids and ooid fragments, and silt- to ine sand-sized 
quartz and carbonate grains (Fig. 9f). Fossil content includes 
mollusc fragments, echinoderm plates and crinoidal debris, 
bryozoan debris and rare small-sized benthic foraminifera. 
Facies 14 usually appears associated with facies 13 and con-
sists of poorly to moderately sorted oolitic-peloidal-intra-
clastic wackestone to packstone, arranged in dm- to m-thick 
tabular beds. The main components are ooids, many with a 

Fig. 6  Microfacies of the restricted lagoon facies association (a), bar/
shoal facies association (b–e) and open-lagoon facies association (f–
h). a Pure lime mudstone of facies 4A. b Oolitic-peloidal grainstone 
(facies 5A). Note the widespread micritization of ooids (bahamite 
ooids, type 1 of Strasser 1986). c Peloidal-intraclastic-foraminiferal 
grainstone (facies 5B). Fragments of Thaumatoporella parvovesicu-

lifera (Th) are present. Note the abundance of small foraminifera 
(some examples marked with red arrows). d, e Heterometric peloidal-
oncolitic-oolitic grainstone (facies 5C). Detail of simple and compos-
ite type IV oncoids (sensu Dahanayake 1977) (e). f–h Foraminiferal-
peloidal-oncolitic wackestone-packstone (facies 6B). In f, g, note 
oncoids with simple microbial cortices (yellow arrows) and others 
with bioclastic nuclei and an irregular cortex composed of Rivularia-
type calcimicrobes and possible encrusting foraminifers (red arrows). 
In h, note abundant oblique and longitudinal sections of the alga Pal-

aeodasycladus mediterraneus (blue arrows) and lituolids (light green 
arrows)
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radial-ibrous fabric (type 4 of Strasser 1986), lumps, intra-
clasts and peloids (Fig. 9g).

Facies 15 consist of alternating marl, marly limestone 
and wackestone arranged in dm-thick beds bearing mac-
rofossils of bivalves, gastropods, brachiopods and crinoids 
(Fig. 9h).

Paleoenvironmental interpretation Facies 11 is inter-
preted as peloidal-skeletal sand sheets with some 
siliciclastic influence (silt and fine-sand quartz grains) 
which accumulated on a middle platform area below fair 
weather wave base. The associated sedimentary struc-
tures (parallel, undulating and current-ripple cross-
lamination; Fig. 11d–e) suggest frequent reworking by 
moderate currents and probably storms. Facies 12–15 
formed in an outer platform environment. The occur-
rence in facies 12A of undulating climbing lamination 
and cross-bedding with sets up to 1 m thick indicates 
migration of large bedforms and rapid sedimentation 
rates with a combination of deposition by traction and 
suspension, which was probably caused by storm-gen-
erated currents on the outer platform (e.g., Chaudhuri 
2003; Payros et al. 2010; Brandano et al. 2012). The 
presence of local hummocky cross-lamination in facies 
12A and the intercalation of lime-mud layers in facies 
12B and 12C probably reflect storm wave action and 
deposition from storm-induced suspension clouds. The 
coarse-grained grain- and matrix-supported facies 13 
and 14 are interpreted as sediment derived from the ero-
sion of penecontemporaneous platform deposits, which 
probably were transported to the outer platform by com-
bined unidirectional and oscillatory flows and/or grav-
ity flows (Vierek 2010). The inverse grading of grains 
and pebbles (Fig. 11f–g) that occurs in some beds sug-
gests avalanching or grain-to-grain collision processes 
(Tucker and Wright 1990; Dasgupta and Manna 2011). 
The nature of the clasts in grain-supported pebbly lime-
stone, with a predominance of well-rounded intraclasts 
of different textures indicate reworking and transport of 
clasts from different areas on the platform. These flows 
may have been triggered by either strong storms or slope 
instability related to the onset of rifting (see below). 
The marl, marly limestone, and wackestone (facies 15) 
represent argillaceous-rich sedimentation on the outer 
platform.

Facies architecture and platform stages

The vertical and lateral arrangement of facies in the Sine-
murian carbonate succession of the Mallorca (Es Barraca 
Member) has allowed the identiication of three stages in 
the evolution of the platform (stages 1–3 from older to 
younger; Figs. 3, 4 and 13), which are characterized by 
distinctive microfossil assemblages, facies architecture and 
platform proiles.

Biostratigraphic constraints of platform stages

The recognition of benthic microfossil assemblages along 
the six studied stratigraphic proiles has allowed a better 
age constraint of the deined platform stages. Thus, the 
fossil assemblage of the lower part of stage 1 shows, in all 
sections, a relatively low diversity of benthic foraminifera 
taxa, that consists of Siphovalvulina sp. (Fig. 7h–i), Mean-

drovoluta asiagoensis Fugagnoli and Rettori (Fig. 7j), Glo-

mospira sp., Mesoendothyra sp. (Fig. 7l–ll), Duotaxis sp. 
(Fig. 7k) and some textulariids. According to Velić (2007) 
this association could be compatible with an early Sine-
murian age. The upper part of stage 1 shows in addition 
Haurania sp., Everticyclammina praevirguliana Fugag-
noli, and Lituosepta recoarensis Cati. The presence of L. 

recoarensis indicates already a late Sinemurian age for 
the upper part of stage 1, according to its stratigraphic 
occurrence in the Tethyan margins (Septfontaine 1984; 
Boudagher-Fadel and Bosence 2007; Velić 2007; Fugag-
noli and Bassi 2015). The less restricted inner platform 
environments during this stage are also characterized by 
the abundance of calcareous algae including Palaeodasy-

cladus mediterraneus (Pia) (Fig. 7f, g), microproblematic 
Thaumatoporella parvovesiculifera (Raineri) (Fig. 7d–e) 
and the calcimicrobe Cayeuxia sp. According to these 
data, an early Sinemurian to earliest late Sinemurian age 
is attributed to platform stage 1.

The following stage 2 shows a poorer fossil assemblage 
of benthic algae and foraminifera that includes few speci-
mens of nodosariids, Siphovalvulina sp., Glomospira sp., 
Everticyclammina praevirguliana Fugagnoli, Amijiella amiji 
(Henson) (Fig. 7o) and Lituosepta recoarensis Cati, indicat-
ing a late Sinemurian age. Finally, the benthic foraminifera 
assemblage of stage 3 includes, in addition to Lituosepta 

recoarensis Cati (Fig. 7q–s), also Haurania deserta Henson 
(Fig. 7n), Amijiella amiji Henson, Paleomayncina termieri 
(Hottinger) (Fig. 7m), Everticyclammina praevirguliana 
Fugagnoli (Fig. 7p) and primitive forms of Orbitopsella 

primaeva (Henson) in the upper part (Fig. 7t). According 
to Septfontaine (1984) and Velić (2007), this assemblage 

Fig. 7  Images of representative microfossils and microcopro-
lites from the Es Barrraca Member. a, b Favreina-like coprolites. c 
Cayeuxia sp. d, e Thaumatoporella parvovesiculifera. f–g Palaeo-

dasycladus mediterraneus. h, i Siphovalvulina sp. j Meandrovoluta 

asiagoensis. k Duotaxis sp. l–ll Mesoendothyra sp. m Paleomayncina 

termieri. n Haurania deserta. o Amijiella amiji. p Everticyclammina 

praevirguliana. q–s Lituosepta recoarensis. t Orbitopsella primaeva 
(primitive form)
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suggests a late Sinemurian to latest Sinemurian age for the 
upper part of stage 3.

Stage 1: peritidal carbonate platform (early–earliest late 

Sinemurian)

Stage 1 represents a large, widespread peritidal carbonate 
platform characterized throughout the whole study area by 
deposition of shallow subtidal, intertidal, and supratidal 
facies associations, arranged in typical peritidal meter-scale 
shallowing-upward cycles (e.g., Strasser 1991; James 1984; 
Pratt et al. 1992; Bosence et al. 2000, 2009), which are not 
a topic of this study. This stage has been characterized in all 
the studied sections except in the Cosconar section (Fig. 3), 
where the outcrops of this part of the succession are inac-
cessible. The sedimentary thicknesses for this stage range 
from 58 m (Es Barraca section, Fig. 3) to 126 m (Son Maina 
section, Fig. 3). The base of platform stage 1 is represented 
in all the studied sections by a rapid upward change from 
dolomite of the Mal Pas Formation, attributed to the Hettan-
gian and deposited in a coastal sabkha to restricted platform 
environments (Álvaro et al. 1989), to the Sinemurian shal-
low peritidal facies of the Es Barraca Member.

Stage 1 is composed mostly of an alternation of facies 
types 1 to 6 (Table 1), representative of tidal-lat, restricted 
lagoon and shallow inner-platform facies associations (1 in 
Fig. 13). The lateral facies distribution shows that most of 
these environments are represented in each of the studied 
sections from both the Tramuntana and Llevant Mountains 
ranges (Fig. 3), indicating far and rapid migration of facies 
belts as a consequence of the very low topographic gradients 
during this stage (Schlager 2005). In spite of this, there are 
some patterns in the distribution of the facies associations 
(Fig. 14). In particular, intertidal to supratidal facies, mainly 
of the type 2 tidal-lat facies association (facies 2A–2D and 
3), are dominant to the northeast (Cuevas de Artá section, 
Figs. 3, 13 and 14). In this area, the intertidal facies include 
spongiostrome (facies 2B) to coarse-grained agglutinated 
stromatolites (facies 2C) and fenestral limestone (facies 
2D), whereas supratidal facies include abundant levels with 

black-pebble conglomerate, intraclasts of stromatolite and 
pedogenic features (facies 2A). This suggests the prevalence 
of subaerial exposure phases, with erosion and reworking of 
microbial laminites and calcareous coastal paleosoils devel-
oped in vegetated marsh areas (e.g., Wright and Azerêdo 
2006). These facies are interbedded with a slightly lower 
amount of subtidal mudstone (facies 4A; Fig. 14) deposited 
in low-energy, shallow restricted lagoons. Higher-energy 
shallow subtidal facies represented by oolitic-peloidal shoals 
and inner bars (facies 5A–5B), although present, are scarce 
(Fig. 14) and also show evidence of subaerial exposure 
(abundance of bahamite and shrunken ooids and oomolds). 
All these features suggest that this area represented the shal-
lowest part of the platform during this stage 1, developed 
probably in a coastal wetland with frequent subaerial expo-
sure (Leinfelder 1987; Vera and Jimenez de Cisneros 1993; 
Wright and Azerêdo 2006).

Toward the southwest (Son Maina section, Fig. 3) and to 
the west (S’Heretat section, Fig. 3) of the Cuevas de Artá 
section, there is a prevalence of tidal-lat facies association 
of the two types (type 1 and type 2), interbedded with facies 
from restricted lagoon (facies 4A) and higher-energy inner 
bars and shoals (facies 5A–5B), in the lower half of the stage 
1 succession (Fig. 14). In contrast, the upper half of the 
stage 1 succession is widely dominated by lagoonal facies 
(facies 6A; Figs. 3, 14), with the abundant presence of ben-
thic foraminifera and calcareous algae that are indicative 
of a more open-marine environment but still in the shal-
low inner platform. This vertical and lateral trend suggests 
a slight general increase in the topographic gradient of the 
depositional proile towards these areas at least for the upper 
half of stage 1. Mostly to the west (Cutri section, Fig. 3), 
although the proportion of tidal-lat facies associations in 
both the lower and upper halves of stage 1 remains equal, 
there is an increase in the proportion of facies from restricted 
lagoons, a relative decrease of the higher-energy inner bar/
shoal facies, and an occurrence of open-lagoon facies (about 
meter 100 of the section) in the upper half (Fig. 14), suggest-
ing a similar trend of facies to that observed for the previous 
sections. An opposite trend is observed to the northwest in 
the Tramuntana Range (Es Barraca section), where there is 
an overall predominance of inner platform facies (restricted 
lagoon and inner bars/shoals facies associations) over the 
tidal-lat environments in the lower half, whereas towards 
the upper half, type 1 tidal-lat facies association becomes 
more abundant, decreasing the relative proportion of facies 
from restricted lagoon (Fig. 14).

Stage 2: muddy carbonate platform (late Sinemurian)

The contact between stage 1 and stage 2 corresponds to a 
deepening surface on top of the peritidal facies of stage 
1, giving way to open shallow to outer platform facies 

Fig. 8  Microfacies of muddy shallow open-platform (a–d), muddy 
outer-platform (e–i), and middle-outer platform (j–l) facies associa-
tion. Photographs made with binocular microscope. a Skeletal wacke-
stone (facies 7A). Note the presence of whole and articulate bivalve 
shells. b–d Skeletal-oncolitic-peloidal wackestone to packstone 
(facies 7B). See details of bioclasts (bivalves, crinoids) in photo c and 
of oncoids (On) in photo d. e–f Massive mudstone. Note the presence 
of pelagic pteropods (yellow arrows), possibly Pseudocreceis liasi-

cus Colom 1970. g Thin peloidal levels (facies 9) with ine parallel 
tractive laminae. h–i Spiculitic packstone (facies 10). Note monoaxon 
and triaxon sponge spicules (red arrows). j–l Homometric peloidal-
skeletal ine-grained grainstone (facies 11). Note siliciclastic inlu-
ence consisting of abundant very ine sand and silt-size quartz grains 
(j, k)
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associations deposited on a muddy carbonate platform 
(Figs. 4, 13). This platform is constituted by facies types 
7–10 (Table 1; Fig. 8). The lateral distribution of facies 
shows relatively shallower environments and a thinner 
(10–20  m) sedimentary succession to the east, in the 
Llevant Mountains domain (Cutri, S’Heretat and Son 
Maina sections, Fig. 3). Facies in this area are composed 
mainly of skeletal wackestone (facies 7A) and skeletal-
oncolitic-peloidal wackestone to packstone (facies 7B), 
with some loatstone beds rich in megalodontid bivalves 
and gastropods, interbedded with minor amounts of mas-
sive mudstone (facies 8) and spiculitic packstone (facies 
10) (Figs. 4, 13). Megalodont-rich loatstone and oncolitic 
wackestone indicate a shallow muddy substrate in a low-
energy platform interior (Flügel 2010), whereas the abun-
dance of crinoid and brachiopod debris and nodosariids 
(facies 7B; Table 1) indicate a connection with the open 
sea. Less common is the presence within facies 7B of 
isolated ooid-rich layers with foraminifera, which are 
interpreted to be reworked from an inferred adjacent non-
outcropping (or eroded) oolitic belt developed in shallower 
portions of the platform. In the northeasternmost area of 
the Llevant Mountains (Cuevas de Artá section) stage 2 
is missing (Figs. 3, 13) most probably due to post-depo-
sitional erosion during a subsequent extensional tectonic 
phase, or alternatively, due to non-deposition.

To the northwest, in the Tramuntana Range domain (Es 
Barraca and Cosconar sections, Figs. 3 and 12e), the con-
tact with the underlying stage 1 is marked by the sudden 
occurrence of spiculitic wackestone-packstone (facies 10), 
locally slightly slumped, over tidal-lat laminites, indicating 
a sharp environmental change to deeper water conditions 
(e.g., Rychliński et al. 2018a) and some displacement of 
unconsolidated material. This indicates a probable increase 
of the depositional dip towards this domain and higher sedi-
mentation rates (Fig. 13). Here, stage 2 shows a thicker suc-
cession (~ 80 m) compared to the sections of the Llevant 
Mountains domain (Fig. 14), and is constituted principally 
by thick-bedded bioturbated mudstone (facies 8) with some 
intercalated centimetric to metric beds of skeletal-oncolitic 
wackestone-packstone with bivalves, gastropods, brachio-
pods and echinoderm debris (facies 7A, B), and layers of 

peloidal packstone (facies 9) (Fig. 14). The later are inter-
preted as reworked material, resedimented from the shal-
lower zone located to the east, probably during storm events 
(tempestites). All these features suggest deposition in an 
outer platform environment (Fig. 13).

Stage 3: Peritidal to outer carbonate platform (latest 

Sinemurian)

The transition of platform stage 2 to stage 3 marks a rapid 
sedimentary change from a mud-dominated open platform to 
a carbonate platform with well-deined depositional domains 
and facies belts (3 in Fig. 13). Lateral facies correlation for 
this stage shows that the shallower platform environments 
were located to the east, in the Llevant Mountains domain 
(Cutri, S’Heretat and Son Maina sections, Figs. 3, 13, 14). 
Here, dominating facies are inner platform lagoonal facies 
6A–6B interbedded with oolitic-peloidal sands deposited 
in marginal to internal bars and shoals (facies 5A–5C; 
Fig. 14). The lagoonal facies are rich in bivalves, calcare-
ous algae and benthic foraminifera, which indicate open-
marine conditions but still in a shallow inner platform setting 
(open lagoon). Tidal-lat facies associations, composed of 
inter- to supratidal microbial laminite, lat-pebble breccia 
and fenestral mudstone, are volumetrically minor (Fig. 14) 
and appear as thin beds capping typical shallowing-upward 
meter-scale cycles (Strasser 1991; Fig. 10g). In the Cutri 
section (Figs. 3 and 11a), the onset of stage 3 is recognized 
by the development of an erosional surface that truncates the 
underlying limestone strata of the previous stage. It separates 
the muddy shallow open-platform deposits of stage 2 from 
overlying peritidal facies of stage 3 (Fig. 11b). The surface 
is coated by a ferruginous crust partially reworked in clasts 
forming the basal lags of shallow tidal channels associated 
to the intertidal deposits of the base of stage 3 (Fig. 11c). 
Above this surface there is a general upward evolution from 
a predominance of subtidal-peritidal facies in the lower 
part of the succession, to a predominance of stacked oolitic 
grainstone (facies 5A, 5C) and dolograinstone (facies 5D), 
followed by peloidal–skeletal grainstone (facies 11) with 
siliciclastic inluence (quartz sand grains) at the end of this 
stage. These facies represent the deposits of high-energy 
oolitic shoals, subtidal bars and sand sheets likely located 
at or near the platform margin, and above or close to fair 
weather wave base (Figs. 4, 13). Therefore, the described 
evolution is interpreted as resulting from an upward ret-
rogradation of facies belts. Backward to these shoals and 
sands sheets (S’Heretat and Son Maina sections), facies 
associations show a predominance of subtidal lower energy 
deposits (Fig. 14), which consist of peloidal-oncolitic-oolitic 
grainstone (facies 5C) and foraminiferal to skeletal wacke-
stone with bivalves (facies 6A–6B), deposited in back-shoal 
and lagoonal environments in the platform interior. In the 

Fig. 9  Microfacies of outer-platform facies association. a Very ine 
laminated mudstone and calcisiltite (facies 12A). b Very ine-grained, 
laminated peloidal packstone grading to mudstone (facies 12B). c 
Very ine peloidal grainstone with millimetric graded laminae (facies 
12B). d Oolitic-peloidal grainstone (facies 12C). e–f Heterometric 
intraclastic-pebbly grainstone (facies 13) under binocular microscope. 
Note diferent composition of limestone pebbles (yellow arrows). g 
Oolitic-peloidal-intraclastic wackestone to packstone (facies 14). h 
Marly limestone of the outermost platform under binocular micro-
scope. Note the abundance of ine-grained quartz silt (yellow arrow) 
and crinoidal fragments (facies 15)
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northeasternmost area (Cuevas de Artá section) this part of 
the succession is also missing (Figs. 3, 13), most likely due 
to erosion during subsequent extensional tectonic phases, or 
alternatively due to non-deposition.

Facies of middle to outer platform environments were 
located to the northwest, in the Tramuntana Range domain 
(Es Barraca and Es Cosconar sections; Figs. 13 and 14). In 
this domain, the change from stage 2 to stage 3 is marked 
by a sharp shift to marly deposits that overlie a biotur-
bated irmground surface (Fig. 3). In the Es Barraca sec-
tion, above this surface, stage 3 starts with meter-thick 
intervals of marly limestone (facies 15) that alternate with 
massive to laminated ine-grained peloidal-skeletal pack-
stone-grainstone rich in quartz grains (facies 11, 12B), rep-
resenting likely a transition from outer to middle platform 
environments with storm inluence (Figs. 3, 13). For the 
rest of the succession, ine-grained peloidal-skeletal pack-
stones-grainstone (facies 11), ine-laminated calcisiltite 
with cross-bedding and climbing to hummocky cross-lami-
nation (facies 12A), and minor amounts of peloidal-oolitic 
grainstone (facies 12B–12C), represent the dominant sedi-
mentation of the middle to outer platform (Fig. 14). The 
sedimentary structures of these facies are interpreted as 
storm-driven bedforms and tempestites (Table 1; Fig. 13) 
(e.g., Chaudhuri 2003; Brandano et al. 2012). They inter-
calate with beds (0.5–3 m thick) of grain-supported intra-
clastic-pebbly grainstone (facies 13) and mud-supported 
oolitic-peloidal wackestone to packstone (facies 14) 
interpreted as probable gravity-low deposits transporting 
partly lithiied material in the form of intraclasts and other 
types of grain, from the shallower platform to the outer 
platform (Schlager et al. 1994). These deposits may have 
traveled downdip toward the outer platform triggered by 
tectonic instability (seismicity) or driven by strong storms 
that may have swept the platform. These deposits were not 
transported long distances downdip because they did not 
reach the outermost platform environment (Cosconar sec-
tion), indicating the existence of gentle slopes with rela-
tive low topographic gradient that retained the sediment in 
this part of the platform. Upward in the succession facies 
evolve to predominant laminated mudstone and graded 
calcisiltite with ripple- to hummocky cross-lamination 

and cross-bedding (facies 12A–C), interpreted as storm-
induced bedforms and suspension mud clouds (Dott and 
Bourgeois 1982; Pedersen 1985).

In the Cosconar section (Fig. 3), the contact of stage 3 
deposits (facies 15) with the underlying limestone of stage 
2 is marked by a change to a rhythmic alternation of deci-
metric layers of wackestone to marly limestone and marl 
(facies 15; Figs. 3, 14), interpreted to have been depos-
ited on the outermost part of the platform developed to 
the northwest.

Discussion

Platform stages and transgressive–regressive facies 
cycles

As a whole, the Liassic (Hettangian–Toarcian) carbonate 
succession of Mallorca shows an overall long-term deep-
ening-upward trend from coastal sabkha and peritidal plat-
form environments in the Hettangian–Sinemurian, to open-
platform and outer-platform deposits in the Pliensbachian, 
and inally to hemipelagic marl-limestone alternations in 
the Toarcian (Álvaro et al. 1989; Rosales et al. 2018). This 
deepening-upward trend was coeval with a major global 
transgressive event (Liassic or Ligurian cycle) that afected 
many European and Tethyan basins (Jacquin and De Gra-
ciansky 1998; Hallam 1981, 2001).

Subordinate to this long-term transgressive event, the 
described Sinemurian carbonate platform stages 1–3 can be 
regarded as sequences, each one deined by a transgressive 
and/or regressive facies trend, and bounded by maximum 
regressive or transgressive surfaces (sensu Embry 1993) 
(Fig. 3). The irst sequence corresponds to stage 1. It has 
a deepening-shallowing upward facies trend recognizable 
in all the studied proiles, except in the Es Barraca section, 
where only the upper (shallowing) part is recorded (Fig. 3). 
Stage 1 is characterized in its lower part by a long deepen-
ing-upward facies trend starting from the Hettangian and 
relected by a gradual upward increase of the proportion 
of subtidal facies, with the maximum looding interval rep-
resented by the maximum accumulation of subtidal open 
lagoon facies 6 (Fig. 3). The uppermost part of stage 1 shows 
a shallowing-upward facies trend characterized by the pre-
dominance of intertidal to supratidal carbonate deposits.

The base of stage 2 represents a sharp transgressive event 
in all the studied sections. This transgression is marked by a 
sudden facies shift from tidal-lat deposits of the uppermost 
part of stage 1 to outer- and open-platform deposits (facies 
7B, 8, 10) of the lowermost part of stage 2. As a whole, 
stage 2 can be regarded as a sequence displaying a discrete 
shallowing-upward facies trend or even stillstand along all 
the studied proiles (Fig. 3). The next sequence (stage 3) is 

Fig. 10  a, b Examples of supratidal lat-pebble breccia (facies 1A) 
in the Cutri section. Centimeter size lat pebbles are made of micro-
bial laminites. c, d Field aspect of wavy microbial laminites (facies 
1B), examples from the Es Barraca section (c) and the Cutri section 
(d). e Vertical stacking of intertidal facies 1C overlain by protected 
lagoonal facies 4A. Field example from the Cutri section. f Parallel 
microbial laminites (facies 1C) from Cuevas de Artá section. Note 
light grey color for the micritic laminae and dark grey color for the 
grain-supported laminae. g Field aspect of intertidal microbial lam-
inites grading upward to supratidal lat-pebble breccias. Field exam-
ple from the Cutri section. h Field aspect of peloidal-oncolitic-oolitic 
grainstone (facies 5C) from the Son Maina section
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marked by a sudden shift in the depositional system from a 
muddy carbonate platform to a peritidal-to-outer carbonate 
platform. In the inner platform environments, the sequence 
shows a progressive deepening-upward facies trend from 
tidal lat-inner platform deposits at the base of the sequence 
to open-platform deposits at the top (Fig. 3). This deepen-
ing-upward succession culminates with the unconformity 
at the boundary between the studied Es Barraca Mb and the 
overlying, more heterogeneous, Pliensbachian succession of 
marl, deltaic sandstone and platform carbonate (Sa Moleta 
Mb, Es Racó Mb and Es Cosconar Fm respectively; Fig. 3).

Comparison of these transgressive and regressive facies 
trends with the record of Jurassic sea-level changes (Hallam 
2001) and the transgressive–regressive facies cycles deined 
for the European and Tethyan basins (De Graciansky et al. 
1998; Aurell et al. 2003) shows a relatively good correlation 
for some of the facies trends observed. A feature common 
between the Mallorca record and many other more distant 
basins is the long transgressive trend from the Hettangian 
to the early Sinemurian (Hallam 1981) that is followed by a 
short regressive trend peaking around the early–late Sinemu-
rian boundary (transgressive–regressive T/R4a sequence of 
De Graciansky et al. 1998). Coeval T-R sequences have also 
been recognized in Spain (Asturias and Basque-Cantabrian 
basins and the Betic Cordillera), although not in the Ibe-
rian Basin (Aurell et al. 2003). In particular, in the Basque-
Cantabrian basin (northern Spain), the sequence boundary 
capping an age-equivalent asymmetric transgressive–regres-
sive facies cycle is evidenced by a middle Sinemurian ero-
sional unconformity with subaerial exposure, developed 
over forced-regressive luvial and shallow marine sandstone 
(Quesada et al. 2005). The reasonably good agreement of 
this facies cycle of Mallorca with other basins points to a 
probable eustatic inluence in its development (Hallam 1981, 
2001), although locally masked by regional tectonic subsid-
ence (e.g., Iberian Basin; Aurell et al. 2003).

The early late Sinemurian transgressive event that charac-
terizes the base of stage 2 is also a common feature observed 
in many other basins such as the Basque-Cantabrian and 
Asturias basins (Obtusum Zone transgressive surface; Aurell 

et al. 2003; Quesada et al. 2005). In those basins, like in 
Mallorca, this event is related also with the onset of diferen-
tial subsidence (Aurell et al. 2003; Quesada et al. 2005). The 
late Sinemurian is characterized in other European basins by 
a new, more symmetrical, transgressive–regressive facies 
cycle that culminates with a sequence boundary aged from 
latest Sinemurian in the Basque-Cantabrian basin (Quesada 
et al. 2005), to the Sinemurian–Pliensbachian boundary or 
even early Pliensbachian age in other basins (De Graciansky 
et al. 1998). However, the coeval Mallorca record shows 
an opposite trend, that is, weak facies regression (or even 
stillstand; stage 2) followed by facies transgression (stage 
3; Fig. 3). The discrepancy in the age of the sequence and 
in the facies trend observed in Mallorca is interpreted to 
relect particular tectonic and sedimentary conditions in this 
domain related to the onset of the extensional tectonics in 
the area. Therefore, it is suggested that both tectonics and 
eustasy combined to create accommodation space and that 
both impacted on the internal architecture of the Sinemurian 
carbonate platform of Mallorca.

Regional and paleoenvironmental inluence on facies 

architecture

Shallow-water and peritidal carbonates of Early Jurassic 
(Liassic) age are a common feature of many regions of the 
peri-Tethyan margins. They developed through the Het-
tangian to Pliensbachian in tropical-subtropical regions 
and over large epicontinental areas of the Iberian, Adriatic 
and African plates. These conditions led to deposition of 
the so-called Lower Jurassic Bahamian-type facies (sensu 
Beales 1958), which are characterized by peritidal facies 
with exposure horizons, high-energy shallow-water oolitic-
peloidal grainstone, and lagoonal facies with foraminifera, 
oncoids and the green algae Palaeodasycladus (Di Ste-
fano et al. 2002; Rychliński et al. 2018a, b). These Lower 
Jurassic Bahamian-type facies (Beales 1958) are compara-
ble to the facies documented in this study for the stage 1 
and stage 3 of the Es Barraca Mb. Similar facies have also 
been described in many carbonate platforms of Liassic age 
(Hettangian to Pliensbachian) around the Tethys, such as 
in Greece (Pomoni-Papaioannou and Kostopoulou 2008), 
Croatia (Martinuš et al. 2012), Italy (Barattolo and Bigozzi 
1996; Di Stefano et al. 2002; Romano et al. 2005), Tuni-
sia (Soussi and Ismaïl 2000; Soussi et al. 2000), Morocco 
(Crevello 1991; Wilmsen and Neuweiler 2008; Merino-
Tomé et al. 2012); and around the Iberian margins, in the 
Basque-Cantabrian Basin (Robles and Quesada 1995), the 
Iberian Basin (Bádenas et al. 2010) and the Betic Cordil-
lera (Bosence et al. 2000; Ruiz-Ortiz et al. 2004), relecting 
parallelism in their sedimentary conditions.

On the other hand, many of these peri-Tethyan carbonate 
platforms experienced extensional tectonics (rifting) since 

Fig. 11  a Field aspect of the Es Barraca Member outcrop at the Cutri 
section. Yellow lines indicate the upper boundary of the three difer-
ent carbonate platform stages, including the top of the section in the 
contact with the upper Pliensbachian Es Cosconar Formation. b Con-
tact between stage 2 and stage 3 in the Cutri section, represented by 
an erosional and ferruginous surface separating muddy open-platform 
facies of stage 2 from intertidal facies of stage 3, with development of 
a probable shallow tidal channel (red lines). c Detail of the erosional 
surface between stage 2 and stage 3 carbonates. See clasts of the fer-
ruginous crust deposited as a basal lag at the bottom of the tidal chan-
nel. d Field aspect of plane-parallel lamination of facies 12A at the 
Es Barraca section. e Field aspect of undulating lamination (in-phase 
climbing ripples) in facies 12A of the Es Barraca section. f–g Field 
aspect of inverse grading observed in facies 13 (Es Barraca section)
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the late Sinemurian onwards, related to the opening of the 
central Atlantic gateway and the expansion of the western 
Tethys (Thierry 2000). These tectonic events resulted in a 
major paleogeographic reorganization of the carbonate plat-
forms throughout the Early Jurassic, with platform dissec-
tion causing formation of up-lifted blocks and intra-shelf 
basins, and inally drowning, giving way to hemipelagic 
and pelagic deposition (e.g., Bernoulli and Jenkyns 1974; 
Soussi and Ismaïl 2000; Ruiz-Ortiz et al. 2004; Santanto-
nio et al. 2016). The three platform stages identiied for the 
Es Barraca Member of the Balearic Basin encompassed the 
early phases of this tectonic evolution. Thus, stage 1 devel-
oped during the early Sinemurian to earliest late Sinemu-
rian as a wide shallow carbonate platform (Fig. 13), which 
was characterized by a very low topographic gradient and 
Bahamian-type facies representative of environments rang-
ing from tidal-lat and marginal-littoral with small depres-
sions or ponds, oolitic bars/shoals and restricted to open 
shallow lagoons. The platform evolved upwards, during the 
late Sinemurian (stage 2), to a predominantly muddy open 
platform rich in molluscs (bivalves, gastropods) (Fig. 13). 
During this stage local slumps in the Tramuntana Range 
domain indicate the onset of topographic gradients in this 
direction and/or paleosismicity, suggesting the beginning of 
tectonic activity in the area during the late Sinemurian. In 
addition, the increase of thicknesses toward the Tramuntana 
Range during this stage, along with the sudden occurrence 
of relatively deeper-water spiculitic facies (facies 10) over 
tidal-lat facies of the previous stage, are interpreted to rep-
resent a rapid deepening and an increase in accommodation 
space towards this domain. In contrast, toward the Llevant 
Mountains domain, the platform developed in a less-subsid-
ent area characterized by thinner sedimentary thicknesses 
and predominance of relatively shallower facies, composed 
mainly of mudstone and skeletal limestone rich in oncoids, 
molluscs and megalodontid bivalves (facies 7A, 7B, 8). This 
relects a sharp change in the sedimentary conditions of the 
shallow platform, with the demise of the previous Baha-
mian-type facies, despite the fact that sedimentation still 
occurred in a shallow-marine environment. Tectonic activity 
is relected also in the northeasternmost sector (Cuevas de 
Artá), where peritidal facies of stage 1 are directly overlain 
by a hardground and condensed section of Aalenian–Bajo-
cian age (Álvaro et al. 1989). Therefore, there is a deposi-
tional gap (erosion and/or non-deposition) spanning from the 

early–late Sinemurian to the Aalenian, suggesting that this 
area was probably a structural high with negligible subsid-
ence/accommodation space or even uplift. The shallowest 
environments during stage 2 were likely located towards this 
area but were not preserved or deposited and later removed 
by erosion due to uplift during rift progression. The presence 
of resedimented oolitic layers within the facies of the muddy 
shallow platform indicates the existence of a non-preserved 
narrow oolitic belt probably located towards this position 
(Fig. 13).

An almost simultaneous demise of peritidal carbonate 
sedimentation that was replaced by relatively deeper-water, 
open-marine subtidal deposition seems to have occurred 
around the early–late Sinemurian boundary in many other 
peri-Tethyan platforms. This is the case, for example, on the 
Apennine and Sicilian platforms (Marino and Santantonio 
2010), the Ligurian Alps (Decarlis and Lualdi 2010), the 
Basque-Cantabrian Basin of northern Spain (Quesada et al. 
2005) and the High Atlas of Morocco (Mehdi et al. 2003; 
Chaiki et al. 2004; Wilmsen and Neuweiler 2008). In the 
High Atlas of Morocco the approximate boundary between 
the early and late Sinemurian is characterized by the break-
up of the previous peritidal carbonate platform into blocks, 
which is accompanied also by a demise of the carbonate 
factory, leading to the development of depositional hiatuses 
and to the replacement of the peritidal carbonate factory by 
micritic, microbial, siliceous sponge-rich deposits (Mehdi 
et al. 2003; Chaiki et al. 2004; Wilmsen and Neuweiler 
2008). This suggests deepening and environmental perturba-
tions accompanying the tectonic event. According to Masetti 
et al. (2017) and Preto et al. (2017), a positive excursion fol-
lowed by a negative carbon isotope anomaly occurs across 
the transition from early to late Sinemurian in both, shallow- 
and deep-water successions of the Southern Alps, which can 
be correlated to global perturbations of the carbon cycle 
accompanying the looding of formerly peritidal carbon-
ate deposition (Fig. 15). They concluded that mesotrophic 
conditions might have occurred during the late Sinemurian, 
acting together with the onset of extensional tectonics, and 
causing a crisis in carbonate production. The late Sinemu-
rian negative carbon isotope excursion is reproduced also in 
several sections of England (Fig. 15) along with palynologi-
cal evidence of warming, giving further support that may 
represent a climatic event (Jenkyns and Weedon 2013; Rid-
ing et al. 2013).

The evolution of the Balearic platform in the late Sine-
murian may have been similar to the above-cited examples 
(Fig. 15), that is, the onset of tectonic diferential subsid-
ence, sea-level changes and environmental perturbations 
may have merged controlling the change in the platform style 
recorded from stage 1 to stage 2 (Figs. 4 and 13). These 
characteristics include the lack of intertidal and supratidal 
facies associations, and a higher water turbidity in the 

Fig. 12  a Field aspect of open-lagoon facies 6A. Note the abundance 
of bivalves and other skeletal fragments from the Cutri section. b 
Field aspect of skeletal loatstone (facies 7A) from the H’Heretat sec-
tion. c Field aspect of bioturbated mudstone (facies 8) from the Es 
Barraca section. d Field aspect of heterometric-intraclastic-pebbly 
grainstone (facies 13) from the Es Barraca section. Yellow arrows 
point to limestone pebbles with diferent textures. e General ield 
aspect of limestones corresponding to stage 2 in the Cosconar section
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subtidal environments promoted by the muddy substrates. 
All this could favor the proliferation and abundance of sus-
pensivorous heterotrophic species (i.e.,  bivalves and other 
mollusc, brachiopods, sponges). The proliferation of muddy 
substrates in the shallow platforms of the late Sinemurian 
seems to have been a frequent feature reproduced in some 
other basins around the Iberian plate (Aurell et al. 2002; 
Paredes et al. 2013). This period may correspond to the 

Fig. 13  Sedimentary facies models for the three platform stages 
established in the evolution of the Sinemurian carbonate succession 
of Mallorca. These conceptual depositional models are reconstructed 
for the end of each stage. Stage 1: peritidal carbonate platform, early 
Sinemurian–earliest late Sinemurian. Stage 2: muddy open carbonate 
platform, late Sinemurian. Stage 3: peritidal to outer carbonate plat-
form, latest Sinemurian

◂

Fig. 14  Color pie charts of depositional environments, indicating the 
relative abundance of facies representative of the diferent environ-
ments for each stage of carbonate platform evolution in the six stud-

ied sections. The plots of stage 1 have been separated in a lower and 
an upper part. These pie charts illustrate the vertical and lateral varia-
tion of facies and depositional environments through the Sinemurian
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so-called “Lotharingian crisis” observed in other basins of 
the Western Tethys (Gabilly et al. 1985), which also coin-
cides with a regional transgressive event (Aurell et al. 2002, 
2003).

After the late Sinemurian tectonic phase with its asso-
ciated change in carbonate sedimentation and deepening 
event, shallow-water sedimentation did not recover in 
many areas of the Western Tethys (Masetti et al. 2017), 
whereas other areas experienced a resumption of the 
shallow-water carbonate factory (Preto et al. 2017). The 
latter was also the case for the Balearic Basin, where a 
new carbonate platform (stage 3) was established during 
the latest Sinemurian, with recovery of the Bahamian-type 
carbonate deposition (Fig. 13). During stage 3 the plat-
form evolved to a carbonate platform with well-deined 
facies belts, showing a transition from peritidal and inner-
platform/lagoon facies in the Llevant Mountains domain 
to mid-outer platform environments in the Tramuntana 
Range domain (Fig. 13). The suggested platform proile 
during stage 3 is inferred from facies interpretation and 
comparison with other time-equivalent platforms from the 
peri-Tethyan domain (e.g., Merino-Tomé et al. 2012). The 
presence of resedimented ooids and peloids in the mid-
dle-outer platform environments (facies 13, 14) suggests 
that during this time the platform was probably rimmed 
by subtidal oolitic belts (Fig. 13). This stage recorded a 
notable terrigenous inluence evidenced by the presence 
of quartz silt and sand grains and rare quartzite pebbles, 
especially in the facies from the middle to outer platform 
environments (facies 11, 13, 15). Siliciclastic inlux is 

not observed in the previous stages. According to recent 
paleogeographic reconstructions, it is most likely that the 
source of these siliciclastics was the adjacent Ebro High 
(Fig. 1a), which was an emergent area probably reactivated 
during the latest Sinemurian–Pliensbachian tectonic phase 
(Aurell et al. 2002). Alternatively, the siliciclastics could 
have been sourced from other proximal basement areas that 
could have emerged as a result of block faulting during this 
time. Following this earliest tectonic pulse in the Balearic 
platform, rifting progressed during the early Pliensbachian 
and resulted in platform dissection with the development, 
in the Tramuntana Range, of an intrashelf basin illed with 
marl (Sa Moleta Mb) and deltaic siliciclastics (Es Racó 
Mb; Fig. 3), whereas the Llevant mountains domain was 
probably subjected to uplift (erosion or non-deposition 
during the early Pliensbachian, as indicated by a strati-
graphic gap with a lack of deposits of this age). In the Betic 
Cordillera, the irst dissection by extensional faults of the 
shallow carbonate platform occurred also during the early 
Pliensbachian (Ruiz-Ortiz et al. 2004).

Conclusions

• Detailed facies analysis of six stratigraphic proiles in the 
Sinemurian succession of the Mallorca (Balearic Basin) 
has allowed the recognition of 29 facies and sub-facies, 
grouped into seven facies associations representative of 
tidal-lat, restricted lagoon, bar/shoals, inner-platform/

Fig. 15  A tentative correlation of the Sinemurian sedimentary and 
carbon isotope records from two well-documented sections in UK 
(Jenkyns and Weedon 2013) and Italy (Masetti et al. 2017) with the 
age-equivalent sedimentary record of Mallorca from this study, show-
ing the potential link between geochemistry and temporal facies evo-
lution. A major negative carbon isotope excursion zone (colored in 

grey) is observed in the Obtusum-Oxynotum zones. It is related with 
the demise of the peritidal platform in the Friulian Platform, which 
could be correlated with the parallel demise of the peritidal platform 
of Mallorca recorded during stage 2. The symbol of Litousepta recoa-

rensis marks the irst occurrence of this taxon, which is considered an 
index fossil of the late Sinemurian (Septfontaine 1984; Velić 2007)
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open-lagoon, muddy shallow open-platform, muddy 
outer- platform, and middle to outer-platform environ-
ments.

• These facies associations evolved with time relecting 
three diferent stages of the carbonate platform evolu-
tion. The platform evolved from a broad epicontinental, 
low-relief peritidal carbonate platform with an assorted 
mosaic of tidal-lat facies, relatively restricted and open-
lagoon environments (stage 1, early Sinemurian to 
earliest late Sinemurian), to an open muddy carbonate 
platform that recorded the onset of tectonically induced 
diferential subsidence (stage 2, late Sinemurian), and 
inally to a shallow carbonate platform, with a transi-
tion of peritidal and inner-platform environments in the 
Llevant Mountains paleogeographic domain to mid-outer 
platform environments in the Tramuntana Range domain 
(stage 3, latest Sinemurian).

• The changes in facies architecture, type of carbonate 
factory and evolution of the platform proiles between 
the three stages resulted from the interplay between 
regional tectonics, environmental perturbations and 
relative sea-level luctuations. Accompanying platform 
looding and onset of diferential subsidence, environ-
mental/climatic perturbations and a carbonate platform 
crisis occurring during the late Sinemurian may have 
promoted the demise of the Bahamian-type carbonate 
deposition of stage 1, which was replaced by muddy 
substrates during stage 2 where a heterotrophic fauna 
(e.g., molluscs) proliferated. During stage 3, after the 
late Sinemurian carbonate crisis, Bahamian-type car-
bonate production was re-established up to the latest 
Sinemurian.

• The observed changes in the type of carbonate produc-
tion, platform styles, facies stacking patterns and tec-
tonic evolution compare relatively well with those of 
other contemporaneous platforms around the continental 
Tethyan margins, improving the current understanding of 
the evolution of Tethyan carbonate platforms during the 
onset of the Early Jurassic rifting phase.
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